blob: a8ad70730203995c4529e909e09be028556afc18 [file] [log] [blame]
/*
* Copyright(c) 2015-2018 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/prefetch.h>
#include <rdma/ib_verbs.h>
#include "hfi.h"
#include "trace.h"
#include "qp.h"
#include "sdma.h"
#include "debugfs.h"
#include "vnic.h"
#include "fault.h"
#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
/*
* The size has to be longer than this string, so we can append
* board/chip information to it in the initialization code.
*/
const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
DEFINE_SPINLOCK(hfi1_devs_lock);
LIST_HEAD(hfi1_dev_list);
DEFINE_MUTEX(hfi1_mutex); /* general driver use */
unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
HFI1_DEFAULT_MAX_MTU));
unsigned int hfi1_cu = 1;
module_param_named(cu, hfi1_cu, uint, S_IRUGO);
MODULE_PARM_DESC(cu, "Credit return units");
unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
static const struct kernel_param_ops cap_ops = {
.set = hfi1_caps_set,
.get = hfi1_caps_get
};
module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
/*
* MAX_PKT_RCV is the max # if packets processed per receive interrupt.
*/
#define MAX_PKT_RECV 64
/*
* MAX_PKT_THREAD_RCV is the max # of packets processed before
* the qp_wait_list queue is flushed.
*/
#define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
#define EGR_HEAD_UPDATE_THRESHOLD 16
struct hfi1_ib_stats hfi1_stats;
static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
{
int ret = 0;
unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
cap_mask = *cap_mask_ptr, value, diff,
write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
HFI1_CAP_WRITABLE_MASK);
ret = kstrtoul(val, 0, &value);
if (ret) {
pr_warn("Invalid module parameter value for 'cap_mask'\n");
goto done;
}
/* Get the changed bits (except the locked bit) */
diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
/* Remove any bits that are not allowed to change after driver load */
if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
pr_warn("Ignoring non-writable capability bits %#lx\n",
diff & ~write_mask);
diff &= write_mask;
}
/* Mask off any reserved bits */
diff &= ~HFI1_CAP_RESERVED_MASK;
/* Clear any previously set and changing bits */
cap_mask &= ~diff;
/* Update the bits with the new capability */
cap_mask |= (value & diff);
/* Check for any kernel/user restrictions */
diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
cap_mask &= ~diff;
/* Set the bitmask to the final set */
*cap_mask_ptr = cap_mask;
done:
return ret;
}
static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
{
unsigned long cap_mask = *(unsigned long *)kp->arg;
cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
}
struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
{
struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
struct hfi1_devdata *dd = container_of(ibdev,
struct hfi1_devdata, verbs_dev);
return dd->pcidev;
}
/*
* Return count of units with at least one port ACTIVE.
*/
int hfi1_count_active_units(void)
{
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
unsigned long flags;
int pidx, nunits_active = 0;
spin_lock_irqsave(&hfi1_devs_lock, flags);
list_for_each_entry(dd, &hfi1_dev_list, list) {
if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
continue;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->lid && ppd->linkup) {
nunits_active++;
break;
}
}
}
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
return nunits_active;
}
/*
* Get address of eager buffer from it's index (allocated in chunks, not
* contiguous).
*/
static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
u8 *update)
{
u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
(offset * RCV_BUF_BLOCK_SIZE));
}
static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
__le32 *rhf_addr)
{
u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
return (void *)(rhf_addr - rcd->rhf_offset + offset);
}
static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
__le32 *rhf_addr)
{
return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
}
static inline struct hfi1_16b_header
*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
__le32 *rhf_addr)
{
return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
}
/*
* Validate and encode the a given RcvArray Buffer size.
* The function will check whether the given size falls within
* allowed size ranges for the respective type and, optionally,
* return the proper encoding.
*/
int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
{
if (unlikely(!PAGE_ALIGNED(size)))
return 0;
if (unlikely(size < MIN_EAGER_BUFFER))
return 0;
if (size >
(type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
return 0;
if (encoded)
*encoded = ilog2(size / PAGE_SIZE) + 1;
return 1;
}
static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
struct hfi1_packet *packet)
{
struct ib_header *rhdr = packet->hdr;
u32 rte = rhf_rcv_type_err(packet->rhf);
u32 mlid_base;
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
struct hfi1_devdata *dd = ppd->dd;
struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
struct rvt_dev_info *rdi = &verbs_dev->rdi;
if ((packet->rhf & RHF_DC_ERR) &&
hfi1_dbg_fault_suppress_err(verbs_dev))
return;
if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
return;
if (packet->etype == RHF_RCV_TYPE_BYPASS) {
goto drop;
} else {
u8 lnh = ib_get_lnh(rhdr);
mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
if (lnh == HFI1_LRH_BTH) {
packet->ohdr = &rhdr->u.oth;
} else if (lnh == HFI1_LRH_GRH) {
packet->ohdr = &rhdr->u.l.oth;
packet->grh = &rhdr->u.l.grh;
} else {
goto drop;
}
}
if (packet->rhf & RHF_TID_ERR) {
/* For TIDERR and RC QPs preemptively schedule a NAK */
u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
u32 dlid = ib_get_dlid(rhdr);
u32 qp_num;
/* Sanity check packet */
if (tlen < 24)
goto drop;
/* Check for GRH */
if (packet->grh) {
u32 vtf;
struct ib_grh *grh = packet->grh;
if (grh->next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(grh->version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
}
/* Get the destination QP number. */
qp_num = ib_bth_get_qpn(packet->ohdr);
if (dlid < mlid_base) {
struct rvt_qp *qp;
unsigned long flags;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
if (!qp) {
rcu_read_unlock();
goto drop;
}
/*
* Handle only RC QPs - for other QP types drop error
* packet.
