blob: 712f1524d84656de2503187c56f0703230e1b04c [file] [log] [blame]
/*
* linux/kernel/power/snapshot.c
*
* This file provides system snapshot/restore functionality for swsusp.
*
* Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
*
* This file is released under the GPLv2.
*
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/smp_lock.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
#include "power.h"
/* List of PBEs needed for restoring the pages that were allocated before
* the suspend and included in the suspend image, but have also been
* allocated by the "resume" kernel, so their contents cannot be written
* directly to their "original" page frames.
*/
struct pbe *restore_pblist;
/* Pointer to an auxiliary buffer (1 page) */
static void *buffer;
/**
* @safe_needed - on resume, for storing the PBE list and the image,
* we can only use memory pages that do not conflict with the pages
* used before suspend. The unsafe pages have PageNosaveFree set
* and we count them using unsafe_pages.
*
* Each allocated image page is marked as PageNosave and PageNosaveFree
* so that swsusp_free() can release it.
*/
#define PG_ANY 0
#define PG_SAFE 1
#define PG_UNSAFE_CLEAR 1
#define PG_UNSAFE_KEEP 0
static unsigned int allocated_unsafe_pages;
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
{
void *res;
res = (void *)get_zeroed_page(gfp_mask);
if (safe_needed)
while (res && PageNosaveFree(virt_to_page(res))) {
/* The page is unsafe, mark it for swsusp_free() */
SetPageNosave(virt_to_page(res));
allocated_unsafe_pages++;
res = (void *)get_zeroed_page(gfp_mask);
}
if (res) {
SetPageNosave(virt_to_page(res));
SetPageNosaveFree(virt_to_page(res));
}
return res;
}
unsigned long get_safe_page(gfp_t gfp_mask)
{
return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}
static struct page *alloc_image_page(gfp_t gfp_mask)
{
struct page *page;
page = alloc_page(gfp_mask);
if (page) {
SetPageNosave(page);
SetPageNosaveFree(page);
}
return page;
}
/**
* free_image_page - free page represented by @addr, allocated with
* get_image_page (page flags set by it must be cleared)
*/
static inline void free_image_page(void *addr, int clear_nosave_free)
{
struct page *page;
BUG_ON(!virt_addr_valid(addr));
page = virt_to_page(addr);
ClearPageNosave(page);
if (clear_nosave_free)
ClearPageNosaveFree(page);
__free_page(page);
}
/* struct linked_page is used to build chains of pages */
#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
struct linked_page {
struct linked_page *next;
char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));
static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
while (list) {
struct linked_page *lp = list->next;
free_image_page(list, clear_page_nosave);
list = lp;
}
}
/**
* struct chain_allocator is used for allocating small objects out of
* a linked list of pages called 'the chain'.
*
* The chain grows each time when there is no room for a new object in
* the current page. The allocated objects cannot be freed individually.
* It is only possible to free them all at once, by freeing the entire
* chain.
*
* NOTE: The chain allocator may be inefficient if the allocated objects
* are not much smaller than PAGE_SIZE.
*/
struct chain_allocator {
struct linked_page *chain; /* the chain */
unsigned int used_space; /* total size of objects allocated out
* of the current page
*/
gfp_t gfp_mask; /* mask for allocating pages */
int safe_needed; /* if set, only "safe" pages are allocated */
};
static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
ca->chain = NULL;
ca->used_space = LINKED_PAGE_DATA_SIZE;
ca->gfp_mask = gfp_mask;
ca->safe_needed = safe_needed;
}
static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
void *ret;
if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
struct linked_page *lp;
lp = get_image_page(ca->gfp_mask, ca->safe_needed);
if (!lp)
return NULL;
lp->next = ca->chain;
ca->chain = lp;
ca->used_space = 0;
}
ret = ca->chain->data + ca->used_space;
ca->used_space += size;
return ret;
}
static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
{
free_list_of_pages(ca->chain, clear_page_nosave);
memset(ca, 0, sizeof(struct chain_allocator));
}
/**
* Data types related to memory bitmaps.
*
* Memory bitmap is a structure consiting of many linked lists of
* objects. The main list's elements are of type struct zone_bitmap
* and each of them corresonds to one zone. For each zone bitmap
* object there is a list of objects of type struct bm_block that
* represent each blocks of bit chunks in which information is
* stored.
*
* struct memory_bitmap contains a pointer to the main list of zone
* bitmap objects, a struct bm_position used for browsing the bitmap,
* and a pointer to the list of pages used for allocating all of the
* zone bitmap objects and bitmap block objects.
*
* NOTE: It has to be possible to lay out the bitmap in memory
* using only allocations of order 0. Additionally, the bitmap is
* designed to work with arbitrary number of zones (this is over the
* top for now, but let's avoid making unnecessary assumptions ;-).
*
* struct zone_bitmap contains a pointer to a list of bitmap block
* objects and a pointer to the bitmap block object that has been
* most recently used for setting bits. Additionally, it contains the
* pfns that correspond to the start and end of the represented zone.
