| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright (C) 2014 Datera Inc. |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_background.h" |
| #include "alloc_foreground.h" |
| #include "bkey_methods.h" |
| #include "bkey_buf.h" |
| #include "btree_locking.h" |
| #include "btree_update_interior.h" |
| #include "btree_io.h" |
| #include "btree_gc.h" |
| #include "buckets.h" |
| #include "clock.h" |
| #include "debug.h" |
| #include "ec.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "keylist.h" |
| #include "move.h" |
| #include "recovery.h" |
| #include "replicas.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/preempt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched/task.h> |
| |
| static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) |
| { |
| preempt_disable(); |
| write_seqcount_begin(&c->gc_pos_lock); |
| c->gc_pos = new_pos; |
| write_seqcount_end(&c->gc_pos_lock); |
| preempt_enable(); |
| } |
| |
| static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) |
| { |
| BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); |
| __gc_pos_set(c, new_pos); |
| } |
| |
| static int bch2_gc_check_topology(struct bch_fs *c, |
| struct btree *b, |
| struct bkey_buf *prev, |
| struct bkey_buf cur, |
| bool is_last) |
| { |
| struct bpos node_start = b->data->min_key; |
| struct bpos node_end = b->data->max_key; |
| struct bpos expected_start = bkey_deleted(&prev->k->k) |
| ? node_start |
| : bkey_successor(prev->k->k.p); |
| char buf1[200], buf2[200]; |
| int ret = 0; |
| |
| if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) { |
| struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k); |
| |
| if (bkey_deleted(&prev->k->k)) |
| scnprintf(buf1, sizeof(buf1), "start of node: %llu:%llu", |
| node_start.inode, |
| node_start.offset); |
| else |
| bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(prev->k)); |
| |
| if (fsck_err_on(bkey_cmp(expected_start, bp->v.min_key), c, |
| "btree node with incorrect min_key:\n prev %s\n cur %s", |
| buf1, |
| (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(cur.k)), buf2))) { |
| BUG(); |
| } |
| } |
| |
| if (fsck_err_on(is_last && |
| bkey_cmp(cur.k->k.p, node_end), c, |
| "btree node with incorrect max_key:\n %s\n expected %s", |
| (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(cur.k)), buf1), |
| (bch2_bpos_to_text(&PBUF(buf2), node_end), buf2))) { |
| BUG(); |
| } |
| |
| bch2_bkey_buf_copy(prev, c, cur.k); |
| fsck_err: |
| return ret; |
| } |
| |
| /* marking of btree keys/nodes: */ |
| |
| static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k, |
| u8 *max_stale, bool initial) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const struct bch_extent_ptr *ptr; |
| unsigned flags = |
| BTREE_TRIGGER_GC| |
| (initial ? BTREE_TRIGGER_NOATOMIC : 0); |
| int ret = 0; |
| |
| if (initial) { |
| BUG_ON(bch2_journal_seq_verify && |
| k.k->version.lo > journal_cur_seq(&c->journal)); |
| |
| /* XXX change to fsck check */ |
| if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c, |
| "key version number higher than recorded: %llu > %llu", |
| k.k->version.lo, |
| atomic64_read(&c->key_version))) |
| atomic64_set(&c->key_version, k.k->version.lo); |
| |
| if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || |
| fsck_err_on(!bch2_bkey_replicas_marked(c, k), c, |
| "superblock not marked as containing replicas (type %u)", |
| k.k->type)) { |
| ret = bch2_mark_bkey_replicas(c, k); |
| if (ret) |
| return ret; |
| } |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| struct bucket *g = PTR_BUCKET(ca, ptr, true); |
| struct bucket *g2 = PTR_BUCKET(ca, ptr, false); |
| |
| if (mustfix_fsck_err_on(!g->gen_valid, c, |
| "bucket %u:%zu data type %s ptr gen %u missing in alloc btree", |
| ptr->dev, PTR_BUCKET_NR(ca, ptr), |
| bch2_data_types[ptr_data_type(k.k, ptr)], |
| ptr->gen)) { |
| g2->_mark.gen = g->_mark.gen = ptr->gen; |
| g2->gen_valid = g->gen_valid = true; |
| set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); |
| } |
| |
| if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c, |
| "bucket %u:%zu data type %s ptr gen in the future: %u > %u", |
| ptr->dev, PTR_BUCKET_NR(ca, ptr), |
| bch2_data_types[ptr_data_type(k.k, ptr)], |
| ptr->gen, g->mark.gen)) { |
| g2->_mark.gen = g->_mark.gen = ptr->gen; |
| g2->gen_valid = g->gen_valid = true; |
| g2->_mark.data_type = 0; |
| g2->_mark.dirty_sectors = 0; |
| g2->_mark.cached_sectors = 0; |
| set_bit(BCH_FS_FIXED_GENS, &c->flags); |
| set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); |
| } |
| } |
| } |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| struct bucket *g = PTR_BUCKET(ca, ptr, true); |
| |
| if (gen_after(g->oldest_gen, ptr->gen)) |