*/
spin_lock_irqsave(&qp->r_lock, flags);
/* Check for valid receive state. */
if (!(ib_rvt_state_ops[qp->state] &
RVT_PROCESS_RECV_OK)) {
ibp->rvp.n_pkt_drops++;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
hfi1_rc_hdrerr(rcd, packet, qp);
break;
default:
/* For now don't handle any other QP types */
break;
}
spin_unlock_irqrestore(&qp->r_lock, flags);
rcu_read_unlock();
} /* Unicast QP */
} /* Valid packet with TIDErr */
/* handle "RcvTypeErr" flags */
switch (rte) {
case RHF_RTE_ERROR_OP_CODE_ERR:
{
void *ebuf = NULL;
u8 opcode;
if (rhf_use_egr_bfr(packet->rhf))
ebuf = packet->ebuf;
if (!ebuf)
goto drop; /* this should never happen */
opcode = ib_bth_get_opcode(packet->ohdr);
if (opcode == IB_OPCODE_CNP) {
/*
* Only in pre-B0 h/w is the CNP_OPCODE handled
* via this code path.
*/
struct rvt_qp *qp = NULL;
u32 lqpn, rqpn;
u16 rlid;
u8 svc_type, sl, sc5;
sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
sl = ibp->sc_to_sl[sc5];
lqpn = ib_bth_get_qpn(packet->ohdr);
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
if (!qp) {
rcu_read_unlock();
goto drop;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_UD:
rlid = 0;
rqpn = 0;
svc_type = IB_CC_SVCTYPE_UD;
break;
case IB_QPT_UC:
rlid = ib_get_slid(rhdr);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_UC;
break;
default:
rcu_read_unlock();
goto drop;
}
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
rcu_read_unlock();
}
packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
break;
}
default:
break;
}
drop:
return;
}
static inline void init_packet(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet)
{
packet->rsize = rcd->rcvhdrqentsize; /* words */
packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
packet->rcd = rcd;
packet->updegr = 0;
packet->etail = -1;
packet->rhf_addr = get_rhf_addr(rcd);
packet->rhf = rhf_to_cpu(packet->rhf_addr);
packet->rhqoff = rcd->head;
packet->numpkt = 0;
}
/* We support only two types - 9B and 16B for now */
static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
[HFI1_PKT_TYPE_9B] = &return_cnp,
[HFI1_PKT_TYPE_16B] = &return_cnp_16B
};
/**
* hfi1_process_ecn_slowpath - Process FECN or BECN bits
* @qp: The packet's destination QP
* @pkt: The packet itself.
* @prescan: Is the caller the RXQ prescan
*
* Process the packet's FECN or BECN bits. By now, the packet
* has already been evaluated whether processing of those bit should
* be done.
* The significance of the @prescan argument is that if the caller
* is the RXQ prescan, a CNP will be send out instead of waiting for the
* normal packet processing to send an ACK with BECN set (or a CNP).
*/
bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
bool prescan)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct ib_other_headers *ohdr = pkt->ohdr;
struct ib_grh *grh = pkt->grh;
u32 rqpn = 0;
u16 pkey;
u32 rlid, slid, dlid = 0;
u8 hdr_type, sc, svc_type, opcode;
bool is_mcast = false, ignore_fecn = false, do_cnp = false,
fecn, becn;
/* can be called from prescan */
if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
pkey = hfi1_16B_get_pkey(pkt->hdr);
sc = hfi1_16B_get_sc(pkt->hdr);
dlid = hfi1_16B_get_dlid(pkt->hdr);
slid = hfi1_16B_get_slid(pkt->hdr);
is_mcast = hfi1_is_16B_mcast(dlid);
opcode = ib_bth_get_opcode(ohdr);
hdr_type = HFI1_PKT_TYPE_16B;
fecn = hfi1_16B_get_fecn(pkt->hdr);
becn = hfi1_16B_get_becn(pkt->hdr);
} else {
pkey = ib_bth_get_pkey(ohdr);
sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
ppd->lid;
slid = ib_get_slid(pkt->hdr);
is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
(dlid != be16_to_cpu(IB_LID_PERMISSIVE));
opcode = ib_bth_get_opcode(ohdr);
hdr_type = HFI1_PKT_TYPE_9B;
fecn = ib_bth_get_fecn(ohdr);
becn = ib_bth_get_becn(ohdr);
}
switch (qp->ibqp.qp_type) {
case IB_QPT_UD:
rlid = slid;
rqpn = ib_get_sqpn(pkt->ohdr);
svc_type = IB_CC_SVCTYPE_UD;
break;
case IB_QPT_SMI:
case IB_QPT_GSI:
rlid = slid;
rqpn = ib_get_sqpn(pkt->ohdr);
svc_type = IB_CC_SVCTYPE_UD;
break;
case IB_QPT_UC:
rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_UC;
break;
case IB_QPT_RC:
rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_RC;
break;
default:
return false;
}
ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
/*
* ACKNOWLEDGE packets do not get a CNP but this will be
* guarded by ignore_fecn above.