*
* struct bm_block contains a pointer to the memory page in which
* information is stored (in the form of a block of bit chunks
* of type unsigned long each). It also contains the pfns that
* correspond to the start and end of the represented memory area and
* the number of bit chunks in the block.
*
* NOTE: Memory bitmaps are used for two types of operations only:
* "set a bit" and "find the next bit set". Moreover, the searching
* is always carried out after all of the "set a bit" operations
* on given bitmap.
*/
#define BM_END_OF_MAP (~0UL)
#define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
#define BM_BITS_PER_CHUNK (sizeof(long) << 3)
#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
struct bm_block {
struct bm_block *next; /* next element of the list */
unsigned long start_pfn; /* pfn represented by the first bit */
unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
unsigned int size; /* number of bit chunks */
unsigned long *data; /* chunks of bits representing pages */
};
struct zone_bitmap {
struct zone_bitmap *next; /* next element of the list */
unsigned long start_pfn; /* minimal pfn in this zone */
unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
struct bm_block *bm_blocks; /* list of bitmap blocks */
struct bm_block *cur_block; /* recently used bitmap block */
};
/* strcut bm_position is used for browsing memory bitmaps */
struct bm_position {
struct zone_bitmap *zone_bm;
struct bm_block *block;
int chunk;
int bit;
};
struct memory_bitmap {
struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
struct linked_page *p_list; /* list of pages used to store zone
* bitmap objects and bitmap block
* objects
*/
struct bm_position cur; /* most recently used bit position */
};
/* Functions that operate on memory bitmaps */
static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
{
bm->cur.chunk = 0;
bm->cur.bit = -1;
}
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
struct zone_bitmap *zone_bm;
zone_bm = bm->zone_bm_list;
bm->cur.zone_bm = zone_bm;
bm->cur.block = zone_bm->bm_blocks;
memory_bm_reset_chunk(bm);
}
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
/**
* create_bm_block_list - create a list of block bitmap objects
*/
static inline struct bm_block *
create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
{
struct bm_block *bblist = NULL;
while (nr_blocks-- > 0) {
struct bm_block *bb;
bb = chain_alloc(ca, sizeof(struct bm_block));
if (!bb)
return NULL;
bb->next = bblist;
bblist = bb;
}
return bblist;
}
/**
* create_zone_bm_list - create a list of zone bitmap objects
*/
static inline struct zone_bitmap *
create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
{
struct zone_bitmap *zbmlist = NULL;
while (nr_zones-- > 0) {
struct zone_bitmap *zbm;
zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
if (!zbm)
return NULL;
zbm->next = zbmlist;
zbmlist = zbm;
}
return zbmlist;
}
/**
* memory_bm_create - allocate memory for a memory bitmap
*/
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
struct chain_allocator ca;
struct zone *zone;
struct zone_bitmap *zone_bm;
struct bm_block *bb;
unsigned int nr;
chain_init(&ca, gfp_mask, safe_needed);
/* Compute the number of zones */
nr = 0;
for_each_zone(zone)
if (populated_zone(zone))
nr++;
/* Allocate the list of zones bitmap objects */
zone_bm = create_zone_bm_list(nr, &ca);
bm->zone_bm_list = zone_bm;
if (!zone_bm) {
chain_free(&ca, PG_UNSAFE_CLEAR);
return -ENOMEM;
}
/* Initialize the zone bitmap objects */
for_each_zone(zone) {
unsigned long pfn;
if (!populated_zone(zone))
continue;
zone_bm->start_pfn = zone->zone_start_pfn;
zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
/* Allocate the list of bitmap block objects */
nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
bb = create_bm_block_list(nr, &ca);
zone_bm->bm_blocks = bb;
zone_bm->cur_block = bb;
if (!bb)
goto Free;
nr = zone->spanned_pages;
pfn = zone->zone_start_pfn;
/* Initialize the bitmap block objects */
while (bb) {
unsigned long *ptr;
ptr = get_image_page(gfp_mask, safe_needed);
bb->data = ptr;
if (!ptr)
goto Free;
bb->start_pfn = pfn;
if (nr >= BM_BITS_PER_BLOCK) {
pfn += BM_BITS_PER_BLOCK;
bb->size = BM_CHUNKS_PER_BLOCK;
nr -= BM_BITS_PER_BLOCK;
} else {
/* This is executed only once in the loop */
pfn += nr;
bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
}
bb->end_pfn = pfn;
bb = bb->next;
}
zone_bm = zone_bm->next;
}
bm->p_list = ca.chain;
memory_bm_position_reset(bm);
return 0;
Free:
bm->p_list = ca.chain;
memory_bm_free(bm, PG_UNSAFE_CLEAR);
return -ENOMEM;
}
/**
* memory_bm_free - free memory occupied by the memory bitmap @bm
*/
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
struct zone_bitmap *zone_bm;
/* Free the list of bit blocks for each zone_bitmap object */
zone_bm = bm->zone_bm_list;
while (zone_bm) {
struct bm_block *bb;
bb = zone_bm->bm_blocks;
while (bb) {
if (bb->data)
free_image_page(bb->data, clear_nosave_free);
bb = bb->next;
}
zone_bm = zone_bm->next;
}
free_list_of_pages(bm->p_list, clear_nosave_free);
bm->zone_bm_list = NULL;
}
/**
* memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
* to given pfn. The cur_zone_bm member of @bm and the cur_block member
* of @bm->cur_zone_bm are updated.
