| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor |
| * |
| * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH |
| * Copyright (C) 2018 Himanshu Jha <himanshujha199640@gmail.com> |
| * |
| * Datasheet: |
| * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf |
| */ |
| #include <linux/bitfield.h> |
| #include <linux/cleanup.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/log2.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include "bme680.h" |
| |
| /* 1st set of calibration data */ |
| enum { |
| /* Temperature calib indexes */ |
| T2_LSB = 0, |
| T3 = 2, |
| /* Pressure calib indexes */ |
| P1_LSB = 4, |
| P2_LSB = 6, |
| P3 = 8, |
| P4_LSB = 10, |
| P5_LSB = 12, |
| P7 = 14, |
| P6 = 15, |
| P8_LSB = 18, |
| P9_LSB = 20, |
| P10 = 22, |
| }; |
| |
| /* 2nd set of calibration data */ |
| enum { |
| /* Humidity calib indexes */ |
| H2_MSB = 0, |
| H1_LSB = 1, |
| H3 = 3, |
| H4 = 4, |
| H5 = 5, |
| H6 = 6, |
| H7 = 7, |
| /* Stray T1 calib index */ |
| T1_LSB = 8, |
| /* Gas heater calib indexes */ |
| GH2_LSB = 10, |
| GH1 = 12, |
| GH3 = 13, |
| }; |
| |
| /* 3rd set of calibration data */ |
| enum { |
| RES_HEAT_VAL = 0, |
| RES_HEAT_RANGE = 2, |
| RANGE_SW_ERR = 4, |
| }; |
| |
| struct bme680_calib { |
| u16 par_t1; |
| s16 par_t2; |
| s8 par_t3; |
| u16 par_p1; |
| s16 par_p2; |
| s8 par_p3; |
| s16 par_p4; |
| s16 par_p5; |
| s8 par_p6; |
| s8 par_p7; |
| s16 par_p8; |
| s16 par_p9; |
| u8 par_p10; |
| u16 par_h1; |
| u16 par_h2; |
| s8 par_h3; |
| s8 par_h4; |
| s8 par_h5; |
| u8 par_h6; |
| s8 par_h7; |
| s8 par_gh1; |
| s16 par_gh2; |
| s8 par_gh3; |
| u8 res_heat_range; |
| s8 res_heat_val; |
| s8 range_sw_err; |
| }; |
| |
| struct bme680_data { |
| struct regmap *regmap; |
| struct bme680_calib bme680; |
| struct mutex lock; /* Protect multiple serial R/W ops to device. */ |
| u8 oversampling_temp; |
| u8 oversampling_press; |
| u8 oversampling_humid; |
| u16 heater_dur; |
| u16 heater_temp; |
| |
| union { |
| u8 buf[3]; |
| unsigned int check; |
| __be16 be16; |
| u8 bme680_cal_buf_1[BME680_CALIB_RANGE_1_LEN]; |
| u8 bme680_cal_buf_2[BME680_CALIB_RANGE_2_LEN]; |
| u8 bme680_cal_buf_3[BME680_CALIB_RANGE_3_LEN]; |
| }; |
| }; |
| |
| static const struct regmap_range bme680_volatile_ranges[] = { |
| regmap_reg_range(BME680_REG_MEAS_STAT_0, BME680_REG_GAS_R_LSB), |
| regmap_reg_range(BME680_REG_STATUS, BME680_REG_STATUS), |
| regmap_reg_range(BME680_T2_LSB_REG, BME680_GH3_REG), |
| }; |
| |
| static const struct regmap_access_table bme680_volatile_table = { |
| .yes_ranges = bme680_volatile_ranges, |
| .n_yes_ranges = ARRAY_SIZE(bme680_volatile_ranges), |
| }; |
| |
| const struct regmap_config bme680_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = 0xef, |
| .volatile_table = &bme680_volatile_table, |
| .cache_type = REGCACHE_RBTREE, |
| }; |
| EXPORT_SYMBOL_NS(bme680_regmap_config, IIO_BME680); |
| |
| static const struct iio_chan_spec bme680_channels[] = { |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| { |
| .type = IIO_PRESSURE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| { |
| .type = IIO_HUMIDITYRELATIVE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| { |
| .type = IIO_RESISTANCE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), |
| }, |
| }; |
| |
| static int bme680_read_calib(struct bme680_data *data, |
| struct bme680_calib *calib) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| unsigned int tmp_msb, tmp_lsb; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG, |
| data->bme680_cal_buf_1, |