*/
do_cnp = prescan ||
(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE);
/* Call appropriate CNP handler */
if (!ignore_fecn && do_cnp && fecn)
hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
dlid, rlid, sc, grh);
if (becn) {
u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
u8 sl = ibp->sc_to_sl[sc];
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
}
return !ignore_fecn && fecn;
}
struct ps_mdata {
struct hfi1_ctxtdata *rcd;
u32 rsize;
u32 maxcnt;
u32 ps_head;
u32 ps_tail;
u32 ps_seq;
};
static inline void init_ps_mdata(struct ps_mdata *mdata,
struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
mdata->rcd = rcd;
mdata->rsize = packet->rsize;
mdata->maxcnt = packet->maxcnt;
mdata->ps_head = packet->rhqoff;
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
mdata->ps_tail = get_rcvhdrtail(rcd);
if (rcd->ctxt == HFI1_CTRL_CTXT)
mdata->ps_seq = rcd->seq_cnt;
else
mdata->ps_seq = 0; /* not used with DMA_RTAIL */
} else {
mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
mdata->ps_seq = rcd->seq_cnt;
}
}
static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
struct hfi1_ctxtdata *rcd)
{
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
return mdata->ps_head == mdata->ps_tail;
return mdata->ps_seq != rhf_rcv_seq(rhf);
}
static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
struct hfi1_ctxtdata *rcd)
{
/*
* Control context can potentially receive an invalid rhf.
* Drop such packets.
*/
if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
return mdata->ps_seq != rhf_rcv_seq(rhf);
return 0;
}
static inline void update_ps_mdata(struct ps_mdata *mdata,
struct hfi1_ctxtdata *rcd)
{
mdata->ps_head += mdata->rsize;
if (mdata->ps_head >= mdata->maxcnt)
mdata->ps_head = 0;
/* Control context must do seq counting */
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
(rcd->ctxt == HFI1_CTRL_CTXT)) {
if (++mdata->ps_seq > 13)
mdata->ps_seq = 1;
}
}
/*
* prescan_rxq - search through the receive queue looking for packets
* containing Excplicit Congestion Notifications (FECNs, or BECNs).
* When an ECN is found, process the Congestion Notification, and toggle
* it off.
* This is declared as a macro to allow quick checking of the port to avoid
* the overhead of a function call if not enabled.
*/
#define prescan_rxq(rcd, packet) \
do { \
if (rcd->ppd->cc_prescan) \
__prescan_rxq(packet); \
} while (0)
static void __prescan_rxq(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
struct ps_mdata mdata;
init_ps_mdata(&mdata, packet);
while (1) {
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
packet->rcd->rhf_offset;
struct rvt_qp *qp;
struct ib_header *hdr;
struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
u64 rhf = rhf_to_cpu(rhf_addr);
u32 etype = rhf_rcv_type(rhf), qpn, bth1;
u8 lnh;
if (ps_done(&mdata, rhf, rcd))
break;
if (ps_skip(&mdata, rhf, rcd))
goto next;
if (etype != RHF_RCV_TYPE_IB)
goto next;
packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
hdr = packet->hdr;
lnh = ib_get_lnh(hdr);
if (lnh == HFI1_LRH_BTH) {
packet->ohdr = &hdr->u.oth;
packet->grh = NULL;
} else if (lnh == HFI1_LRH_GRH) {
packet->ohdr = &hdr->u.l.oth;
packet->grh = &hdr->u.l.grh;
} else {
goto next; /* just in case */
}
if (!hfi1_may_ecn(packet))
goto next;
bth1 = be32_to_cpu(packet->ohdr->bth[1]);
qpn = bth1 & RVT_QPN_MASK;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
if (!qp) {
rcu_read_unlock();
goto next;
}
hfi1_process_ecn_slowpath(qp, packet, true);
rcu_read_unlock();
/* turn off BECN, FECN */
bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
packet->ohdr->bth[1] = cpu_to_be32(bth1);
next:
update_ps_mdata(&mdata, rcd);
}
}
static void process_rcv_qp_work(struct hfi1_packet *packet)
{
struct rvt_qp *qp, *nqp;
struct hfi1_ctxtdata *rcd = packet->rcd;
/*
* Iterate over all QPs waiting to respond.
* The list won't change since the IRQ is only run on one CPU.