*
* If the bit cannot be set, the function returns -EINVAL .
*/
static int
memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
struct zone_bitmap *zone_bm;
struct bm_block *bb;
/* Check if the pfn is from the current zone */
zone_bm = bm->cur.zone_bm;
if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
zone_bm = bm->zone_bm_list;
/* We don't assume that the zones are sorted by pfns */
while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
zone_bm = zone_bm->next;
if (unlikely(!zone_bm))
return -EINVAL;
}
bm->cur.zone_bm = zone_bm;
}
/* Check if the pfn corresponds to the current bitmap block */
bb = zone_bm->cur_block;
if (pfn < bb->start_pfn)
bb = zone_bm->bm_blocks;
while (pfn >= bb->end_pfn) {
bb = bb->next;
if (unlikely(!bb))
return -EINVAL;
}
zone_bm->cur_block = bb;
pfn -= bb->start_pfn;
set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
return 0;
}
/* Two auxiliary functions for memory_bm_next_pfn */
/* Find the first set bit in the given chunk, if there is one */
static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
{
bit++;
while (bit < BM_BITS_PER_CHUNK) {
if (test_bit(bit, chunk_p))
return bit;
bit++;
}
return -1;
}
/* Find a chunk containing some bits set in given block of bits */
static inline int next_chunk_in_block(int n, struct bm_block *bb)
{
n++;
while (n < bb->size) {
if (bb->data[n])
return n;
n++;
}
return -1;
}
/**
* memory_bm_next_pfn - find the pfn that corresponds to the next set bit
* in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
* returned.
*
* It is required to run memory_bm_position_reset() before the first call to
* this function.
*/
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
struct zone_bitmap *zone_bm;
struct bm_block *bb;
int chunk;
int bit;
do {
bb = bm->cur.block;
do {
chunk = bm->cur.chunk;
bit = bm->cur.bit;
do {
bit = next_bit_in_chunk(bit, bb->data + chunk);
if (bit >= 0)
goto Return_pfn;
chunk = next_chunk_in_block(chunk, bb);
bit = -1;
} while (chunk >= 0);
bb = bb->next;
bm->cur.block = bb;
memory_bm_reset_chunk(bm);
} while (bb);
zone_bm = bm->cur.zone_bm->next;
if (zone_bm) {
bm->cur.zone_bm = zone_bm;
bm->cur.block = zone_bm->bm_blocks;
memory_bm_reset_chunk(bm);
}
} while (zone_bm);
memory_bm_position_reset(bm);
return BM_END_OF_MAP;
Return_pfn:
bm->cur.chunk = chunk;
bm->cur.bit = bit;
return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
}
/**
* snapshot_additional_pages - estimate the number of additional pages
* be needed for setting up the suspend image data structures for given
* zone (usually the returned value is greater than the exact number)
*/
unsigned int snapshot_additional_pages(struct zone *zone)
{
unsigned int res;
res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
return 2 * res;
}
#ifdef CONFIG_HIGHMEM
/**
* count_free_highmem_pages - compute the total number of free highmem
* pages, system-wide.
*/
static unsigned int count_free_highmem_pages(void)
{
struct zone *zone;
unsigned int cnt = 0;
for_each_zone(zone)
if (populated_zone(zone) && is_highmem(zone))
cnt += zone->free_pages;
return cnt;
}
/**
* saveable_highmem_page - Determine whether a highmem page should be
* included in the suspend image.
*
* We should save the page if it isn't Nosave or NosaveFree, or Reserved,
* and it isn't a part of a free chunk of pages.
*/
static struct page *saveable_highmem_page(unsigned long pfn)
{
struct page *page;
if (!pfn_valid(pfn))
return NULL;
page = pfn_to_page(pfn);
BUG_ON(!PageHighMem(page));
if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
return NULL;
return page;
}
/**
* count_highmem_pages - compute the total number of saveable highmem
* pages.
*/
unsigned int count_highmem_pages(void)
{
struct zone *zone;
unsigned int n = 0;
for_each_zone(zone) {
unsigned long pfn, max_zone_pfn;
if (!is_highmem(zone))
continue;
mark_free_pages(zone);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (saveable_highmem_page(pfn))
n++;
}
return n;
}
#else
static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
static inline unsigned int count_highmem_pages(void) { return 0; }
#endif /* CONFIG_HIGHMEM */
/**
* pfn_is_nosave - check if given pfn is in the 'nosave' section
*/
static inline int pfn_is_nosave(unsigned long pfn)
{
unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
}
/**
* saveable - Determine whether a non-highmem page should be included in
* the suspend image.
*
* We should save the page if it isn't Nosave, and is not in the range
* of pages statically defined as 'unsaveable', and it isn't a part of
* a free chunk of pages.