| sizeof(data->bme680_cal_buf_1)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read 1st set of calib data;\n"); |
| return ret; |
| } |
| |
| calib->par_t2 = get_unaligned_le16(&data->bme680_cal_buf_1[T2_LSB]); |
| calib->par_t3 = data->bme680_cal_buf_1[T3]; |
| calib->par_p1 = get_unaligned_le16(&data->bme680_cal_buf_1[P1_LSB]); |
| calib->par_p2 = get_unaligned_le16(&data->bme680_cal_buf_1[P2_LSB]); |
| calib->par_p3 = data->bme680_cal_buf_1[P3]; |
| calib->par_p4 = get_unaligned_le16(&data->bme680_cal_buf_1[P4_LSB]); |
| calib->par_p5 = get_unaligned_le16(&data->bme680_cal_buf_1[P5_LSB]); |
| calib->par_p7 = data->bme680_cal_buf_1[P7]; |
| calib->par_p6 = data->bme680_cal_buf_1[P6]; |
| calib->par_p8 = get_unaligned_le16(&data->bme680_cal_buf_1[P8_LSB]); |
| calib->par_p9 = get_unaligned_le16(&data->bme680_cal_buf_1[P9_LSB]); |
| calib->par_p10 = data->bme680_cal_buf_1[P10]; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_H2_MSB_REG, |
| data->bme680_cal_buf_2, |
| sizeof(data->bme680_cal_buf_2)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read 2nd set of calib data;\n"); |
| return ret; |
| } |
| |
| tmp_lsb = data->bme680_cal_buf_2[H1_LSB]; |
| tmp_msb = data->bme680_cal_buf_2[H1_LSB + 1]; |
| calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) | |
| (tmp_lsb & BME680_BIT_H1_DATA_MASK); |
| |
| tmp_msb = data->bme680_cal_buf_2[H2_MSB]; |
| tmp_lsb = data->bme680_cal_buf_2[H2_MSB + 1]; |
| calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) | |
| (tmp_lsb >> BME680_HUM_REG_SHIFT_VAL); |
| |
| calib->par_h3 = data->bme680_cal_buf_2[H3]; |
| calib->par_h4 = data->bme680_cal_buf_2[H4]; |
| calib->par_h5 = data->bme680_cal_buf_2[H5]; |
| calib->par_h6 = data->bme680_cal_buf_2[H6]; |
| calib->par_h7 = data->bme680_cal_buf_2[H7]; |
| calib->par_t1 = get_unaligned_le16(&data->bme680_cal_buf_2[T1_LSB]); |
| calib->par_gh2 = get_unaligned_le16(&data->bme680_cal_buf_2[GH2_LSB]); |
| calib->par_gh1 = data->bme680_cal_buf_2[GH1]; |
| calib->par_gh3 = data->bme680_cal_buf_2[GH3]; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_REG_RES_HEAT_VAL, |
| data->bme680_cal_buf_3, |
| sizeof(data->bme680_cal_buf_3)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read 3rd set of calib data;\n"); |
| return ret; |
| } |
| |
| calib->res_heat_val = data->bme680_cal_buf_3[RES_HEAT_VAL]; |
| |
| calib->res_heat_range = FIELD_GET(BME680_RHRANGE_MASK, |
| data->bme680_cal_buf_3[RES_HEAT_RANGE]); |
| |
| calib->range_sw_err = FIELD_GET(BME680_RSERROR_MASK, |
| data->bme680_cal_buf_3[RANGE_SW_ERR]); |
| |
| return 0; |
| } |
| |
| static int bme680_read_temp_adc(struct bme680_data *data, u32 *adc_temp) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| u32 value_temp; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB, |
| data->buf, BME680_TEMP_NUM_BYTES); |
| if (ret < 0) { |
| dev_err(dev, "failed to read temperature\n"); |
| return ret; |
| } |
| |
| value_temp = FIELD_GET(BME680_MEAS_TRIM_MASK, |
| get_unaligned_be24(data->buf)); |
| if (value_temp == BME680_MEAS_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(dev, "reading temperature skipped\n"); |
| return -EINVAL; |
| } |
| *adc_temp = value_temp; |
| |
| return 0; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876 |
| * |
| * Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore, |
| * output value of "3233" represents 32.33 DegC. |
| */ |
| static s32 bme680_calc_t_fine(struct bme680_data *data, u32 adc_temp) |
| { |
| struct bme680_calib *calib = &data->bme680; |
| s64 var1, var2, var3; |
| |