*/
list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
list_del_init(&qp->rspwait);
if (qp->r_flags & RVT_R_RSP_NAK) {
qp->r_flags &= ~RVT_R_RSP_NAK;
packet->qp = qp;
hfi1_send_rc_ack(packet, 0);
}
if (qp->r_flags & RVT_R_RSP_SEND) {
unsigned long flags;
qp->r_flags &= ~RVT_R_RSP_SEND;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] &
RVT_PROCESS_OR_FLUSH_SEND)
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
rvt_put_qp(qp);
}
}
static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
{
if (thread) {
if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
/* allow defered processing */
process_rcv_qp_work(packet);
cond_resched();
return RCV_PKT_OK;
} else {
this_cpu_inc(*packet->rcd->dd->rcv_limit);
return RCV_PKT_LIMIT;
}
}
static inline int check_max_packet(struct hfi1_packet *packet, int thread)
{
int ret = RCV_PKT_OK;
if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
ret = max_packet_exceeded(packet, thread);
return ret;
}
static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
{
int ret;
/* Set up for the next packet */
packet->rhqoff += packet->rsize;
if (packet->rhqoff >= packet->maxcnt)
packet->rhqoff = 0;
packet->numpkt++;
ret = check_max_packet(packet, thread);
packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
packet->rcd->rhf_offset;
packet->rhf = rhf_to_cpu(packet->rhf_addr);
return ret;
}
static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
{
int ret;
packet->etype = rhf_rcv_type(packet->rhf);
/* total length */
packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
/* retrieve eager buffer details */
packet->ebuf = NULL;
if (rhf_use_egr_bfr(packet->rhf)) {
packet->etail = rhf_egr_index(packet->rhf);
packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
&packet->updegr);
/*
* Prefetch the contents of the eager buffer. It is
* OK to send a negative length to prefetch_range().
* The +2 is the size of the RHF.
*/
prefetch_range(packet->ebuf,
packet->tlen - ((packet->rcd->rcvhdrqentsize -
(rhf_hdrq_offset(packet->rhf)
+ 2)) * 4));
}
/*
* Call a type specific handler for the packet. We
* should be able to trust that etype won't be beyond
* the range of valid indexes. If so something is really
* wrong and we can probably just let things come
* crashing down. There is no need to eat another
* comparison in this performance critical code.
*/
packet->rcd->rhf_rcv_function_map[packet->etype](packet);
packet->numpkt++;
/* Set up for the next packet */
packet->rhqoff += packet->rsize;
if (packet->rhqoff >= packet->maxcnt)
packet->rhqoff = 0;
ret = check_max_packet(packet, thread);
packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
packet->rcd->rhf_offset;
packet->rhf = rhf_to_cpu(packet->rhf_addr);
return ret;
}
static inline void process_rcv_update(int last, struct hfi1_packet *packet)
{
/*
* Update head regs etc., every 16 packets, if not last pkt,
* to help prevent rcvhdrq overflows, when many packets
* are processed and queue is nearly full.
* Don't request an interrupt for intermediate updates.
*/
if (!last && !(packet->numpkt & 0xf)) {
update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
packet->etail, 0, 0);
packet->updegr = 0;
}
packet->grh = NULL;
}
static inline void finish_packet(struct hfi1_packet *packet)
{
/*
* Nothing we need to free for the packet.
*
* The only thing we need to do is a final update and call for an
* interrupt
*/
update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
packet->etail, rcv_intr_dynamic, packet->numpkt);
}
/*
* Handle receive interrupts when using the no dma rtail option.
*/
int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
{
u32 seq;
int last = RCV_PKT_OK;
struct hfi1_packet packet;
init_packet(rcd, &packet);
seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt) {
last = RCV_PKT_DONE;
goto bail;
}
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
last = process_rcv_packet(&packet, thread);
seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (seq != rcd->seq_cnt)
last = RCV_PKT_DONE;
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
rcd->head = packet.rhqoff;
bail:
finish_packet(&packet);
return last;
}
int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
{
u32 hdrqtail;
int last = RCV_PKT_OK;
struct hfi1_packet packet;
init_packet(rcd, &packet);
hdrqtail = get_rcvhdrtail(rcd);
if (packet.rhqoff == hdrqtail) {
last = RCV_PKT_DONE;
goto bail;
}
smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
last = process_rcv_packet(&packet, thread);
if (packet.rhqoff == hdrqtail)
last = RCV_PKT_DONE;
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
rcd->head = packet.rhqoff;
bail:
finish_packet(&packet);
return last;
}
static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
{
struct hfi1_ctxtdata *rcd;
u16 i;
/*
* For dynamically allocated kernel contexts (like vnic) switch
* interrupt handler only for that context. Otherwise, switch
* interrupt handler for all statically allocated kernel contexts.
*/
if (ctxt >= dd->first_dyn_alloc_ctxt) {
rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
if (rcd) {
rcd->do_interrupt =
&handle_receive_interrupt_nodma_rtail;
hfi1_rcd_put(rcd);
}
return;
}
for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
if (rcd)
rcd->do_interrupt =
&handle_receive_interrupt_nodma_rtail;
hfi1_rcd_put(rcd);
}
}
static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
{
struct hfi1_ctxtdata *rcd;
u16 i;
/*
* For dynamically allocated kernel contexts (like vnic) switch
* interrupt handler only for that context. Otherwise, switch
* interrupt handler for all statically allocated kernel contexts.