| g->oldest_gen = ptr->gen; |
| |
| *max_stale = max(*max_stale, ptr_stale(ca, ptr)); |
| } |
| |
| bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags); |
| fsck_err: |
| return ret; |
| } |
| |
| static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale, |
| bool initial) |
| { |
| struct btree_node_iter iter; |
| struct bkey unpacked; |
| struct bkey_s_c k; |
| struct bkey_buf prev, cur; |
| int ret = 0; |
| |
| *max_stale = 0; |
| |
| if (!btree_node_type_needs_gc(btree_node_type(b))) |
| return 0; |
| |
| bch2_btree_node_iter_init_from_start(&iter, b); |
| bch2_bkey_buf_init(&prev); |
| bch2_bkey_buf_init(&cur); |
| bkey_init(&prev.k->k); |
| |
| while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) { |
| bch2_bkey_debugcheck(c, b, k); |
| |
| ret = bch2_gc_mark_key(c, k, max_stale, initial); |
| if (ret) |
| break; |
| |
| bch2_btree_node_iter_advance(&iter, b); |
| |
| if (b->c.level) { |
| bch2_bkey_buf_reassemble(&cur, c, k); |
| |
| ret = bch2_gc_check_topology(c, b, &prev, cur, |
| bch2_btree_node_iter_end(&iter)); |
| if (ret) |
| break; |
| } |
| } |
| |
| bch2_bkey_buf_exit(&cur, c); |
| bch2_bkey_buf_exit(&prev, c); |
| return ret; |
| } |
| |
| static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id, |
| bool initial) |
| { |
| struct btree_trans trans; |
| struct btree_iter *iter; |
| struct btree *b; |
| unsigned depth = bch2_expensive_debug_checks ? 0 |
| : !btree_node_type_needs_gc(btree_id) ? 1 |
| : 0; |
| u8 max_stale = 0; |
| int ret = 0; |
| |
| bch2_trans_init(&trans, c, 0, 0); |
| |
| gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); |
| |
| __for_each_btree_node(&trans, iter, btree_id, POS_MIN, |
| 0, depth, BTREE_ITER_PREFETCH, b) { |
| bch2_verify_btree_nr_keys(b); |
| |
| gc_pos_set(c, gc_pos_btree_node(b)); |
| |
| ret = btree_gc_mark_node(c, b, &max_stale, initial); |
| if (ret) |
| break; |
| |
| if (!initial) { |
| if (max_stale > 64) |
| bch2_btree_node_rewrite(c, iter, |
| b->data->keys.seq, |
| BTREE_INSERT_NOWAIT| |
| BTREE_INSERT_GC_LOCK_HELD); |
| else if (!bch2_btree_gc_rewrite_disabled && |
| (bch2_btree_gc_always_rewrite || max_stale > 16)) |
| bch2_btree_node_rewrite(c, iter, |
| b->data->keys.seq, |
| BTREE_INSERT_NOWAIT| |
| BTREE_INSERT_GC_LOCK_HELD); |
| } |
| |
| bch2_trans_cond_resched(&trans); |
| } |
| ret = bch2_trans_exit(&trans) ?: ret; |
| if (ret) |
| return ret; |
| |
| mutex_lock(&c->btree_root_lock); |
| b = c->btree_roots[btree_id].b; |
| if (!btree_node_fake(b)) |
| ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key), |
| &max_stale, initial); |
| gc_pos_set(c, gc_pos_btree_root(b->c.btree_id)); |
| mutex_unlock(&c->btree_root_lock); |
| |
| return ret; |
| } |
| |
| static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b, |
| unsigned target_depth) |
| { |
| struct btree_and_journal_iter iter; |
| struct bkey_s_c k; |
| struct bkey_buf cur, prev; |
| u8 max_stale = 0; |
| int ret = 0; |
| |
| bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); |
| bch2_bkey_buf_init(&prev); |
| bch2_bkey_buf_init(&cur); |
| bkey_init(&prev.k->k); |
| |
| while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { |
| bch2_bkey_debugcheck(c, b, k); |
| |
| BUG_ON(bkey_cmp(k.k->p, b->data->min_key) < 0); |
| BUG_ON(bkey_cmp(k.k->p, b->data->max_key) > 0); |
| |
| ret = bch2_gc_mark_key(c, k, &max_stale, true); |
| if (ret) |
| break; |
| |
| if (b->c.level) { |
| struct btree *child; |
| |
| bch2_bkey_buf_reassemble(&cur, c, k); |
| k = bkey_i_to_s_c(cur.k); |
| |
| bch2_btree_and_journal_iter_advance(&iter); |
| |
| ret = bch2_gc_check_topology(c, b, |
| &prev, cur, |
| !bch2_btree_and_journal_iter_peek(&iter).k); |
| if (ret) |
| break; |
| |
| if (b->c.level > target_depth) { |
| child = bch2_btree_node_get_noiter(c, cur.k, |
| b->c.btree_id, b->c.level - 1); |
| ret = PTR_ERR_OR_ZERO(child); |
| if (ret) |
| break; |
| |
| ret = bch2_gc_btree_init_recurse(c, child, |
| target_depth); |
| six_unlock_read(&child->c.lock); |
| |
| if (ret) |
| break; |
| } |
| } else { |
| bch2_btree_and_journal_iter_advance(&iter); |
| } |
| } |
| |
| bch2_bkey_buf_exit(&cur, c); |
| bch2_bkey_buf_exit(&prev, c); |
| bch2_btree_and_journal_iter_exit(&iter); |
| return ret; |
| } |
| |
| static int bch2_gc_btree_init(struct bch_fs *c, |
| enum btree_id btree_id) |
| { |
| struct btree *b; |
| unsigned target_depth = bch2_expensive_debug_checks ? 0 |
| : !btree_node_type_needs_gc(btree_id) ? 1 |
| : 0; |
| u8 max_stale = 0; |
| int ret = 0; |
| |
| b = c->btree_roots[btree_id].b; |
| |
| if (btree_node_fake(b)) |
| return 0; |
| |
| six_lock_read(&b->c.lock, NULL, NULL); |
| if (fsck_err_on(bkey_cmp(b->data->min_key, POS_MIN), c, |