| /* If the calibration is invalid, attempt to reload it */ |
| if (!calib->par_t2) |
| bme680_read_calib(data, calib); |
| |
| var1 = ((s32)adc_temp >> 3) - ((s32)calib->par_t1 << 1); |
| var2 = (var1 * calib->par_t2) >> 11; |
| var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; |
| var3 = (var3 * ((s32)calib->par_t3 << 4)) >> 14; |
| return var2 + var3; /* t_fine = var2 + var3 */ |
| } |
| |
| static int bme680_get_t_fine(struct bme680_data *data, s32 *t_fine) |
| { |
| u32 adc_temp; |
| int ret; |
| |
| ret = bme680_read_temp_adc(data, &adc_temp); |
| if (ret) |
| return ret; |
| |
| *t_fine = bme680_calc_t_fine(data, adc_temp); |
| |
| return 0; |
| } |
| |
| static s16 bme680_compensate_temp(struct bme680_data *data, |
| u32 adc_temp) |
| { |
| return (bme680_calc_t_fine(data, adc_temp) * 5 + 128) / 256; |
| } |
| |
| static int bme680_read_press_adc(struct bme680_data *data, u32 *adc_press) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| u32 value_press; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB, |
| data->buf, BME680_PRESS_NUM_BYTES); |
| if (ret < 0) { |
| dev_err(dev, "failed to read pressure\n"); |
| return ret; |
| } |
| |
| value_press = FIELD_GET(BME680_MEAS_TRIM_MASK, |
| get_unaligned_be24(data->buf)); |
| if (value_press == BME680_MEAS_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(dev, "reading pressure skipped\n"); |
| return -EINVAL; |
| } |
| *adc_press = value_press; |
| |
| return 0; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896 |
| * |
| * Returns pressure measurement in Pa. Output value of "97356" represents |
| * 97356 Pa = 973.56 hPa. |
| */ |
| static u32 bme680_compensate_press(struct bme680_data *data, |
| u32 adc_press, s32 t_fine) |
| { |
| struct bme680_calib *calib = &data->bme680; |
| s32 var1, var2, var3, press_comp; |
| |
| var1 = (t_fine >> 1) - 64000; |
| var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2; |
| var2 = var2 + (var1 * calib->par_p5 << 1); |
| var2 = (var2 >> 2) + ((s32)calib->par_p4 << 16); |
| var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * |
| ((s32)calib->par_p3 << 5)) >> 3) + |
| ((calib->par_p2 * var1) >> 1); |
| var1 = var1 >> 18; |
| var1 = ((32768 + var1) * calib->par_p1) >> 15; |
| press_comp = 1048576 - adc_press; |
| press_comp = ((press_comp - (var2 >> 12)) * 3125); |
| |
| if (press_comp >= BME680_MAX_OVERFLOW_VAL) |
| press_comp = ((press_comp / (u32)var1) << 1); |
| else |
| press_comp = ((press_comp << 1) / (u32)var1); |
| |
| var1 = (calib->par_p9 * (((press_comp >> 3) * |
| (press_comp >> 3)) >> 13)) >> 12; |
| var2 = ((press_comp >> 2) * calib->par_p8) >> 13; |
| var3 = ((press_comp >> 8) * (press_comp >> 8) * |
| (press_comp >> 8) * calib->par_p10) >> 17; |
| |
| press_comp += (var1 + var2 + var3 + ((s32)calib->par_p7 << 7)) >> 4; |
| |
| return press_comp; |
| } |
| |
| static int bme680_read_humid_adc(struct bme680_data *data, u32 *adc_humidity) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| u32 value_humidity; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BME680_REG_HUMIDITY_MSB, |
| &data->be16, BME680_HUMID_NUM_BYTES); |
| if (ret < 0) { |
| dev_err(dev, "failed to read humidity\n"); |
| return ret; |
| } |
| |
| value_humidity = be16_to_cpu(data->be16); |
| if (value_humidity == BME680_MEAS_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(dev, "reading humidity skipped\n"); |
| return -EINVAL; |
| } |
| *adc_humidity = value_humidity; |
| |
| return 0; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937 |
| * |