*/
static struct page *saveable_page(unsigned long pfn)
{
struct page *page;
if (!pfn_valid(pfn))
return NULL;
page = pfn_to_page(pfn);
BUG_ON(PageHighMem(page));
if (PageNosave(page) || PageNosaveFree(page))
return NULL;
if (PageReserved(page) && pfn_is_nosave(pfn))
return NULL;
return page;
}
/**
* count_data_pages - compute the total number of saveable non-highmem
* pages.
*/
unsigned int count_data_pages(void)
{
struct zone *zone;
unsigned long pfn, max_zone_pfn;
unsigned int n = 0;
for_each_zone(zone) {
if (is_highmem(zone))
continue;
mark_free_pages(zone);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if(saveable_page(pfn))
n++;
}
return n;
}
/* This is needed, because copy_page and memcpy are not usable for copying
* task structs.
*/
static inline void do_copy_page(long *dst, long *src)
{
int n;
for (n = PAGE_SIZE / sizeof(long); n; n--)
*dst++ = *src++;
}
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
return is_highmem(zone) ?
saveable_highmem_page(pfn) : saveable_page(pfn);
}
static inline void
copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
{
struct page *s_page, *d_page;
void *src, *dst;
s_page = pfn_to_page(src_pfn);
d_page = pfn_to_page(dst_pfn);
if (PageHighMem(s_page)) {
src = kmap_atomic(s_page, KM_USER0);
dst = kmap_atomic(d_page, KM_USER1);
do_copy_page(dst, src);
kunmap_atomic(src, KM_USER0);
kunmap_atomic(dst, KM_USER1);
} else {
src = page_address(s_page);
if (PageHighMem(d_page)) {
/* Page pointed to by src may contain some kernel
* data modified by kmap_atomic()
*/
do_copy_page(buffer, src);
dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
memcpy(dst, buffer, PAGE_SIZE);
kunmap_atomic(dst, KM_USER0);
} else {
dst = page_address(d_page);
do_copy_page(dst, src);
}
}
}
#else
#define page_is_saveable(zone, pfn) saveable_page(pfn)
static inline void
copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
{
do_copy_page(page_address(pfn_to_page(dst_pfn)),
page_address(pfn_to_page(src_pfn)));
}
#endif /* CONFIG_HIGHMEM */
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
{
struct zone *zone;
unsigned long pfn;
for_each_zone(zone) {
unsigned long max_zone_pfn;
mark_free_pages(zone);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (page_is_saveable(zone, pfn))
memory_bm_set_bit(orig_bm, pfn);
}
memory_bm_position_reset(orig_bm);
memory_bm_position_reset(copy_bm);
do {
pfn = memory_bm_next_pfn(orig_bm);
if (likely(pfn != BM_END_OF_MAP))
copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
} while (pfn != BM_END_OF_MAP);
}
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
/**
* swsusp_free - free pages allocated for the suspend.
*
* Suspend pages are alocated before the atomic copy is made, so we
* need to release them after the resume.
*/
void swsusp_free(void)
{
struct zone *zone;
unsigned long pfn, max_zone_pfn;
for_each_zone(zone) {
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (PageNosave(page) && PageNosaveFree(page)) {
ClearPageNosave(page);
ClearPageNosaveFree(page);
__free_page(page);
}
}
}
nr_copy_pages = 0;
nr_meta_pages = 0;
restore_pblist = NULL;
buffer = NULL;
}
#ifdef CONFIG_HIGHMEM
/**
* count_pages_for_highmem - compute the number of non-highmem pages
* that will be necessary for creating copies of highmem pages.
*/
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
unsigned int free_highmem = count_free_highmem_pages();
if (free_highmem >= nr_highmem)
nr_highmem = 0;
else
nr_highmem -= free_highmem;
return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
/**
* enough_free_mem - Make sure we have enough free memory for the
* snapshot image.
*/
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
{
struct zone *zone;
unsigned int free = 0, meta = 0;
for_each_zone(zone) {
meta += snapshot_additional_pages(zone);
if (!is_highmem(zone))
free += zone->free_pages;
}
nr_pages += count_pages_for_highmem(nr_highmem);
pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
nr_pages, PAGES_FOR_IO, meta, free);
return free > nr_pages + PAGES_FOR_IO + meta;
}
#ifdef CONFIG_HIGHMEM
/**
* get_highmem_buffer - if there are some highmem pages in the suspend
* image, we may need the buffer to copy them and/or load their data.
*/
static inline int get_highmem_buffer(int safe_needed)
{
buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
return buffer ? 0 : -ENOMEM;
}
/**
* alloc_highmem_image_pages - allocate some highmem pages for the image.
* Try to allocate as many pages as needed, but if the number of free
* highmem pages is lesser than that, allocate them all.
*/
static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
{
unsigned int to_alloc = count_free_highmem_pages();
if (to_alloc > nr_highmem)
to_alloc = nr_highmem;
nr_highmem -= to_alloc;
while (to_alloc-- > 0) {
struct page *page;
page = alloc_image_page(__GFP_HIGHMEM);
memory_bm_set_bit(bm, page_to_pfn(page));
}
return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }
static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
#endif /* CONFIG_HIGHMEM */
/**
* swsusp_alloc - allocate memory for the suspend image
*
* We first try to allocate as many highmem pages as there are
* saveable highmem pages in the system. If that fails, we allocate
* non-highmem pages for the copies of the remaining highmem ones.