| "btree root with incorrect min_key: %llu:%llu", |
| b->data->min_key.inode, |
| b->data->min_key.offset)) { |
| BUG(); |
| } |
| |
| if (fsck_err_on(bkey_cmp(b->data->max_key, POS_MAX), c, |
| "btree root with incorrect min_key: %llu:%llu", |
| b->data->max_key.inode, |
| b->data->max_key.offset)) { |
| BUG(); |
| } |
| |
| if (b->c.level >= target_depth) |
| ret = bch2_gc_btree_init_recurse(c, b, target_depth); |
| |
| if (!ret) |
| ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key), |
| &max_stale, true); |
| fsck_err: |
| six_unlock_read(&b->c.lock); |
| |
| return ret; |
| } |
| |
| static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) |
| { |
| return (int) btree_id_to_gc_phase(l) - |
| (int) btree_id_to_gc_phase(r); |
| } |
| |
| static int bch2_gc_btrees(struct bch_fs *c, bool initial) |
| { |
| enum btree_id ids[BTREE_ID_NR]; |
| unsigned i; |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| ids[i] = i; |
| bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); |
| |
| for (i = 0; i < BTREE_ID_NR; i++) { |
| enum btree_id id = ids[i]; |
| int ret = initial |
| ? bch2_gc_btree_init(c, id) |
| : bch2_gc_btree(c, id, initial); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, |
| u64 start, u64 end, |
| enum bch_data_type type, |
| unsigned flags) |
| { |
| u64 b = sector_to_bucket(ca, start); |
| |
| do { |
| unsigned sectors = |
| min_t(u64, bucket_to_sector(ca, b + 1), end) - start; |
| |
| bch2_mark_metadata_bucket(c, ca, b, type, sectors, |
| gc_phase(GC_PHASE_SB), flags); |
| b++; |
| start += sectors; |
| } while (start < end); |
| } |
| |
| void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, |
| unsigned flags) |
| { |
| struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; |
| unsigned i; |
| u64 b; |
| |
| /* |
| * This conditional is kind of gross, but we may be called from the |
| * device add path, before the new device has actually been added to the |
| * running filesystem: |
| */ |
| if (c) { |
| lockdep_assert_held(&c->sb_lock); |
| percpu_down_read(&c->mark_lock); |
| } |
| |
| for (i = 0; i < layout->nr_superblocks; i++) { |
| u64 offset = le64_to_cpu(layout->sb_offset[i]); |
| |
| if (offset == BCH_SB_SECTOR) |
| mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, |
| BCH_DATA_sb, flags); |
| |
| mark_metadata_sectors(c, ca, offset, |
| offset + (1 << layout->sb_max_size_bits), |
| BCH_DATA_sb, flags); |
| } |
| |
| for (i = 0; i < ca->journal.nr; i++) { |
| b = ca->journal.buckets[i]; |
| bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal, |
| ca->mi.bucket_size, |
| gc_phase(GC_PHASE_SB), flags); |
| } |
| |
| if (c) |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| static void bch2_mark_superblocks(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| |
| mutex_lock(&c->sb_lock); |
| gc_pos_set(c, gc_phase(GC_PHASE_SB)); |
| |
| for_each_online_member(ca, c, i) |
| bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC); |
| mutex_unlock(&c->sb_lock); |
| } |
| |
| #if 0 |
| /* Also see bch2_pending_btree_node_free_insert_done() */ |
| static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) |
| { |
| struct btree_update *as; |
| struct pending_btree_node_free *d; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); |
| |
| for_each_pending_btree_node_free(c, as, d) |
| if (d->index_update_done) |
| bch2_mark_key(c, bkey_i_to_s_c(&d->key), |
| 0, 0, NULL, 0, |
| BTREE_TRIGGER_GC); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| #endif |
| |
| static void bch2_mark_allocator_buckets(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| struct open_bucket *ob; |
| size_t i, j, iter; |
| unsigned ci; |
| |
| percpu_down_read(&c->mark_lock); |
| |
| spin_lock(&c->freelist_lock); |
| gc_pos_set(c, gc_pos_alloc(c, NULL)); |
| |
| for_each_member_device(ca, c, ci) { |
| fifo_for_each_entry(i, &ca->free_inc, iter) |
| bch2_mark_alloc_bucket(c, ca, i, true, |
| gc_pos_alloc(c, NULL), |
| BTREE_TRIGGER_GC); |
| |
| |
| |
| for (j = 0; j < RESERVE_NR; j++) |
| fifo_for_each_entry(i, &ca->free[j], iter) |
| bch2_mark_alloc_bucket(c, ca, i, true, |
| gc_pos_alloc(c, NULL), |
| BTREE_TRIGGER_GC); |
| } |
| |
| spin_unlock(&c->freelist_lock); |
| |
| for (ob = c->open_buckets; |
| ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); |
| ob++) { |
| spin_lock(&ob->lock); |
| if (ob->valid) { |
| gc_pos_set(c, gc_pos_alloc(c, ob)); |
| ca = bch_dev_bkey_exists(c, ob->ptr.dev); |
| bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true, |
| gc_pos_alloc(c, ob), |
| BTREE_TRIGGER_GC); |
| } |
| spin_unlock(&ob->lock); |
| } |
| |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| static void bch2_gc_free(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| |