| * Returns humidity measurement in percent, resolution is 0.001 percent. Output |
| * value of "43215" represents 43.215 %rH. |
| */ |
| static u32 bme680_compensate_humid(struct bme680_data *data, |
| u16 adc_humid, s32 t_fine) |
| { |
| struct bme680_calib *calib = &data->bme680; |
| s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum; |
| |
| temp_scaled = (t_fine * 5 + 128) >> 8; |
| var1 = (adc_humid - (((s32)calib->par_h1 * 16))) - |
| (((temp_scaled * calib->par_h3) / 100) >> 1); |
| var2 = (calib->par_h2 * |
| (((temp_scaled * calib->par_h4) / 100) + |
| (((temp_scaled * ((temp_scaled * calib->par_h5) / 100)) |
| >> 6) / 100) + (1 << 14))) >> 10; |
| var3 = var1 * var2; |
| var4 = (s32)calib->par_h6 << 7; |
| var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4; |
| var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; |
| var6 = (var4 * var5) >> 1; |
| calc_hum = (((var3 + var6) >> 10) * 1000) >> 12; |
| |
| calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */ |
| |
| return calc_hum; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973 |
| * |
| * Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms. |
| */ |
| static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc, |
| u8 gas_range) |
| { |
| struct bme680_calib *calib = &data->bme680; |
| s64 var1; |
| u64 var2; |
| s64 var3; |
| u32 calc_gas_res; |
| |
| /* Look up table for the possible gas range values */ |
| static const u32 lookupTable[16] = {2147483647u, 2147483647u, |
| 2147483647u, 2147483647u, 2147483647u, |
| 2126008810u, 2147483647u, 2130303777u, |
| 2147483647u, 2147483647u, 2143188679u, |
| 2136746228u, 2147483647u, 2126008810u, |
| 2147483647u, 2147483647u}; |
| |
| var1 = ((1340 + (5 * (s64) calib->range_sw_err)) * |
| ((s64) lookupTable[gas_range])) >> 16; |
| var2 = ((gas_res_adc << 15) - 16777216) + var1; |
| var3 = ((125000 << (15 - gas_range)) * var1) >> 9; |
| var3 += (var2 >> 1); |
| calc_gas_res = div64_s64(var3, (s64) var2); |
| |
| return calc_gas_res; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002 |
| */ |
| static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp) |
| { |
| struct bme680_calib *calib = &data->bme680; |
| s32 var1, var2, var3, var4, var5, heatr_res_x100; |
| u8 heatr_res; |
| |
| if (temp > 400) /* Cap temperature */ |
| temp = 400; |
| |
| var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256; |
| var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) * |
| temp * 5) / 100) |
| + 3276800) / 10); |
| var3 = var1 + (var2 / 2); |
| var4 = (var3 / (calib->res_heat_range + 4)); |
| var5 = 131 * calib->res_heat_val + 65536; |
| heatr_res_x100 = ((var4 / var5) - 250) * 34; |
| heatr_res = DIV_ROUND_CLOSEST(heatr_res_x100, 100); |
| |
| return heatr_res; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188 |
| */ |
| static u8 bme680_calc_heater_dur(u16 dur) |
| { |
| u8 durval, factor = 0; |
| |
| if (dur >= 0xfc0) { |
| durval = 0xff; /* Max duration */ |
| } else { |
| while (dur > 0x3F) { |
| dur = dur / 4; |
| factor += 1; |
| } |
| durval = dur + (factor * 64); |
| } |
| |
| return durval; |
| } |
| |
| static int bme680_set_mode(struct bme680_data *data, bool mode) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| |
| if (mode) { |
| ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, |
| BME680_MODE_MASK, BME680_MODE_FORCED); |
| if (ret < 0) |
| dev_err(dev, "failed to set forced mode\n"); |
| |
| } else { |
| ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, |
| BME680_MODE_MASK, BME680_MODE_SLEEP); |
| if (ret < 0) |