*
* In this approach it is likely that the copies of highmem pages will
* also be located in the high memory, because of the way in which
* copy_data_pages() works.
*/
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
unsigned int nr_pages, unsigned int nr_highmem)
{
int error;
error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
if (error)
goto Free;
error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
if (error)
goto Free;
if (nr_highmem > 0) {
error = get_highmem_buffer(PG_ANY);
if (error)
goto Free;
nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
}
while (nr_pages-- > 0) {
struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
if (!page)
goto Free;
memory_bm_set_bit(copy_bm, page_to_pfn(page));
}
return 0;
Free:
swsusp_free();
return -ENOMEM;
}
/* Memory bitmap used for marking saveable pages (during suspend) or the
* suspend image pages (during resume)
*/
static struct memory_bitmap orig_bm;
/* Memory bitmap used on suspend for marking allocated pages that will contain
* the copies of saveable pages. During resume it is initially used for
* marking the suspend image pages, but then its set bits are duplicated in
* @orig_bm and it is released. Next, on systems with high memory, it may be
* used for marking "safe" highmem pages, but it has to be reinitialized for
* this purpose.
*/
static struct memory_bitmap copy_bm;
asmlinkage int swsusp_save(void)
{
unsigned int nr_pages, nr_highmem;
printk("swsusp: critical section: \n");
drain_local_pages();
nr_pages = count_data_pages();
nr_highmem = count_highmem_pages();
printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
if (!enough_free_mem(nr_pages, nr_highmem)) {
printk(KERN_ERR "swsusp: Not enough free memory\n");
return -ENOMEM;
}
if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
printk(KERN_ERR "swsusp: Memory allocation failed\n");
return -ENOMEM;
}
/* During allocating of suspend pagedir, new cold pages may appear.
* Kill them.
*/
drain_local_pages();
copy_data_pages(&copy_bm, &orig_bm);
/*
* End of critical section. From now on, we can write to memory,
* but we should not touch disk. This specially means we must _not_
* touch swap space! Except we must write out our image of course.
*/
nr_pages += nr_highmem;
nr_copy_pages = nr_pages;
nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
return 0;
}
static void init_header(struct swsusp_info *info)
{
memset(info, 0, sizeof(struct swsusp_info));
info->version_code = LINUX_VERSION_CODE;
info->num_physpages = num_physpages;
memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
info->cpus = num_online_cpus();
info->image_pages = nr_copy_pages;
info->pages = nr_copy_pages + nr_meta_pages + 1;
info->size = info->pages;
info->size <<= PAGE_SHIFT;
}
/**
* pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
* are stored in the array @buf[] (1 page at a time)
*/
static inline void
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
{
int j;
for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
buf[j] = memory_bm_next_pfn(bm);
if (unlikely(buf[j] == BM_END_OF_MAP))
break;
}
}
/**
* snapshot_read_next - used for reading the system memory snapshot.
*
* On the first call to it @handle should point to a zeroed
* snapshot_handle structure. The structure gets updated and a pointer
* to it should be passed to this function every next time.
*
* The @count parameter should contain the number of bytes the caller
* wants to read from the snapshot. It must not be zero.
*
* On success the function returns a positive number. Then, the caller
* is allowed to read up to the returned number of bytes from the memory
* location computed by the data_of() macro. The number returned
* may be smaller than @count, but this only happens if the read would
* cross a page boundary otherwise.
*
* The function returns 0 to indicate the end of data stream condition,
* and a negative number is returned on error. In such cases the
* structure pointed to by @handle is not updated and should not be used
* any more.
*/
int snapshot_read_next(struct snapshot_handle *handle, size_t count)
{
if (handle->cur > nr_meta_pages + nr_copy_pages)
return 0;
if (!buffer) {
/* This makes the buffer be freed by swsusp_free() */
buffer = get_image_page(GFP_ATOMIC, PG_ANY);
if (!buffer)
return -ENOMEM;
}
if (!handle->offset) {
init_header((struct swsusp_info *)buffer);
handle->buffer = buffer;
memory_bm_position_reset(&orig_bm);
memory_bm_position_reset(&copy_bm);
}
if (handle->prev < handle->cur) {
if (handle->cur <= nr_meta_pages) {
memset(buffer, 0, PAGE_SIZE);
pack_pfns(buffer, &orig_bm);
} else {
struct page *page;
page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
if (PageHighMem(page)) {
/* Highmem pages are copied to the buffer,
* because we can't return with a kmapped
* highmem page (we may not be called again).