| genradix_free(&c->stripes[1]); |
| |
| for_each_member_device(ca, c, i) { |
| kvpfree(rcu_dereference_protected(ca->buckets[1], 1), |
| sizeof(struct bucket_array) + |
| ca->mi.nbuckets * sizeof(struct bucket)); |
| ca->buckets[1] = NULL; |
| |
| free_percpu(ca->usage[1]); |
| ca->usage[1] = NULL; |
| } |
| |
| free_percpu(c->usage_gc); |
| c->usage_gc = NULL; |
| } |
| |
| static int bch2_gc_done(struct bch_fs *c, |
| bool initial) |
| { |
| struct bch_dev *ca; |
| bool verify = (!initial || |
| (c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO))); |
| unsigned i; |
| int ret = 0; |
| |
| #define copy_field(_f, _msg, ...) \ |
| if (dst->_f != src->_f) { \ |
| if (verify) \ |
| fsck_err(c, _msg ": got %llu, should be %llu" \ |
| , ##__VA_ARGS__, dst->_f, src->_f); \ |
| dst->_f = src->_f; \ |
| set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ |
| } |
| #define copy_stripe_field(_f, _msg, ...) \ |
| if (dst->_f != src->_f) { \ |
| if (verify) \ |
| fsck_err(c, "stripe %zu has wrong "_msg \ |
| ": got %u, should be %u", \ |
| iter.pos, ##__VA_ARGS__, \ |
| dst->_f, src->_f); \ |
| dst->_f = src->_f; \ |
| set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ |
| } |
| #define copy_bucket_field(_f) \ |
| if (dst->b[b].mark._f != src->b[b].mark._f) { \ |
| if (verify) \ |
| fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f \ |
| ": got %u, should be %u", i, b, \ |
| dst->b[b].mark.gen, \ |
| bch2_data_types[dst->b[b].mark.data_type],\ |
| dst->b[b].mark._f, src->b[b].mark._f); \ |
| dst->b[b]._mark._f = src->b[b].mark._f; \ |
| set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ |
| } |
| #define copy_dev_field(_f, _msg, ...) \ |
| copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__) |
| #define copy_fs_field(_f, _msg, ...) \ |
| copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__) |
| |
| { |
| struct genradix_iter iter = genradix_iter_init(&c->stripes[1], 0); |
| struct stripe *dst, *src; |
| |
| while ((src = genradix_iter_peek(&iter, &c->stripes[1]))) { |
| dst = genradix_ptr_alloc(&c->stripes[0], iter.pos, GFP_KERNEL); |
| |
| if (dst->alive != src->alive || |
| dst->sectors != src->sectors || |
| dst->algorithm != src->algorithm || |
| dst->nr_blocks != src->nr_blocks || |
| dst->nr_redundant != src->nr_redundant) { |
| bch_err(c, "unexpected stripe inconsistency at bch2_gc_done, confused"); |
| ret = -EINVAL; |
| goto fsck_err; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++) |
| copy_stripe_field(block_sectors[i], |
| "block_sectors[%u]", i); |
| |
| dst->blocks_nonempty = 0; |
| for (i = 0; i < dst->nr_blocks; i++) |
| dst->blocks_nonempty += dst->block_sectors[i] != 0; |
| |
| genradix_iter_advance(&iter, &c->stripes[1]); |
| } |
| } |
| |
| for_each_member_device(ca, c, i) { |
| struct bucket_array *dst = __bucket_array(ca, 0); |
| struct bucket_array *src = __bucket_array(ca, 1); |
| size_t b; |
| |
| for (b = 0; b < src->nbuckets; b++) { |
| copy_bucket_field(gen); |
| copy_bucket_field(data_type); |
| copy_bucket_field(owned_by_allocator); |
| copy_bucket_field(stripe); |
| copy_bucket_field(dirty_sectors); |
| copy_bucket_field(cached_sectors); |
| |
| dst->b[b].oldest_gen = src->b[b].oldest_gen; |
| } |
| }; |
| |
| for (i = 0; i < ARRAY_SIZE(c->usage); i++) |
| bch2_fs_usage_acc_to_base(c, i); |
| |
| bch2_dev_usage_from_buckets(c); |
| |
| { |
| unsigned nr = fs_usage_u64s(c); |
| struct bch_fs_usage *dst = c->usage_base; |
| struct bch_fs_usage *src = (void *) |
| bch2_acc_percpu_u64s((void *) c->usage_gc, nr); |
| |
| copy_fs_field(hidden, "hidden"); |
| copy_fs_field(btree, "btree"); |
| copy_fs_field(data, "data"); |
| copy_fs_field(cached, "cached"); |
| copy_fs_field(reserved, "reserved"); |
| copy_fs_field(nr_inodes,"nr_inodes"); |
| |
| for (i = 0; i < BCH_REPLICAS_MAX; i++) |
| copy_fs_field(persistent_reserved[i], |
| "persistent_reserved[%i]", i); |
| |
| for (i = 0; i < c->replicas.nr; i++) { |
| struct bch_replicas_entry *e = |
| cpu_replicas_entry(&c->replicas, i); |
| char buf[80]; |
| |
| bch2_replicas_entry_to_text(&PBUF(buf), e); |
| |
| copy_fs_field(replicas[i], "%s", buf); |
| } |
| } |
| |
| #undef copy_fs_field |
| #undef copy_dev_field |
| #undef copy_bucket_field |
| #undef copy_stripe_field |
| #undef copy_field |
| fsck_err: |
| return ret; |
| } |
| |
| static int bch2_gc_start(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| int ret; |
| |
| BUG_ON(c->usage_gc); |
| |
| c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), |
| sizeof(u64), GFP_KERNEL); |
| if (!c->usage_gc) { |
| bch_err(c, "error allocating c->usage_gc"); |
| return -ENOMEM; |
| } |
| |
