blob: 97e0ee515fc5fe23f22524a4d159959b6d0b54c5 [file] [log] [blame]
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// VAES and VPCLMULQDQ optimized AES-GCM for x86_64
//
// Copyright 2024 Google LLC
//
// Author: Eric Biggers <ebiggers@google.com>
//
//------------------------------------------------------------------------------
//
// This file is dual-licensed, meaning that you can use it under your choice of
// either of the following two licenses:
//
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// or
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//
// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that
// support VAES (vector AES), VPCLMULQDQ (vector carryless multiplication), and
// either AVX512 or AVX10. Some of the functions, notably the encryption and
// decryption update functions which are the most performance-critical, are
// provided in two variants generated from a macro: one using 256-bit vectors
// (suffix: vaes_avx10_256) and one using 512-bit vectors (vaes_avx10_512). The
// other, "shared" functions (vaes_avx10) use at most 256-bit vectors.
//
// The functions that use 512-bit vectors are intended for CPUs that support
// 512-bit vectors *and* where using them doesn't cause significant
// downclocking. They require the following CPU features:
//
// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/512)
//
// The other functions require the following CPU features:
//
// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/256)
//
// All functions use the "System V" ABI. The Windows ABI is not supported.
//
// Note that we use "avx10" in the names of the functions as a shorthand to
// really mean "AVX10 or a certain set of AVX512 features". Due to Intel's
// introduction of AVX512 and then its replacement by AVX10, there doesn't seem
// to be a simple way to name things that makes sense on all CPUs.
//
// Note that the macros that support both 256-bit and 512-bit vectors could
// fairly easily be changed to support 128-bit too. However, this would *not*
// be sufficient to allow the code to run on CPUs without AVX512 or AVX10,
// because the code heavily uses several features of these extensions other than
// the vector length: the increase in the number of SIMD registers from 16 to
// 32, masking support, and new instructions such as vpternlogd (which can do a
// three-argument XOR). These features are very useful for AES-GCM.
#include <linux/linkage.h>
.section .rodata
.p2align 6
// A shuffle mask that reflects the bytes of 16-byte blocks
.Lbswap_mask:
.octa 0x000102030405060708090a0b0c0d0e0f
// This is the GHASH reducing polynomial without its constant term, i.e.
// x^128 + x^7 + x^2 + x, represented using the backwards mapping
// between bits and polynomial coefficients.
//
// Alternatively, it can be interpreted as the naturally-ordered
// representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
// "reversed" GHASH reducing polynomial without its x^128 term.
.Lgfpoly:
.octa 0xc2000000000000000000000000000001
// Same as above, but with the (1 << 64) bit set.
.Lgfpoly_and_internal_carrybit:
.octa 0xc2000000000000010000000000000001
// The below constants are used for incrementing the counter blocks.
// ctr_pattern points to the four 128-bit values [0, 1, 2, 3].
// inc_2blocks and inc_4blocks point to the single 128-bit values 2 and
// 4. Note that the same '2' is reused in ctr_pattern and inc_2blocks.
.Lctr_pattern:
.octa 0
.octa 1
.Linc_2blocks:
.octa 2
.octa 3
.Linc_4blocks:
.octa 4
// Number of powers of the hash key stored in the key struct. The powers are
// stored from highest (H^NUM_H_POWERS) to lowest (H^1).
#define NUM_H_POWERS 16
// Offset to AES key length (in bytes) in the key struct
#define OFFSETOF_AESKEYLEN 480
// Offset to start of hash key powers array in the key struct
#define OFFSETOF_H_POWERS 512
// Offset to end of hash key powers array in the key struct.
//
// This is immediately followed by three zeroized padding blocks, which are
// included so that partial vectors can be handled more easily. E.g. if VL=64
// and two blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most
// padding blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
.text
// Set the vector length in bytes. This sets the VL variable and defines
// register aliases V0-V31 that map to the ymm or zmm registers.