*/
if (ctxt >= dd->first_dyn_alloc_ctxt) {
rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
if (rcd) {
rcd->do_interrupt =
&handle_receive_interrupt_dma_rtail;
hfi1_rcd_put(rcd);
}
return;
}
for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
if (rcd)
rcd->do_interrupt =
&handle_receive_interrupt_dma_rtail;
hfi1_rcd_put(rcd);
}
}
void set_all_slowpath(struct hfi1_devdata *dd)
{
struct hfi1_ctxtdata *rcd;
u16 i;
/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
if (!rcd)
continue;
if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
rcd->do_interrupt = &handle_receive_interrupt;
hfi1_rcd_put(rcd);
}
}
static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet,
struct hfi1_devdata *dd)
{
struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
u8 etype = rhf_rcv_type(packet->rhf);
u8 sc = SC15_PACKET;
if (etype == RHF_RCV_TYPE_IB) {
struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
packet->rhf_addr);
sc = hfi1_9B_get_sc5(hdr, packet->rhf);
} else if (etype == RHF_RCV_TYPE_BYPASS) {
struct hfi1_16b_header *hdr = hfi1_get_16B_header(
packet->rcd,
packet->rhf_addr);
sc = hfi1_16B_get_sc(hdr);
}
if (sc != SC15_PACKET) {
int hwstate = driver_lstate(rcd->ppd);
if (hwstate != IB_PORT_ACTIVE) {
dd_dev_info(dd,
"Unexpected link state %s\n",
opa_lstate_name(hwstate));
return 0;
}
queue_work(rcd->ppd->link_wq, lsaw);
return 1;
}
return 0;
}
/*
* handle_receive_interrupt - receive a packet
* @rcd: the context
*
* Called from interrupt handler for errors or receive interrupt.
* This is the slow path interrupt handler.
*/
int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
{
struct hfi1_devdata *dd = rcd->dd;
u32 hdrqtail;
int needset, last = RCV_PKT_OK;
struct hfi1_packet packet;
int skip_pkt = 0;
/* Control context will always use the slow path interrupt handler */
needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
init_packet(rcd, &packet);
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt) {
last = RCV_PKT_DONE;
goto bail;
}
hdrqtail = 0;
} else {
hdrqtail = get_rcvhdrtail(rcd);
if (packet.rhqoff == hdrqtail) {
last = RCV_PKT_DONE;
goto bail;
}
smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
/*
* Control context can potentially receive an invalid
* rhf. Drop such packets.
*/
if (rcd->ctxt == HFI1_CTRL_CTXT) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt)
skip_pkt = 1;
}
}
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
if (unlikely(dd->do_drop &&
atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
DROP_PACKET_ON)) {
dd->do_drop = 0;
/* On to the next packet */
packet.rhqoff += packet.rsize;
packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
packet.rhqoff +
rcd->rhf_offset;
packet.rhf = rhf_to_cpu(packet.rhf_addr);
} else if (skip_pkt) {
last = skip_rcv_packet(&packet, thread);
skip_pkt = 0;
} else {
/* Auto activate link on non-SC15 packet receive */
if (unlikely(rcd->ppd->host_link_state ==
HLS_UP_ARMED) &&
set_armed_to_active(rcd, &packet, dd))
goto bail;
last = process_rcv_packet(&packet, thread);
}
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (seq != rcd->seq_cnt)
last = RCV_PKT_DONE;
if (needset) {
dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
set_nodma_rtail(dd, rcd->ctxt);
needset = 0;
}
} else {
if (packet.rhqoff == hdrqtail)
last = RCV_PKT_DONE;
/*
* Control context can potentially receive an invalid
* rhf. Drop such packets.
*/
if (rcd->ctxt == HFI1_CTRL_CTXT) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (!last && (seq != rcd->seq_cnt))
skip_pkt = 1;
}
if (needset) {
dd_dev_info(dd,
"Switching to DMA_RTAIL\n");
set_dma_rtail(dd, rcd->ctxt);
needset = 0;
}
}
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
rcd->head = packet.rhqoff;
bail:
/*
* Always write head at end, and setup rcv interrupt, even
* if no packets were processed.
*/
finish_packet(&packet);
return last;
}
/*
* We may discover in the interrupt that the hardware link state has
* changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
* and we need to update the driver's notion of the link state. We cannot
* run set_link_state from interrupt context, so we queue this function on
* a workqueue.
*
* We delay the regular interrupt processing until after the state changes
* so that the link will be in the correct state by the time any application
* we wake up attempts to send a reply to any message it received.
* (Subsequent receive interrupts may possibly force the wakeup before we
* update the link state.)
*
* The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
* dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
* so we're safe from use-after-free of the rcd.
*/
void receive_interrupt_work(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
linkstate_active_work);
struct hfi1_devdata *dd = ppd->dd;
struct hfi1_ctxtdata *rcd;
u16 i;
/* Received non-SC15 packet implies neighbor_normal */
ppd->neighbor_normal = 1;
set_link_state(ppd, HLS_UP_ACTIVE);
/*
* Interrupt all statically allocated kernel contexts that could
* have had an interrupt during auto activation.
*/
for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
if (rcd)
force_recv_intr(rcd);
hfi1_rcd_put(rcd);
}
}
/*
* Convert a given MTU size to the on-wire MAD packet enumeration.
* Return -1 if the size is invalid.