| for_each_member_device(ca, c, i) { |
| BUG_ON(ca->buckets[1]); |
| BUG_ON(ca->usage[1]); |
| |
| ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) + |
| ca->mi.nbuckets * sizeof(struct bucket), |
| GFP_KERNEL|__GFP_ZERO); |
| if (!ca->buckets[1]) { |
| percpu_ref_put(&ca->ref); |
| bch_err(c, "error allocating ca->buckets[gc]"); |
| return -ENOMEM; |
| } |
| |
| ca->usage[1] = alloc_percpu(struct bch_dev_usage); |
| if (!ca->usage[1]) { |
| bch_err(c, "error allocating ca->usage[gc]"); |
| percpu_ref_put(&ca->ref); |
| return -ENOMEM; |
| } |
| } |
| |
| ret = bch2_ec_mem_alloc(c, true); |
| if (ret) { |
| bch_err(c, "error allocating ec gc mem"); |
| return ret; |
| } |
| |
| percpu_down_write(&c->mark_lock); |
| |
| /* |
| * indicate to stripe code that we need to allocate for the gc stripes |
| * radix tree, too |
| */ |
| gc_pos_set(c, gc_phase(GC_PHASE_START)); |
| |
| for_each_member_device(ca, c, i) { |
| struct bucket_array *dst = __bucket_array(ca, 1); |
| struct bucket_array *src = __bucket_array(ca, 0); |
| size_t b; |
| |
| dst->first_bucket = src->first_bucket; |
| dst->nbuckets = src->nbuckets; |
| |
| for (b = 0; b < src->nbuckets; b++) { |
| struct bucket *d = &dst->b[b]; |
| struct bucket *s = &src->b[b]; |
| |
| d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen; |
| d->gen_valid = s->gen_valid; |
| } |
| }; |
| |
| percpu_up_write(&c->mark_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * bch2_gc - walk _all_ references to buckets, and recompute them: |
| * |
| * Order matters here: |
| * - Concurrent GC relies on the fact that we have a total ordering for |
| * everything that GC walks - see gc_will_visit_node(), |
| * gc_will_visit_root() |
| * |
| * - also, references move around in the course of index updates and |
| * various other crap: everything needs to agree on the ordering |
| * references are allowed to move around in - e.g., we're allowed to |
| * start with a reference owned by an open_bucket (the allocator) and |
| * move it to the btree, but not the reverse. |
| * |
| * This is necessary to ensure that gc doesn't miss references that |
| * move around - if references move backwards in the ordering GC |
| * uses, GC could skip past them |
| */ |
| int bch2_gc(struct bch_fs *c, bool initial) |
| { |
| struct bch_dev *ca; |
| u64 start_time = local_clock(); |
| unsigned i, iter = 0; |
| int ret; |
| |
| lockdep_assert_held(&c->state_lock); |
| trace_gc_start(c); |
| |
| down_write(&c->gc_lock); |
| |
| /* flush interior btree updates: */ |
| closure_wait_event(&c->btree_interior_update_wait, |
| !bch2_btree_interior_updates_nr_pending(c)); |
| again: |
| ret = bch2_gc_start(c); |
| if (ret) |
| goto out; |
| |
| bch2_mark_superblocks(c); |
| |
| ret = bch2_gc_btrees(c, initial); |
| if (ret) |
| goto out; |
| |
| #if 0 |
| bch2_mark_pending_btree_node_frees(c); |
| #endif |
| bch2_mark_allocator_buckets(c); |
| |
| c->gc_count++; |
| out: |
| if (!ret && |
| (test_bit(BCH_FS_FIXED_GENS, &c->flags) || |
| (!iter && bch2_test_restart_gc))) { |
| /* |
| * XXX: make sure gens we fixed got saved |
| */ |
| if (iter++ <= 2) { |
| bch_info(c, "Fixed gens, restarting mark and sweep:"); |
| clear_bit(BCH_FS_FIXED_GENS, &c->flags); |
| __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); |
| |
| percpu_down_write(&c->mark_lock); |
| bch2_gc_free(c); |
| percpu_up_write(&c->mark_lock); |
| /* flush fsck errors, reset counters */ |
| bch2_flush_fsck_errs(c); |
| |
| goto again; |
| } |
| |
| bch_info(c, "Unable to fix bucket gens, looping"); |
| ret = -EINVAL; |
| } |
| |
| if (!ret) { |
| bch2_journal_block(&c->journal); |
| |
| percpu_down_write(&c->mark_lock); |
| ret = bch2_gc_done(c, initial); |
| |
| bch2_journal_unblock(&c->journal); |
| } else { |
| percpu_down_write(&c->mark_lock); |
| } |
| |
| /* Indicates that gc is no longer in progress: */ |
| __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); |
| |
| bch2_gc_free(c); |
| percpu_up_write(&c->mark_lock); |
| |
| up_write(&c->gc_lock); |
| |
| trace_gc_end(c); |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); |
| |
| /* |
| * Wake up allocator in case it was waiting for buckets |
| * because of not being able to inc gens |
| */ |
| for_each_member_device(ca, c, i) |
| bch2_wake_allocator(ca); |
| |
| /* |
| * At startup, allocations can happen directly instead of via the |
| * allocator thread - issue wakeup in case they blocked on gc_lock: |
| */ |
| closure_wake_up(&c->freelist_wait); |
| return ret; |
| } |
| |
| static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const struct bch_extent_ptr *ptr; |
| |
| percpu_down_read(&c->mark_lock); |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| struct bucket *g = PTR_BUCKET(ca, ptr, false); |