| dev_err(dev, "failed to set sleep mode\n"); |
| |
| } |
| |
| return ret; |
| } |
| |
| static u8 bme680_oversampling_to_reg(u8 val) |
| { |
| return ilog2(val) + 1; |
| } |
| |
| /* |
| * Taken from Bosch BME680 API: |
| * https://github.com/boschsensortec/BME68x_SensorAPI/blob/v4.4.8/bme68x.c#L490 |
| */ |
| static int bme680_wait_for_eoc(struct bme680_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| /* |
| * (Sum of oversampling ratios * time per oversampling) + |
| * TPH measurement + gas measurement + wait transition from forced mode |
| * + heater duration |
| */ |
| int wait_eoc_us = ((data->oversampling_temp + data->oversampling_press + |
| data->oversampling_humid) * 1936) + (477 * 4) + |
| (477 * 5) + 1000 + (data->heater_dur * 1000); |
| |
| usleep_range(wait_eoc_us, wait_eoc_us + 100); |
| |
| ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check); |
| if (ret) { |
| dev_err(dev, "failed to read measurement status register.\n"); |
| return ret; |
| } |
| if (data->check & BME680_MEAS_BIT) { |
| dev_err(dev, "Device measurement cycle incomplete.\n"); |
| return -EBUSY; |
| } |
| if (!(data->check & BME680_NEW_DATA_BIT)) { |
| dev_err(dev, "No new data available from the device.\n"); |
| return -ENODATA; |
| } |
| |
| return 0; |
| } |
| |
| static int bme680_chip_config(struct bme680_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| u8 osrs; |
| |
| osrs = FIELD_PREP( |
| BME680_OSRS_HUMIDITY_MASK, |
| bme680_oversampling_to_reg(data->oversampling_humid)); |
| /* |
| * Highly recommended to set oversampling of humidity before |
| * temperature/pressure oversampling. |
| */ |
| ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY, |
| BME680_OSRS_HUMIDITY_MASK, osrs); |
| if (ret < 0) { |
| dev_err(dev, "failed to write ctrl_hum register\n"); |
| return ret; |
| } |
| |
| /* IIR filter settings */ |
| ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG, |
| BME680_FILTER_MASK, |
| BME680_FILTER_COEFF_VAL); |
| if (ret < 0) { |
| dev_err(dev, "failed to write config register\n"); |
| return ret; |
| } |
| |
| osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK, |
| bme680_oversampling_to_reg(data->oversampling_temp)) | |
| FIELD_PREP(BME680_OSRS_PRESS_MASK, |
| bme680_oversampling_to_reg(data->oversampling_press)); |
| ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, |
| BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK, |
| osrs); |
| if (ret < 0) { |
| dev_err(dev, "failed to write ctrl_meas register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int bme680_gas_config(struct bme680_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| u8 heatr_res, heatr_dur; |
| |
| /* Go to sleep */ |
| ret = bme680_set_mode(data, false); |
| if (ret < 0) |
| return ret; |
| |
| heatr_res = bme680_calc_heater_res(data, data->heater_temp); |
| |
| /* set target heater temperature */ |
| ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res); |
| if (ret < 0) { |
| dev_err(dev, "failed to write res_heat_0 register\n"); |
| return ret; |
| } |
| |
| heatr_dur = bme680_calc_heater_dur(data->heater_dur); |
| |
| /* set target heating duration */ |
| ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur); |
| if (ret < 0) { |
| dev_err(dev, "failed to write gas_wait_0 register\n"); |
| return ret; |
| } |
| |
| /* Enable the gas sensor and select heater profile set-point 0 */ |
| ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1, |
| BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK, |
| FIELD_PREP(BME680_RUN_GAS_MASK, 1) | |
| FIELD_PREP(BME680_NB_CONV_MASK, 0)); |