.macro _set_veclen vl
.set VL, \vl
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
.if VL == 32
.set V\i, %ymm\i
.elseif VL == 64
.set V\i, %zmm\i
.else
.error "Unsupported vector length"
.endif
.endr
.endm
// The _ghash_mul_step macro does one step of GHASH multiplication of the
// 128-bit lanes of \a by the corresponding 128-bit lanes of \b and storing the
// reduced products in \dst. \t0, \t1, and \t2 are temporary registers of the
// same size as \a and \b. To complete all steps, this must invoked with \i=0
// through \i=9. The division into steps allows users of this macro to
// optionally interleave the computation with other instructions. Users of this
// macro must preserve the parameter registers across steps.
//
// The multiplications are done in GHASH's representation of the finite field
// GF(2^128). Elements of GF(2^128) are represented as binary polynomials
// (i.e. polynomials whose coefficients are bits) modulo a reducing polynomial
// G. The GCM specification uses G = x^128 + x^7 + x^2 + x + 1. Addition is
// just XOR, while multiplication is more complex and has two parts: (a) do
// carryless multiplication of two 128-bit input polynomials to get a 256-bit
// intermediate product polynomial, and (b) reduce the intermediate product to
// 128 bits by adding multiples of G that cancel out terms in it. (Adding
// multiples of G doesn't change which field element the polynomial represents.)
//
// Unfortunately, the GCM specification maps bits to/from polynomial
// coefficients backwards from the natural order. In each byte it specifies the
// highest bit to be the lowest order polynomial coefficient, *not* the highest!
// This makes it nontrivial to work with the GHASH polynomials. We could
// reflect the bits, but x86 doesn't have an instruction that does that.
//
// Instead, we operate on the values without bit-reflecting them. This *mostly*
// just works, since XOR and carryless multiplication are symmetric with respect
// to bit order, but it has some consequences. First, due to GHASH's byte
// order, by skipping bit reflection, *byte* reflection becomes necessary to
// give the polynomial terms a consistent order. E.g., considering an N-bit
// value interpreted using the G = x^128 + x^7 + x^2 + x + 1 convention, bits 0
// through N-1 of the byte-reflected value represent the coefficients of x^(N-1)
// through x^0, whereas bits 0 through N-1 of the non-byte-reflected value
// represent x^7...x^0, x^15...x^8, ..., x^(N-1)...x^(N-8) which can't be worked
// with. Fortunately, x86's vpshufb instruction can do byte reflection.
//
// Second, forgoing the bit reflection causes an extra multiple of x (still
// using the G = x^128 + x^7 + x^2 + x + 1 convention) to be introduced by each
// multiplication. This is because an M-bit by N-bit carryless multiplication
// really produces a (M+N-1)-bit product, but in practice it's zero-extended to
// M+N bits. In the G = x^128 + x^7 + x^2 + x + 1 convention, which maps bits
// to polynomial coefficients backwards, this zero-extension actually changes
// the product by introducing an extra factor of x. Therefore, users of this
// macro must ensure that one of the inputs has an extra factor of x^-1, i.e.
// the multiplicative inverse of x, to cancel out the extra x.
//
// Third, the backwards coefficients convention is just confusing to work with,
// since it makes "low" and "high" in the polynomial math mean the opposite of
// their normal meaning in computer programming. This can be solved by using an
// alternative interpretation: the polynomial coefficients are understood to be
// in the natural order, and the multiplication is actually \a * \b * x^-128 mod
// x^128 + x^127 + x^126 + x^121 + 1. This doesn't change the inputs, outputs,
// or the implementation at all; it just changes the mathematical interpretation
// of what each instruction is doing. Starting from here, we'll use this
// alternative interpretation, as it's easier to understand the code that way.
//
// Moving onto the implementation, the vpclmulqdq instruction does 64 x 64 =>
// 128-bit carryless multiplication, so we break the 128 x 128 multiplication
// into parts as follows (the _L and _H suffixes denote low and high 64 bits):
//
// LO = a_L * b_L
// MI = (a_L * b_H) + (a_H * b_L)
// HI = a_H * b_H
//
// The 256-bit product is x^128*HI + x^64*MI + LO. LO, MI, and HI are 128-bit.