| |
| if (gen_after(g->mark.gen, ptr->gen) > 16) { |
| percpu_up_read(&c->mark_lock); |
| return true; |
| } |
| } |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| struct bucket *g = PTR_BUCKET(ca, ptr, false); |
| |
| if (gen_after(g->gc_gen, ptr->gen)) |
| g->gc_gen = ptr->gen; |
| } |
| percpu_up_read(&c->mark_lock); |
| |
| return false; |
| } |
| |
| /* |
| * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree |
| * node pointers currently never have cached pointers that can become stale: |
| */ |
| static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id) |
| { |
| struct btree_trans trans; |
| struct btree_iter *iter; |
| struct bkey_s_c k; |
| struct bkey_buf sk; |
| int ret = 0; |
| |
| bch2_bkey_buf_init(&sk); |
| bch2_trans_init(&trans, c, 0, 0); |
| |
| iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN, |
| BTREE_ITER_PREFETCH); |
| |
| while ((k = bch2_btree_iter_peek(iter)).k && |
| !(ret = bkey_err(k))) { |
| if (gc_btree_gens_key(c, k)) { |
| bch2_bkey_buf_reassemble(&sk, c, k); |
| bch2_extent_normalize(c, bkey_i_to_s(sk.k)); |
| |
| bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k)); |
| |
| bch2_trans_update(&trans, iter, sk.k, 0); |
| |
| ret = bch2_trans_commit(&trans, NULL, NULL, |
| BTREE_INSERT_NOFAIL); |
| if (ret == -EINTR) |
| continue; |
| if (ret) { |
| break; |
| } |
| } |
| |
| bch2_btree_iter_next(iter); |
| } |
| |
| bch2_trans_exit(&trans); |
| bch2_bkey_buf_exit(&sk, c); |
| |
| return ret; |
| } |
| |
| int bch2_gc_gens(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| struct bucket_array *buckets; |
| struct bucket *g; |
| unsigned i; |
| int ret; |
| |
| /* |
| * Ideally we would be using state_lock and not gc_lock here, but that |
| * introduces a deadlock in the RO path - we currently take the state |
| * lock at the start of going RO, thus the gc thread may get stuck: |
| */ |
| down_read(&c->gc_lock); |
| |
| for_each_member_device(ca, c, i) { |
| down_read(&ca->bucket_lock); |
| buckets = bucket_array(ca); |
| |
| for_each_bucket(g, buckets) |
| g->gc_gen = g->mark.gen; |
| up_read(&ca->bucket_lock); |
| } |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| if (btree_node_type_needs_gc(i)) { |
| ret = bch2_gc_btree_gens(c, i); |
| if (ret) { |
| bch_err(c, "error recalculating oldest_gen: %i", ret); |
| goto err; |
| } |
| } |
| |
| for_each_member_device(ca, c, i) { |
| down_read(&ca->bucket_lock); |
| buckets = bucket_array(ca); |
| |
| for_each_bucket(g, buckets) |
| g->oldest_gen = g->gc_gen; |
| up_read(&ca->bucket_lock); |
| } |
| |
| c->gc_count++; |
| err: |
| up_read(&c->gc_lock); |
| return ret; |
| } |
| |
| /* Btree coalescing */ |
| |
| static void recalc_packed_keys(struct btree *b) |
| { |
| struct bset *i = btree_bset_first(b); |
| struct bkey_packed *k; |
| |
| memset(&b->nr, 0, sizeof(b->nr)); |
| |
| BUG_ON(b->nsets != 1); |
| |
| vstruct_for_each(i, k) |
| btree_keys_account_key_add(&b->nr, 0, k); |
| } |
| |
| static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter, |
| struct btree *old_nodes[GC_MERGE_NODES]) |
| { |
| struct btree *parent = btree_node_parent(iter, old_nodes[0]); |
| unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0; |
| unsigned blocks = btree_blocks(c) * 2 / 3; |
| struct btree *new_nodes[GC_MERGE_NODES]; |
| struct btree_update *as; |
| struct keylist keylist; |
| struct bkey_format_state format_state; |
| struct bkey_format new_format; |
| |
| memset(new_nodes, 0, sizeof(new_nodes)); |
| bch2_keylist_init(&keylist, NULL); |
| |
| /* Count keys that are not deleted */ |
| for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++) |
| u64s += old_nodes[i]->nr.live_u64s; |
| |
| nr_old_nodes = nr_new_nodes = i; |
| |
| /* Check if all keys in @old_nodes could fit in one fewer node */ |
| if (nr_old_nodes <= 1 || |
| __vstruct_blocks(struct btree_node, c->block_bits, |
| DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks) |
| return; |
| |
| /* Find a format that all keys in @old_nodes can pack into */ |
| bch2_bkey_format_init(&format_state); |
| |
| for (i = 0; i < nr_old_nodes; i++) |
| __bch2_btree_calc_format(&format_state, old_nodes[i]); |
| |
| new_format = bch2_bkey_format_done(&format_state); |
| |
| /* Check if repacking would make any nodes too big to fit */ |
| for (i = 0; i < nr_old_nodes; i++) |
| if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_FORMAT_FITS); |
| return; |
| } |
| |
| if (bch2_keylist_realloc(&keylist, NULL, 0, |
| BKEY_BTREE_PTR_U64s_MAX * nr_old_nodes)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC); |
| return; |
| } |
| |
| as = bch2_btree_update_start(iter->trans, iter->btree_id, |