| if (ret < 0) |
| dev_err(dev, "failed to write ctrl_gas_1 register\n"); |
| |
| return ret; |
| } |
| |
| static int bme680_read_temp(struct bme680_data *data, int *val) |
| { |
| int ret; |
| u32 adc_temp; |
| s16 comp_temp; |
| |
| ret = bme680_read_temp_adc(data, &adc_temp); |
| if (ret) |
| return ret; |
| |
| comp_temp = bme680_compensate_temp(data, adc_temp); |
| *val = comp_temp * 10; /* Centidegrees to millidegrees */ |
| return IIO_VAL_INT; |
| } |
| |
| static int bme680_read_press(struct bme680_data *data, |
| int *val, int *val2) |
| { |
| int ret; |
| u32 adc_press; |
| s32 t_fine; |
| |
| ret = bme680_get_t_fine(data, &t_fine); |
| if (ret) |
| return ret; |
| |
| ret = bme680_read_press_adc(data, &adc_press); |
| if (ret) |
| return ret; |
| |
| *val = bme680_compensate_press(data, adc_press, t_fine); |
| *val2 = 1000; |
| return IIO_VAL_FRACTIONAL; |
| } |
| |
| static int bme680_read_humid(struct bme680_data *data, |
| int *val, int *val2) |
| { |
| int ret; |
| u32 adc_humidity, comp_humidity; |
| s32 t_fine; |
| |
| ret = bme680_get_t_fine(data, &t_fine); |
| if (ret) |
| return ret; |
| |
| ret = bme680_read_humid_adc(data, &adc_humidity); |
| if (ret) |
| return ret; |
| |
| comp_humidity = bme680_compensate_humid(data, adc_humidity, t_fine); |
| |
| *val = comp_humidity; |
| *val2 = 1000; |
| return IIO_VAL_FRACTIONAL; |
| } |
| |
| static int bme680_read_gas(struct bme680_data *data, |
| int *val) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| u16 adc_gas_res, gas_regs_val; |
| u8 gas_range; |
| |
| ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check); |
| if (data->check & BME680_GAS_MEAS_BIT) { |
| dev_err(dev, "gas measurement incomplete\n"); |
| return -EBUSY; |
| } |
| |
| ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB, |
| &data->be16, BME680_GAS_NUM_BYTES); |
| if (ret < 0) { |
| dev_err(dev, "failed to read gas resistance\n"); |
| return ret; |
| } |
| |
| gas_regs_val = be16_to_cpu(data->be16); |
| adc_gas_res = FIELD_GET(BME680_ADC_GAS_RES, gas_regs_val); |
| |
| /* |
| * occurs if either the gas heating duration was insuffient |
| * to reach the target heater temperature or the target |
| * heater temperature was too high for the heater sink to |
| * reach. |
| */ |
| if ((gas_regs_val & BME680_GAS_STAB_BIT) == 0) { |
| dev_err(dev, "heater failed to reach the target temperature\n"); |
| return -EINVAL; |
| } |
| |
| gas_range = FIELD_GET(BME680_GAS_RANGE_MASK, gas_regs_val); |
| |
| *val = bme680_compensate_gas(data, adc_gas_res, gas_range); |
| return IIO_VAL_INT; |
| } |
| |
| static int bme680_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct bme680_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| guard(mutex)(&data->lock); |
| |
| /* set forced mode to trigger measurement */ |
| ret = bme680_set_mode(data, true); |
| if (ret < 0) |
| return ret; |
| |
| ret = bme680_wait_for_eoc(data); |
| if (ret) |
| return ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_PROCESSED: |
| switch (chan->type) { |
| case IIO_TEMP: |
| return bme680_read_temp(data, val); |
| case IIO_PRESSURE: |
| return bme680_read_press(data, val, val2); |
| case IIO_HUMIDITYRELATIVE: |
| return bme680_read_humid(data, val, val2); |
| case IIO_RESISTANCE: |
| return bme680_read_gas(data, val); |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| switch (chan->type) { |
| case IIO_TEMP: |
| *val = data->oversampling_temp; |
| return IIO_VAL_INT; |
| case IIO_PRESSURE: |
| *val = data->oversampling_press; |
| return IIO_VAL_INT; |