*/
int mtu_to_enum(u32 mtu, int default_if_bad)
{
switch (mtu) {
case 0: return OPA_MTU_0;
case 256: return OPA_MTU_256;
case 512: return OPA_MTU_512;
case 1024: return OPA_MTU_1024;
case 2048: return OPA_MTU_2048;
case 4096: return OPA_MTU_4096;
case 8192: return OPA_MTU_8192;
case 10240: return OPA_MTU_10240;
}
return default_if_bad;
}
u16 enum_to_mtu(int mtu)
{
switch (mtu) {
case OPA_MTU_0: return 0;
case OPA_MTU_256: return 256;
case OPA_MTU_512: return 512;
case OPA_MTU_1024: return 1024;
case OPA_MTU_2048: return 2048;
case OPA_MTU_4096: return 4096;
case OPA_MTU_8192: return 8192;
case OPA_MTU_10240: return 10240;
default: return 0xffff;
}
}
/*
* set_mtu - set the MTU
* @ppd: the per port data
*
* We can handle "any" incoming size, the issue here is whether we
* need to restrict our outgoing size. We do not deal with what happens
* to programs that are already running when the size changes.
*/
int set_mtu(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
int i, drain, ret = 0, is_up = 0;
ppd->ibmtu = 0;
for (i = 0; i < ppd->vls_supported; i++)
if (ppd->ibmtu < dd->vld[i].mtu)
ppd->ibmtu = dd->vld[i].mtu;
ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
mutex_lock(&ppd->hls_lock);
if (ppd->host_link_state == HLS_UP_INIT ||
ppd->host_link_state == HLS_UP_ARMED ||
ppd->host_link_state == HLS_UP_ACTIVE)
is_up = 1;
drain = !is_ax(dd) && is_up;
if (drain)
/*
* MTU is specified per-VL. To ensure that no packet gets
* stuck (due, e.g., to the MTU for the packet's VL being
* reduced), empty the per-VL FIFOs before adjusting MTU.
*/
ret = stop_drain_data_vls(dd);
if (ret) {
dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
__func__);
goto err;
}
hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
if (drain)
open_fill_data_vls(dd); /* reopen all VLs */
err:
mutex_unlock(&ppd->hls_lock);
return ret;
}
int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
{
struct hfi1_devdata *dd = ppd->dd;
ppd->lid = lid;
ppd->lmc = lmc;
hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
return 0;
}
void shutdown_led_override(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
if (atomic_read(&ppd->led_override_timer_active)) {
del_timer_sync(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 0);
/* Ensure the atomic_set is visible to all CPUs */
smp_wmb();
}
/* Hand control of the LED to the DC for normal operation */
write_csr(dd, DCC_CFG_LED_CNTRL, 0);
}
static void run_led_override(struct timer_list *t)
{
struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
struct hfi1_devdata *dd = ppd->dd;
unsigned long timeout;
int phase_idx;
if (!(dd->flags & HFI1_INITTED))
return;
phase_idx = ppd->led_override_phase & 1;
setextled(dd, phase_idx);
timeout = ppd->led_override_vals[phase_idx];
/* Set up for next phase */
ppd->led_override_phase = !ppd->led_override_phase;
mod_timer(&ppd->led_override_timer, jiffies + timeout);
}
/*
* To have the LED blink in a particular pattern, provide timeon and timeoff
* in milliseconds.
* To turn off custom blinking and return to normal operation, use
* shutdown_led_override()
*/
void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
unsigned int timeoff)
{
if (!(ppd->dd->flags & HFI1_INITTED))
return;
/* Convert to jiffies for direct use in timer */
ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
/* Arbitrarily start from LED on phase */
ppd->led_override_phase = 1;
/*
* If the timer has not already been started, do so. Use a "quick"
* timeout so the handler will be called soon to look at our request.