| btree_update_reserve_required(c, parent) + nr_old_nodes, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE, |
| NULL); |
| if (IS_ERR(as)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_RESERVE_GET); |
| bch2_keylist_free(&keylist, NULL); |
| return; |
| } |
| |
| trace_btree_gc_coalesce(c, old_nodes[0]); |
| |
| for (i = 0; i < nr_old_nodes; i++) |
| bch2_btree_interior_update_will_free_node(as, old_nodes[i]); |
| |
| /* Repack everything with @new_format and sort down to one bset */ |
| for (i = 0; i < nr_old_nodes; i++) |
| new_nodes[i] = |
| __bch2_btree_node_alloc_replacement(as, old_nodes[i], |
| new_format); |
| |
| /* |
| * Conceptually we concatenate the nodes together and slice them |
| * up at different boundaries. |
| */ |
| for (i = nr_new_nodes - 1; i > 0; --i) { |
| struct btree *n1 = new_nodes[i]; |
| struct btree *n2 = new_nodes[i - 1]; |
| |
| struct bset *s1 = btree_bset_first(n1); |
| struct bset *s2 = btree_bset_first(n2); |
| struct bkey_packed *k, *last = NULL; |
| |
| /* Calculate how many keys from @n2 we could fit inside @n1 */ |
| u64s = 0; |
| |
| for (k = s2->start; |
| k < vstruct_last(s2) && |
| vstruct_blocks_plus(n1->data, c->block_bits, |
| u64s + k->u64s) <= blocks; |
| k = bkey_next_skip_noops(k, vstruct_last(s2))) { |
| last = k; |
| u64s += k->u64s; |
| } |
| |
| if (u64s == le16_to_cpu(s2->u64s)) { |
| /* n2 fits entirely in n1 */ |
| n1->key.k.p = n1->data->max_key = n2->data->max_key; |
| |
| memcpy_u64s(vstruct_last(s1), |
| s2->start, |
| le16_to_cpu(s2->u64s)); |
| le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s)); |
| |
| set_btree_bset_end(n1, n1->set); |
| |
| six_unlock_write(&n2->c.lock); |
| bch2_btree_node_free_never_inserted(c, n2); |
| six_unlock_intent(&n2->c.lock); |
| |
| memmove(new_nodes + i - 1, |
| new_nodes + i, |
| sizeof(new_nodes[0]) * (nr_new_nodes - i)); |
| new_nodes[--nr_new_nodes] = NULL; |
| } else if (u64s) { |
| /* move part of n2 into n1 */ |
| n1->key.k.p = n1->data->max_key = |
| bkey_unpack_pos(n1, last); |
| |
| n2->data->min_key = bkey_successor(n1->data->max_key); |
| |
| memcpy_u64s(vstruct_last(s1), |
| s2->start, u64s); |
| le16_add_cpu(&s1->u64s, u64s); |
| |
| memmove(s2->start, |
| vstruct_idx(s2, u64s), |
| (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64)); |
| s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s); |
| |
| set_btree_bset_end(n1, n1->set); |
| set_btree_bset_end(n2, n2->set); |
| } |
| } |
| |
| for (i = 0; i < nr_new_nodes; i++) { |
| struct btree *n = new_nodes[i]; |
| |
| recalc_packed_keys(n); |
| btree_node_reset_sib_u64s(n); |
| |
| bch2_btree_build_aux_trees(n); |
| |
| bch2_btree_update_add_new_node(as, n); |
| six_unlock_write(&n->c.lock); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent); |
| } |
| |
| /* |
| * The keys for the old nodes get deleted. We don't want to insert keys |
| * that compare equal to the keys for the new nodes we'll also be |
| * inserting - we can't because keys on a keylist must be strictly |
| * greater than the previous keys, and we also don't need to since the |
| * key for the new node will serve the same purpose (overwriting the key |
| * for the old node). |
| */ |
| for (i = 0; i < nr_old_nodes; i++) { |
| struct bkey_i delete; |
| unsigned j; |
| |
| for (j = 0; j < nr_new_nodes; j++) |
| if (!bkey_cmp(old_nodes[i]->key.k.p, |
| new_nodes[j]->key.k.p)) |
| goto next; |
| |
| bkey_init(&delete.k); |
| delete.k.p = old_nodes[i]->key.k.p; |
| bch2_keylist_add_in_order(&keylist, &delete); |
| next: |
| i = i; |
| } |
| |
| /* |
| * Keys for the new nodes get inserted: bch2_btree_insert_keys() only |
| * does the lookup once and thus expects the keys to be in sorted order |
| * so we have to make sure the new keys are correctly ordered with |
| * respect to the deleted keys added in the previous loop |
| */ |
| for (i = 0; i < nr_new_nodes; i++) |
| bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key); |
| |
| /* Insert the newly coalesced nodes */ |
| bch2_btree_insert_node(as, parent, iter, &keylist, 0); |
| |
| BUG_ON(!bch2_keylist_empty(&keylist)); |
| |
| BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]); |
| |
| bch2_btree_iter_node_replace(iter, new_nodes[0]); |
| |
| for (i = 0; i < nr_new_nodes; i++) |
| bch2_btree_update_get_open_buckets(as, new_nodes[i]); |
| |
| /* Free the old nodes and update our sliding window */ |
| for (i = 0; i < nr_old_nodes; i++) { |
| bch2_btree_node_free_inmem(c, old_nodes[i], iter); |
| |
| /* |
| * the index update might have triggered a split, in which case |
| * the nodes we coalesced - the new nodes we just created - |
| * might not be sibling nodes anymore - don't add them to the |