*/
void *kaddr;
kaddr = kmap_atomic(page, KM_USER0);
memcpy(buffer, kaddr, PAGE_SIZE);
kunmap_atomic(kaddr, KM_USER0);
handle->buffer = buffer;
} else {
handle->buffer = page_address(page);
}
}
handle->prev = handle->cur;
}
handle->buf_offset = handle->cur_offset;
if (handle->cur_offset + count >= PAGE_SIZE) {
count = PAGE_SIZE - handle->cur_offset;
handle->cur_offset = 0;
handle->cur++;
} else {
handle->cur_offset += count;
}
handle->offset += count;
return count;
}
/**
* mark_unsafe_pages - mark the pages that cannot be used for storing
* the image during resume, because they conflict with the pages that
* had been used before suspend
*/
static int mark_unsafe_pages(struct memory_bitmap *bm)
{
struct zone *zone;
unsigned long pfn, max_zone_pfn;
/* Clear page flags */
for_each_zone(zone) {
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn))
ClearPageNosaveFree(pfn_to_page(pfn));
}
/* Mark pages that correspond to the "original" pfns as "unsafe" */
memory_bm_position_reset(bm);
do {
pfn = memory_bm_next_pfn(bm);
if (likely(pfn != BM_END_OF_MAP)) {
if (likely(pfn_valid(pfn)))
SetPageNosaveFree(pfn_to_page(pfn));
else
return -EFAULT;
}
} while (pfn != BM_END_OF_MAP);
allocated_unsafe_pages = 0;
return 0;
}
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
{
unsigned long pfn;
memory_bm_position_reset(src);
pfn = memory_bm_next_pfn(src);
while (pfn != BM_END_OF_MAP) {
memory_bm_set_bit(dst, pfn);
pfn = memory_bm_next_pfn(src);
}
}
static inline int check_header(struct swsusp_info *info)
{
char *reason = NULL;
if (info->version_code != LINUX_VERSION_CODE)
reason = "kernel version";
if (info->num_physpages != num_physpages)
reason = "memory size";
if (strcmp(info->uts.sysname,init_utsname()->sysname))
reason = "system type";
if (strcmp(info->uts.release,init_utsname()->release))
reason = "kernel release";
if (strcmp(info->uts.version,init_utsname()->version))
reason = "version";
if (strcmp(info->uts.machine,init_utsname()->machine))
reason = "machine";
if (reason) {
printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
return -EPERM;
}
return 0;
}
/**
* load header - check the image header and copy data from it
*/
static int
load_header(struct swsusp_info *info)
{
int error;
restore_pblist = NULL;
error = check_header(info);
if (!error) {
nr_copy_pages = info->image_pages;
nr_meta_pages = info->pages - info->image_pages - 1;
}
return error;
}
/**
* unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
* the corresponding bit in the memory bitmap @bm
*/
static inline void
unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
{
int j;
for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
if (unlikely(buf[j] == BM_END_OF_MAP))
break;
memory_bm_set_bit(bm, buf[j]);
}
}
/* List of "safe" pages that may be used to store data loaded from the suspend
* image
*/
static struct linked_page *safe_pages_list;
#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
* should be restored atomically during the resume from disk, because the page
* frames they have occupied before the suspend are in use.
*/
struct highmem_pbe {
struct page *copy_page; /* data is here now */
struct page *orig_page; /* data was here before the suspend */
struct highmem_pbe *next;
};
/* List of highmem PBEs needed for restoring the highmem pages that were
* allocated before the suspend and included in the suspend image, but have
* also been allocated by the "resume" kernel, so their contents cannot be
* written directly to their "original" page frames.
*/
static struct highmem_pbe *highmem_pblist;
/**
* count_highmem_image_pages - compute the number of highmem pages in the
* suspend image. The bits in the memory bitmap @bm that correspond to the
* image pages are assumed to be set.
*/
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
unsigned long pfn;
unsigned int cnt = 0;
memory_bm_position_reset(bm);
pfn = memory_bm_next_pfn(bm);
while (pfn != BM_END_OF_MAP) {
if (PageHighMem(pfn_to_page(pfn)))
cnt++;
pfn = memory_bm_next_pfn(bm);
}
return cnt;
}
/**
* prepare_highmem_image - try to allocate as many highmem pages as
* there are highmem image pages (@nr_highmem_p points to the variable
* containing the number of highmem image pages). The pages that are
* "safe" (ie. will not be overwritten when the suspend image is
* restored) have the corresponding bits set in @bm (it must be
* unitialized).
*
* NOTE: This function should not be called if there are no highmem
* image pages.
*/
static unsigned int safe_highmem_pages;
static struct memory_bitmap *safe_highmem_bm;
static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
unsigned int to_alloc;
if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
return -ENOMEM;
if (get_highmem_buffer(PG_SAFE))
return -ENOMEM;
to_alloc = count_free_highmem_pages();
if (to_alloc > *nr_highmem_p)
to_alloc = *nr_highmem_p;
else
*nr_highmem_p = to_alloc;
safe_highmem_pages = 0;
while (to_alloc-- > 0) {
struct page *page;
page = alloc_page(__GFP_HIGHMEM);
if (!PageNosaveFree(page)) {
/* The page is "safe", set its bit the bitmap */
memory_bm_set_bit(bm, page_to_pfn(page));
safe_highmem_pages++;
}
/* Mark the page as allocated */
SetPageNosave(page);
SetPageNosaveFree(page);
}
memory_bm_position_reset(bm);
safe_highmem_bm = bm;
return 0;
}
/**
* get_highmem_page_buffer - for given highmem image page find the buffer
* that suspend_write_next() should set for its caller to write to.