// Note that MI "overlaps" with LO and HI. We don't consolidate MI into LO and
// HI right away, since the way the reduction works makes that unnecessary.
//
// For the reduction, we cancel out the low 128 bits by adding multiples of G =
// x^128 + x^127 + x^126 + x^121 + 1. This is done by two iterations, each of
// which cancels out the next lowest 64 bits. Consider a value x^64*A + B,
// where A and B are 128-bit. Adding B_L*G to that value gives:
//
// x^64*A + B + B_L*G
// = x^64*A + x^64*B_H + B_L + B_L*(x^128 + x^127 + x^126 + x^121 + 1)
// = x^64*A + x^64*B_H + B_L + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L
// = x^64*A + x^64*B_H + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L + B_L
// = x^64*(A + B_H + x^64*B_L + B_L*(x^63 + x^62 + x^57))
//
// So: if we sum A, B with its halves swapped, and the low half of B times x^63
// + x^62 + x^57, we get a 128-bit value C where x^64*C is congruent to the
// original value x^64*A + B. I.e., the low 64 bits got canceled out.
//
// We just need to apply this twice: first to fold LO into MI, and second to
// fold the updated MI into HI.
//
// The needed three-argument XORs are done using the vpternlogd instruction with
// immediate 0x96, since this is faster than two vpxord instructions.
//
// A potential optimization, assuming that b is fixed per-key (if a is fixed
// per-key it would work the other way around), is to use one iteration of the
// reduction described above to precompute a value c such that x^64*c = b mod G,
// and then multiply a_L by c (and implicitly by x^64) instead of by b:
//
// MI = (a_L * c_L) + (a_H * b_L)
// HI = (a_L * c_H) + (a_H * b_H)
//
// This would eliminate the LO part of the intermediate product, which would
// eliminate the need to fold LO into MI. This would save two instructions,
// including a vpclmulqdq. However, we currently don't use this optimization
// because it would require twice as many per-key precomputed values.
//
// Using Karatsuba multiplication instead of "schoolbook" multiplication
// similarly would save a vpclmulqdq but does not seem to be worth it.
.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
.if \i == 0
vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
.elseif \i == 1
vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
.elseif \i == 2
vpxord \t2, \t1, \t1 // MI = MI_0 + MI_1
.elseif \i == 3
vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
.elseif \i == 4
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
.elseif \i == 5
vpternlogd $0x96, \t2, \t0, \t1 // Fold LO into MI
.elseif \i == 6
vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
.elseif \i == 7
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
.elseif \i == 8
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
.elseif \i == 9
vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
.endif
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
// the reduced products in \dst. See _ghash_mul_step for full explanation.
.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
.endr
.endm
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
// *unreduced* products to \lo, \mi, and \hi.
.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0, t1, t2, t3
vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
vpclmulqdq $0x01, \a, \b, \t1 // a_L * b_H
vpclmulqdq $0x10, \a, \b, \t2 // a_H * b_L
vpclmulqdq $0x11, \a, \b, \t3 // a_H * b_H
vpxord \t0, \lo, \lo
vpternlogd $0x96, \t2, \t1, \mi
vpxord \t3, \hi, \hi
.endm
// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
.macro _ghash_reduce lo, mi, hi, gfpoly, t0
vpclmulqdq $0x01, \lo, \gfpoly, \t0
vpshufd $0x4e, \lo, \lo
vpternlogd $0x96, \t0, \lo, \mi
vpclmulqdq $0x01, \mi, \gfpoly, \t0
vpshufd $0x4e, \mi, \mi
vpternlogd $0x96, \t0, \mi, \hi
.endm
// void aes_gcm_precompute_##suffix(struct aes_gcm_key_avx10 *key);
//
// Given the expanded AES key |key->aes_key|, this function derives the GHASH
// subkey and initializes |key->ghash_key_powers| with powers of it.