| * sliding window (except the first): |
| */ |
| if (!i) { |
| old_nodes[i] = new_nodes[i]; |
| } else { |
| old_nodes[i] = NULL; |
| } |
| } |
| |
| for (i = 0; i < nr_new_nodes; i++) |
| six_unlock_intent(&new_nodes[i]->c.lock); |
| |
| bch2_btree_update_done(as); |
| bch2_keylist_free(&keylist, NULL); |
| } |
| |
| static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id) |
| { |
| struct btree_trans trans; |
| struct btree_iter *iter; |
| struct btree *b; |
| bool kthread = (current->flags & PF_KTHREAD) != 0; |
| unsigned i; |
| |
| /* Sliding window of adjacent btree nodes */ |
| struct btree *merge[GC_MERGE_NODES]; |
| u32 lock_seq[GC_MERGE_NODES]; |
| |
| bch2_trans_init(&trans, c, 0, 0); |
| |
| /* |
| * XXX: We don't have a good way of positively matching on sibling nodes |
| * that have the same parent - this code works by handling the cases |
| * where they might not have the same parent, and is thus fragile. Ugh. |
| * |
| * Perhaps redo this to use multiple linked iterators? |
| */ |
| memset(merge, 0, sizeof(merge)); |
| |
| __for_each_btree_node(&trans, iter, btree_id, POS_MIN, |
| BTREE_MAX_DEPTH, 0, |
| BTREE_ITER_PREFETCH, b) { |
| memmove(merge + 1, merge, |
| sizeof(merge) - sizeof(merge[0])); |
| memmove(lock_seq + 1, lock_seq, |
| sizeof(lock_seq) - sizeof(lock_seq[0])); |
| |
| merge[0] = b; |
| |
| for (i = 1; i < GC_MERGE_NODES; i++) { |
| if (!merge[i] || |
| !six_relock_intent(&merge[i]->c.lock, lock_seq[i])) |
| break; |
| |
| if (merge[i]->c.level != merge[0]->c.level) { |
| six_unlock_intent(&merge[i]->c.lock); |
| break; |
| } |
| } |
| memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0])); |
| |
| bch2_coalesce_nodes(c, iter, merge); |
| |
| for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) { |
| lock_seq[i] = merge[i]->c.lock.state.seq; |
| six_unlock_intent(&merge[i]->c.lock); |
| } |
| |
| lock_seq[0] = merge[0]->c.lock.state.seq; |
| |
| if (kthread && kthread_should_stop()) { |
| bch2_trans_exit(&trans); |
| return -ESHUTDOWN; |
| } |
| |
| bch2_trans_cond_resched(&trans); |
| |
| /* |
| * If the parent node wasn't relocked, it might have been split |
| * and the nodes in our sliding window might not have the same |
| * parent anymore - blow away the sliding window: |
| */ |
| if (btree_iter_node(iter, iter->level + 1) && |
| !btree_node_intent_locked(iter, iter->level + 1)) |
| memset(merge + 1, 0, |
| (GC_MERGE_NODES - 1) * sizeof(merge[0])); |
| } |
| return bch2_trans_exit(&trans); |
| } |
| |
| /** |
| * bch_coalesce - coalesce adjacent nodes with low occupancy |
| */ |
| void bch2_coalesce(struct bch_fs *c) |
| { |
| enum btree_id id; |
| |
| down_read(&c->gc_lock); |
| trace_gc_coalesce_start(c); |
| |
| for (id = 0; id < BTREE_ID_NR; id++) { |
| int ret = c->btree_roots[id].b |
| ? bch2_coalesce_btree(c, id) |
| : 0; |
| |
| if (ret) { |
| if (ret != -ESHUTDOWN) |
| bch_err(c, "btree coalescing failed: %d", ret); |
| return; |
| } |
| } |
| |
| trace_gc_coalesce_end(c); |
| up_read(&c->gc_lock); |
| } |
| |
| static int bch2_gc_thread(void *arg) |
| { |
| struct bch_fs *c = arg; |
| struct io_clock *clock = &c->io_clock[WRITE]; |
| unsigned long last = atomic_long_read(&clock->now); |
| unsigned last_kick = atomic_read(&c->kick_gc); |
| int ret; |
| |
| set_freezable(); |
| |
| while (1) { |
| while (1) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| if (kthread_should_stop()) { |
| __set_current_state(TASK_RUNNING); |
| return 0; |
| } |
| |
| if (atomic_read(&c->kick_gc) != last_kick) |
| break; |
| |
| if (c->btree_gc_periodic) { |
| unsigned long next = last + c->capacity / 16; |
| |
| if (atomic_long_read(&clock->now) >= next) |
| break; |
| |
| bch2_io_clock_schedule_timeout(clock, next); |
| } else { |
| schedule(); |
| } |
| |
| try_to_freeze(); |
| } |
| __set_current_state(TASK_RUNNING); |
| |
| last = atomic_long_read(&clock->now); |
| last_kick = atomic_read(&c->kick_gc); |
| |
| /* |
| * Full gc is currently incompatible with btree key cache: |
| */ |
| #if 0 |
| ret = bch2_gc(c, false, false); |
| #else |
| ret = bch2_gc_gens(c); |
| #endif |
| if (ret < 0) |
| bch_err(c, "btree gc failed: %i", ret); |
| |
| debug_check_no_locks_held(); |
| } |
| |
| return 0; |
| } |
| |
| void bch2_gc_thread_stop(struct bch_fs *c) |
| { |
| struct task_struct *p; |
| |
| p = c->gc_thread; |
| c->gc_thread = NULL; |
| |
| if (p) { |
| kthread_stop(p); |
| put_task_struct(p); |
| } |
| } |
| |
| int bch2_gc_thread_start(struct bch_fs *c) |
| { |
| struct task_struct *p; |
| |
| BUG_ON(c->gc_thread); |
| |
| p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| get_task_struct(p); |
| c->gc_thread = p; |
| wake_up_process(p); |
| return 0; |
| } |