*
* If the page is to be saved to its "original" page frame or a copy of
* the page is to be made in the highmem, @buffer is returned. Otherwise,
* the copy of the page is to be made in normal memory, so the address of
* the copy is returned.
*
* If @buffer is returned, the caller of suspend_write_next() will write
* the page's contents to @buffer, so they will have to be copied to the
* right location on the next call to suspend_write_next() and it is done
* with the help of copy_last_highmem_page(). For this purpose, if
* @buffer is returned, @last_highmem page is set to the page to which
* the data will have to be copied from @buffer.
*/
static struct page *last_highmem_page;
static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
struct highmem_pbe *pbe;
void *kaddr;
if (PageNosave(page) && PageNosaveFree(page)) {
/* We have allocated the "original" page frame and we can
* use it directly to store the loaded page.
*/
last_highmem_page = page;
return buffer;
}
/* The "original" page frame has not been allocated and we have to
* use a "safe" page frame to store the loaded page.
*/
pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
if (!pbe) {
swsusp_free();
return NULL;
}
pbe->orig_page = page;
if (safe_highmem_pages > 0) {
struct page *tmp;
/* Copy of the page will be stored in high memory */
kaddr = buffer;
tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
safe_highmem_pages--;
last_highmem_page = tmp;
pbe->copy_page = tmp;
} else {
/* Copy of the page will be stored in normal memory */
kaddr = safe_pages_list;
safe_pages_list = safe_pages_list->next;
pbe->copy_page = virt_to_page(kaddr);
}
pbe->next = highmem_pblist;
highmem_pblist = pbe;
return kaddr;
}
/**
* copy_last_highmem_page - copy the contents of a highmem image from
* @buffer, where the caller of snapshot_write_next() has place them,
* to the right location represented by @last_highmem_page .
*/
static void copy_last_highmem_page(void)
{
if (last_highmem_page) {
void *dst;
dst = kmap_atomic(last_highmem_page, KM_USER0);
memcpy(dst, buffer, PAGE_SIZE);
kunmap_atomic(dst, KM_USER0);
last_highmem_page = NULL;
}
}
static inline int last_highmem_page_copied(void)
{
return !last_highmem_page;
}
static inline void free_highmem_data(void)
{
if (safe_highmem_bm)
memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
if (buffer)
free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }
static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
return 0;
}
static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
return NULL;
}
static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */
/**
* prepare_image - use the memory bitmap @bm to mark the pages that will
* be overwritten in the process of restoring the system memory state
* from the suspend image ("unsafe" pages) and allocate memory for the
* image.
*
* The idea is to allocate a new memory bitmap first and then allocate
* as many pages as needed for the image data, but not to assign these
* pages to specific tasks initially. Instead, we just mark them as
* allocated and create a lists of "safe" pages that will be used
* later. On systems with high memory a list of "safe" highmem pages is
* also created.
*/
#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
{
unsigned int nr_pages, nr_highmem;
struct linked_page *sp_list, *lp;
int error;
/* If there is no highmem, the buffer will not be necessary */
free_image_page(buffer, PG_UNSAFE_CLEAR);
buffer = NULL;
nr_highmem = count_highmem_image_pages(bm);
error = mark_unsafe_pages(bm);
if (error)
goto Free;
error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
if (error)
goto Free;
duplicate_memory_bitmap(new_bm, bm);
memory_bm_free(bm, PG_UNSAFE_KEEP);
if (nr_highmem > 0) {
error = prepare_highmem_image(bm, &nr_highmem);
if (error)
goto Free;
}
/* Reserve some safe pages for potential later use.
*
* NOTE: This way we make sure there will be enough safe pages for the
* chain_alloc() in get_buffer(). It is a bit wasteful, but
* nr_copy_pages cannot be greater than 50% of the memory anyway.
*/
sp_list = NULL;
/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
while (nr_pages > 0) {
lp = get_image_page(GFP_ATOMIC, PG_SAFE);
if (!lp) {
error = -ENOMEM;
goto Free;
}
lp->next = sp_list;
sp_list = lp;
nr_pages--;
}
/* Preallocate memory for the image */
safe_pages_list = NULL;
nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
while (nr_pages > 0) {
lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
if (!lp) {
error = -ENOMEM;
goto Free;
}
if (!PageNosaveFree(virt_to_page(lp))) {
/* The page is "safe", add it to the list */
lp->next = safe_pages_list;
safe_pages_list = lp;
}
/* Mark the page as allocated */
SetPageNosave(virt_to_page(lp));
SetPageNosaveFree(virt_to_page(lp));
nr_pages--;
}
/* Free the reserved safe pages so that chain_alloc() can use them */
while (sp_list) {
lp = sp_list->next;
free_image_page(sp_list, PG_UNSAFE_CLEAR);
sp_list = lp;
}
return 0;
Free:
swsusp_free();
return error;
}
/**
* get_buffer - compute the address that snapshot_write_next() should
* set for its caller to write to.