*/
if (!timer_pending(&ppd->led_override_timer)) {
timer_setup(&ppd->led_override_timer, run_led_override, 0);
ppd->led_override_timer.expires = jiffies + 1;
add_timer(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 1);
/* Ensure the atomic_set is visible to all CPUs */
smp_wmb();
}
}
/**
* hfi1_reset_device - reset the chip if possible
* @unit: the device to reset
*
* Whether or not reset is successful, we attempt to re-initialize the chip
* (that is, much like a driver unload/reload). We clear the INITTED flag
* so that the various entry points will fail until we reinitialize. For
* now, we only allow this if no user contexts are open that use chip resources
*/
int hfi1_reset_device(int unit)
{
int ret;
struct hfi1_devdata *dd = hfi1_lookup(unit);
struct hfi1_pportdata *ppd;
int pidx;
if (!dd) {
ret = -ENODEV;
goto bail;
}
dd_dev_info(dd, "Reset on unit %u requested\n", unit);
if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
dd_dev_info(dd,
"Invalid unit number %u or not initialized or not present\n",
unit);
ret = -ENXIO;
goto bail;
}
/* If there are any user/vnic contexts, we cannot reset */
mutex_lock(&hfi1_mutex);
if (dd->rcd)
if (hfi1_stats.sps_ctxts) {
mutex_unlock(&hfi1_mutex);
ret = -EBUSY;
goto bail;
}
mutex_unlock(&hfi1_mutex);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
shutdown_led_override(ppd);
}
if (dd->flags & HFI1_HAS_SEND_DMA)
sdma_exit(dd);
hfi1_reset_cpu_counters(dd);
ret = hfi1_init(dd, 1);
if (ret)
dd_dev_err(dd,
"Reinitialize unit %u after reset failed with %d\n",
unit, ret);
else
dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
unit);
bail:
return ret;
}
static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
{
packet->hdr = (struct hfi1_ib_message_header *)
hfi1_get_msgheader(packet->rcd,
packet->rhf_addr);
packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
}
static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
{
struct hfi1_pportdata *ppd = packet->rcd->ppd;
/* slid and dlid cannot be 0 */
if ((!packet->slid) || (!packet->dlid))
return -EINVAL;
/* Compare port lid with incoming packet dlid */
if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
(packet->dlid !=
opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
return -EINVAL;
}
/* No multicast packets with SC15 */
if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
return -EINVAL;
/* Packets with permissive DLID always on SC15 */
if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
16B)) &&
(packet->sc != 0xF))
return -EINVAL;
return 0;
}
static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
struct ib_header *hdr;
u8 lnh;
hfi1_setup_ib_header(packet);
hdr = packet->hdr;
lnh = ib_get_lnh(hdr);
if (lnh == HFI1_LRH_BTH) {
packet->ohdr = &hdr->u.oth;
packet->grh = NULL;
} else if (lnh == HFI1_LRH_GRH) {
u32 vtf;
packet->ohdr = &hdr->u.l.oth;
packet->grh = &hdr->u.l.grh;
if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(packet->grh->version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
} else {
goto drop;
}
/* Query commonly used fields from packet header */
packet->payload = packet->ebuf;
packet->opcode = ib_bth_get_opcode(packet->ohdr);
packet->slid = ib_get_slid(hdr);
packet->dlid = ib_get_dlid(hdr);
if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
(packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
be16_to_cpu(IB_MULTICAST_LID_BASE);
packet->sl = ib_get_sl(hdr);
packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
packet->pad = ib_bth_get_pad(packet->ohdr);
packet->extra_byte = 0;
packet->pkey = ib_bth_get_pkey(packet->ohdr);
packet->migrated = ib_bth_is_migration(packet->ohdr);
return 0;
drop:
ibp->rvp.n_pkt_drops++;
return -EINVAL;
}
static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
{
/*
* Bypass packets have a different header/payload split
* compared to an IB packet.
* Current split is set such that 16 bytes of the actual
* header is in the header buffer and the remining is in
* the eager buffer. We chose 16 since hfi1 driver only
* supports 16B bypass packets and we will be able to
* receive the entire LRH with such a split.
*/
struct hfi1_ctxtdata *rcd = packet->rcd;
struct hfi1_pportdata *ppd = rcd->ppd;
struct hfi1_ibport *ibp = &ppd->ibport_data;
u8 l4;
packet->hdr = (struct hfi1_16b_header *)
hfi1_get_16B_header(packet->rcd,
packet->rhf_addr);
l4 = hfi1_16B_get_l4(packet->hdr);
if (l4 == OPA_16B_L4_IB_LOCAL) {
packet->ohdr = packet->ebuf;
packet->grh = NULL;
packet->opcode = ib_bth_get_opcode(packet->ohdr);
packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
/* hdr_len_by_opcode already has an IB LRH factored in */
packet->hlen = hdr_len_by_opcode[packet->opcode] +
(LRH_16B_BYTES - LRH_9B_BYTES);
packet->migrated = opa_bth_is_migration(packet->ohdr);
} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
u32 vtf;
u8 grh_len = sizeof(struct ib_grh);
packet->ohdr = packet->ebuf + grh_len;
packet->grh = packet->ebuf;
packet->opcode = ib_bth_get_opcode(packet->ohdr);
packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
/* hdr_len_by_opcode already has an IB LRH factored in */
packet->hlen = hdr_len_by_opcode[packet->opcode] +
(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
packet->migrated = opa_bth_is_migration(packet->ohdr);
if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(packet->grh->version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
} else if (l4 == OPA_16B_L4_FM) {
packet->mgmt = packet->ebuf;
packet->ohdr = NULL;
packet->grh = NULL;
packet->opcode = IB_OPCODE_UD_SEND_ONLY;
packet->pad = OPA_16B_L4_FM_PAD;
packet->hlen = OPA_16B_L4_FM_HLEN;
packet->migrated = false;
} else {
goto drop;
}
/* Query commonly used fields from packet header */
packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
packet->slid = hfi1_16B_get_slid(packet->hdr);
packet->dlid = hfi1_16B_get_dlid(packet->hdr);
if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
16B);
packet->sc = hfi1_16B_get_sc(packet->hdr);
packet->sl = ibp->sc_to_sl[packet->sc];
packet->extra_byte = SIZE_OF_LT;
packet->pkey = hfi1_16B_get_pkey(packet->hdr);
if (hfi1_bypass_ingress_pkt_check(packet))
goto drop;
return 0;
drop:
hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
ibp->rvp.n_pkt_drops++;
return -EINVAL;
}
void handle_eflags(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
u32 rte = rhf_rcv_type_err(packet->rhf);
rcv_hdrerr(rcd, rcd->ppd, packet);
if (rhf_err_flags(packet->rhf))
dd_dev_err(rcd->dd,
"receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
rcd->ctxt, packet->rhf,
packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
packet->rhf & RHF_DC_ERR ? "dc " : "",
packet->rhf & RHF_TID_ERR ? "tid " : "",
packet->rhf & RHF_LEN_ERR ? "len " : "",
packet->rhf & RHF_ECC_ERR ? "ecc " : "",
packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
rte);
}
/*
* The following functions are called by the interrupt handler. They are type
* specific handlers for each packet type.