| case IIO_HUMIDITYRELATIVE: |
| *val = data->oversampling_humid; |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static bool bme680_is_valid_oversampling(int rate) |
| { |
| return (rate > 0 && rate <= 16 && is_power_of_2(rate)); |
| } |
| |
| static int bme680_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct bme680_data *data = iio_priv(indio_dev); |
| |
| guard(mutex)(&data->lock); |
| |
| if (val2 != 0) |
| return -EINVAL; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| { |
| if (!bme680_is_valid_oversampling(val)) |
| return -EINVAL; |
| |
| switch (chan->type) { |
| case IIO_TEMP: |
| data->oversampling_temp = val; |
| break; |
| case IIO_PRESSURE: |
| data->oversampling_press = val; |
| break; |
| case IIO_HUMIDITYRELATIVE: |
| data->oversampling_humid = val; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return bme680_chip_config(data); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16"; |
| |
| static IIO_CONST_ATTR(oversampling_ratio_available, |
| bme680_oversampling_ratio_show); |
| |
| static struct attribute *bme680_attributes[] = { |
| &iio_const_attr_oversampling_ratio_available.dev_attr.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group bme680_attribute_group = { |
| .attrs = bme680_attributes, |
| }; |
| |
| static const struct iio_info bme680_info = { |
| .read_raw = &bme680_read_raw, |
| .write_raw = &bme680_write_raw, |
| .attrs = &bme680_attribute_group, |
| }; |
| |
| int bme680_core_probe(struct device *dev, struct regmap *regmap, |
| const char *name) |
| { |
| struct iio_dev *indio_dev; |
| struct bme680_data *data; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| mutex_init(&data->lock); |
| dev_set_drvdata(dev, indio_dev); |
| data->regmap = regmap; |
| indio_dev->name = name; |
| indio_dev->channels = bme680_channels; |
| indio_dev->num_channels = ARRAY_SIZE(bme680_channels); |
| indio_dev->info = &bme680_info; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| |
| /* default values for the sensor */ |
| data->oversampling_humid = 2; /* 2X oversampling rate */ |
| data->oversampling_press = 4; /* 4X oversampling rate */ |
| data->oversampling_temp = 8; /* 8X oversampling rate */ |
| data->heater_temp = 320; /* degree Celsius */ |
| data->heater_dur = 150; /* milliseconds */ |
| |
| ret = regmap_write(regmap, BME680_REG_SOFT_RESET, |
| BME680_CMD_SOFTRESET); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, "Failed to reset chip\n"); |
| |
| usleep_range(BME680_STARTUP_TIME_US, BME680_STARTUP_TIME_US + 1000); |
| |
| ret = regmap_read(regmap, BME680_REG_CHIP_ID, &data->check); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, "Error reading chip ID\n"); |
| |
| if (data->check != BME680_CHIP_ID_VAL) { |
| dev_err(dev, "Wrong chip ID, got %x expected %x\n", |
| data->check, BME680_CHIP_ID_VAL); |
| return -ENODEV; |
| } |
| |
| ret = bme680_read_calib(data, &data->bme680); |
| if (ret < 0) { |
| return dev_err_probe(dev, ret, |
| "failed to read calibration coefficients at probe\n"); |
| } |
| |
| ret = bme680_chip_config(data); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, |
| "failed to set chip_config data\n"); |
| |
| ret = bme680_gas_config(data); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, |
| "failed to set gas config data\n"); |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| EXPORT_SYMBOL_NS_GPL(bme680_core_probe, IIO_BME680); |
| |
| MODULE_AUTHOR("Himanshu Jha <himanshujha199640@gmail.com>"); |
| MODULE_DESCRIPTION("Bosch BME680 Driver"); |
| MODULE_LICENSE("GPL v2"); |