*/
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
{
struct pbe *pbe;
struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
if (PageHighMem(page))
return get_highmem_page_buffer(page, ca);
if (PageNosave(page) && PageNosaveFree(page))
/* We have allocated the "original" page frame and we can
* use it directly to store the loaded page.
*/
return page_address(page);
/* The "original" page frame has not been allocated and we have to
* use a "safe" page frame to store the loaded page.
*/
pbe = chain_alloc(ca, sizeof(struct pbe));
if (!pbe) {
swsusp_free();
return NULL;
}
pbe->orig_address = page_address(page);
pbe->address = safe_pages_list;
safe_pages_list = safe_pages_list->next;
pbe->next = restore_pblist;
restore_pblist = pbe;
return pbe->address;
}
/**
* snapshot_write_next - used for writing the system memory snapshot.
*
* On the first call to it @handle should point to a zeroed
* snapshot_handle structure. The structure gets updated and a pointer
* to it should be passed to this function every next time.
*
* The @count parameter should contain the number of bytes the caller
* wants to write to the image. It must not be zero.
*
* On success the function returns a positive number. Then, the caller
* is allowed to write up to the returned number of bytes to the memory
* location computed by the data_of() macro. The number returned
* may be smaller than @count, but this only happens if the write would
* cross a page boundary otherwise.
*
* The function returns 0 to indicate the "end of file" condition,
* and a negative number is returned on error. In such cases the
* structure pointed to by @handle is not updated and should not be used
* any more.
*/
int snapshot_write_next(struct snapshot_handle *handle, size_t count)
{
static struct chain_allocator ca;
int error = 0;
/* Check if we have already loaded the entire image */
if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
return 0;
if (handle->offset == 0) {
if (!buffer)
/* This makes the buffer be freed by swsusp_free() */
buffer = get_image_page(GFP_ATOMIC, PG_ANY);
if (!buffer)
return -ENOMEM;
handle->buffer = buffer;
}
handle->sync_read = 1;
if (handle->prev < handle->cur) {
if (handle->prev == 0) {
error = load_header(buffer);
if (error)
return error;
error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
if (error)
return error;
} else if (handle->prev <= nr_meta_pages) {
unpack_orig_pfns(buffer, &copy_bm);
if (handle->prev == nr_meta_pages) {
error = prepare_image(&orig_bm, &copy_bm);
if (error)
return error;
chain_init(&ca, GFP_ATOMIC, PG_SAFE);
memory_bm_position_reset(&orig_bm);
restore_pblist = NULL;
handle->buffer = get_buffer(&orig_bm, &ca);
handle->sync_read = 0;
if (!handle->buffer)
return -ENOMEM;
}
} else {
copy_last_highmem_page();
handle->buffer = get_buffer(&orig_bm, &ca);
if (handle->buffer != buffer)
handle->sync_read = 0;
}
handle->prev = handle->cur;
}
handle->buf_offset = handle->cur_offset;
if (handle->cur_offset + count >= PAGE_SIZE) {
count = PAGE_SIZE - handle->cur_offset;
handle->cur_offset = 0;
handle->cur++;
} else {
handle->cur_offset += count;
}
handle->offset += count;
return count;
}
/**
* snapshot_write_finalize - must be called after the last call to
* snapshot_write_next() in case the last page in the image happens
* to be a highmem page and its contents should be stored in the
* highmem. Additionally, it releases the memory that will not be
* used any more.
*/
void snapshot_write_finalize(struct snapshot_handle *handle)
{
copy_last_highmem_page();
/* Free only if we have loaded the image entirely */
if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
free_highmem_data();
}
}
int snapshot_image_loaded(struct snapshot_handle *handle)
{
return !(!nr_copy_pages || !last_highmem_page_copied() ||
handle->cur <= nr_meta_pages + nr_copy_pages);
}
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
{
void *kaddr1, *kaddr2;
kaddr1 = kmap_atomic(p1, KM_USER0);
kaddr2 = kmap_atomic(p2, KM_USER1);
memcpy(buf, kaddr1, PAGE_SIZE);
memcpy(kaddr1, kaddr2, PAGE_SIZE);
memcpy(kaddr2, buf, PAGE_SIZE);
kunmap_atomic(kaddr1, KM_USER0);
kunmap_atomic(kaddr2, KM_USER1);
}
/**
* restore_highmem - for each highmem page that was allocated before
* the suspend and included in the suspend image, and also has been
* allocated by the "resume" kernel swap its current (ie. "before
* resume") contents with the previous (ie. "before suspend") one.
*
* If the resume eventually fails, we can call this function once
* again and restore the "before resume" highmem state.
*/
int restore_highmem(void)
{
struct highmem_pbe *pbe = highmem_pblist;
void *buf;
if (!pbe)
return 0;
buf = get_image_page(GFP_ATOMIC, PG_SAFE);
if (!buf)
return -ENOMEM;
while (pbe) {
swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
pbe = pbe->next;
}
free_image_page(buf, PG_UNSAFE_CLEAR);
return 0;
}
#endif /* CONFIG_HIGHMEM */