*/
static int process_receive_ib(struct hfi1_packet *packet)
{
if (hfi1_setup_9B_packet(packet))
return RHF_RCV_CONTINUE;
if (unlikely(hfi1_dbg_should_fault_rx(packet)))
return RHF_RCV_CONTINUE;
trace_hfi1_rcvhdr(packet);
if (unlikely(rhf_err_flags(packet->rhf))) {
handle_eflags(packet);
return RHF_RCV_CONTINUE;
}
hfi1_ib_rcv(packet);
return RHF_RCV_CONTINUE;
}
static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
{
/* Packet received in VNIC context via RSM */
if (packet->rcd->is_vnic)
return true;
if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
(hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
return true;
return false;
}
static int process_receive_bypass(struct hfi1_packet *packet)
{
struct hfi1_devdata *dd = packet->rcd->dd;
if (hfi1_is_vnic_packet(packet)) {
hfi1_vnic_bypass_rcv(packet);
return RHF_RCV_CONTINUE;
}
if (hfi1_setup_bypass_packet(packet))
return RHF_RCV_CONTINUE;
trace_hfi1_rcvhdr(packet);
if (unlikely(rhf_err_flags(packet->rhf))) {
handle_eflags(packet);
return RHF_RCV_CONTINUE;
}
if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
hfi1_16B_rcv(packet);
} else {
dd_dev_err(dd,
"Bypass packets other than 16B are not supported in normal operation. Dropping\n");
incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
if (!(dd->err_info_rcvport.status_and_code &
OPA_EI_STATUS_SMASK)) {
u64 *flits = packet->ebuf;
if (flits && !(packet->rhf & RHF_LEN_ERR)) {
dd->err_info_rcvport.packet_flit1 = flits[0];
dd->err_info_rcvport.packet_flit2 =
packet->tlen > sizeof(flits[0]) ?
flits[1] : 0;
}
dd->err_info_rcvport.status_and_code |=
(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
}
}
return RHF_RCV_CONTINUE;
}
static int process_receive_error(struct hfi1_packet *packet)
{
/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
if (unlikely(
hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
(rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
packet->rhf & RHF_DC_ERR)))
return RHF_RCV_CONTINUE;
hfi1_setup_ib_header(packet);
handle_eflags(packet);
if (unlikely(rhf_err_flags(packet->rhf)))
dd_dev_err(packet->rcd->dd,
"Unhandled error packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
static int kdeth_process_expected(struct hfi1_packet *packet)
{
hfi1_setup_9B_packet(packet);
if (unlikely(hfi1_dbg_should_fault_rx(packet)))
return RHF_RCV_CONTINUE;
if (unlikely(rhf_err_flags(packet->rhf)))
handle_eflags(packet);
dd_dev_err(packet->rcd->dd,
"Unhandled expected packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
static int kdeth_process_eager(struct hfi1_packet *packet)
{
hfi1_setup_9B_packet(packet);
if (unlikely(hfi1_dbg_should_fault_rx(packet)))
return RHF_RCV_CONTINUE;
if (unlikely(rhf_err_flags(packet->rhf)))
handle_eflags(packet);
dd_dev_err(packet->rcd->dd,
"Unhandled eager packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
static int process_receive_invalid(struct hfi1_packet *packet)
{
dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
rhf_rcv_type(packet->rhf));
return RHF_RCV_CONTINUE;
}
void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
{
struct hfi1_packet packet;
struct ps_mdata mdata;
seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
"dma_rtail" : "nodma_rtail",
read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
RCV_HDR_HEAD_HEAD_MASK,
read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
init_packet(rcd, &packet);
init_ps_mdata(&mdata, &packet);
while (1) {
__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
rcd->rhf_offset;
struct ib_header *hdr;
u64 rhf = rhf_to_cpu(rhf_addr);
u32 etype = rhf_rcv_type(rhf), qpn;
u8 opcode;
u32 psn;
u8 lnh;
if (ps_done(&mdata, rhf, rcd))
break;
if (ps_skip(&mdata, rhf, rcd))
goto next;
if (etype > RHF_RCV_TYPE_IB)
goto next;
packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
hdr = packet.hdr;
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
if (lnh == HFI1_LRH_BTH)
packet.ohdr = &hdr->u.oth;
else if (lnh == HFI1_LRH_GRH)
packet.ohdr = &hdr->u.l.oth;
else
goto next; /* just in case */
opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
mdata.ps_head, opcode, qpn, psn);
next:
update_ps_mdata(&mdata, rcd);
}
}
const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
[RHF_RCV_TYPE_IB] = process_receive_ib,
[RHF_RCV_TYPE_ERROR] = process_receive_error,
[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
};