//
// The number of key powers initialized is NUM_H_POWERS, and they are stored in
// the order H^NUM_H_POWERS to H^1. The zeroized padding blocks after the key
// powers themselves are also initialized.
//
// This macro supports both VL=32 and VL=64. _set_veclen must have been invoked
// with the desired length. In the VL=32 case, the function computes twice as
// many key powers than are actually used by the VL=32 GCM update functions.
// This is done to keep the key format the same regardless of vector length.
.macro _aes_gcm_precompute
// Function arguments
.set KEY, %rdi
// Additional local variables. V0-V2 and %rax are used as temporaries.
.set POWERS_PTR, %rsi
.set RNDKEYLAST_PTR, %rdx
.set H_CUR, V3
.set H_CUR_YMM, %ymm3
.set H_CUR_XMM, %xmm3
.set H_INC, V4
.set H_INC_YMM, %ymm4
.set H_INC_XMM, %xmm4
.set GFPOLY, V5
.set GFPOLY_YMM, %ymm5
.set GFPOLY_XMM, %xmm5
// Get pointer to lowest set of key powers (located at end of array).
lea OFFSETOFEND_H_POWERS-VL(KEY), POWERS_PTR
// Encrypt an all-zeroes block to get the raw hash subkey.
movl OFFSETOF_AESKEYLEN(KEY), %eax
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
vmovdqu (KEY), %xmm0 // Zero-th round key XOR all-zeroes block
add $16, KEY
1:
vaesenc (KEY), %xmm0, %xmm0
add $16, KEY
cmp KEY, RNDKEYLAST_PTR
jne 1b
vaesenclast (RNDKEYLAST_PTR), %xmm0, %xmm0
// Reflect the bytes of the raw hash subkey.
vpshufb .Lbswap_mask(%rip), %xmm0, H_CUR_XMM
// Zeroize the padding blocks.
vpxor %xmm0, %xmm0, %xmm0
vmovdqu %ymm0, VL(POWERS_PTR)
vmovdqu %xmm0, VL+2*16(POWERS_PTR)
// Finish preprocessing the first key power, H^1. Since this GHASH
// implementation operates directly on values with the backwards bit
// order specified by the GCM standard, it's necessary to preprocess the
// raw key as follows. First, reflect its bytes. Second, multiply it
// by x^-1 mod x^128 + x^7 + x^2 + x + 1 (if using the backwards
// interpretation of polynomial coefficients), which can also be
// interpreted as multiplication by x mod x^128 + x^127 + x^126 + x^121
// + 1 using the alternative, natural interpretation of polynomial
// coefficients. For details, see the comment above _ghash_mul_step.
//
// Either way, for the multiplication the concrete operation performed
// is a left shift of the 128-bit value by 1 bit, then an XOR with (0xc2
// << 120) | 1 if a 1 bit was carried out. However, there's no 128-bit
// wide shift instruction, so instead double each of the two 64-bit
// halves and incorporate the internal carry bit into the value XOR'd.
vpshufd $0xd3, H_CUR_XMM, %xmm0
vpsrad $31, %xmm0, %xmm0
vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
vpand .Lgfpoly_and_internal_carrybit(%rip), %xmm0, %xmm0
vpxor %xmm0, H_CUR_XMM, H_CUR_XMM
// Load the gfpoly constant.
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
// Square H^1 to get H^2.
//
// Note that as with H^1, all higher key powers also need an extra
// factor of x^-1 (or x using the natural interpretation). Nothing
// special needs to be done to make this happen, though: H^1 * H^1 would
// end up with two factors of x^-1, but the multiplication consumes one.
// So the product H^2 ends up with the desired one factor of x^-1.
_ghash_mul H_CUR_XMM, H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, \
%xmm0, %xmm1, %xmm2
// Create H_CUR_YMM = [H^2, H^1] and H_INC_YMM = [H^2, H^2].
vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM
vinserti128 $1, H_INC_XMM, H_INC_YMM, H_INC_YMM
.if VL == 64
// Create H_CUR = [H^4, H^3, H^2, H^1] and H_INC = [H^4, H^4, H^4, H^4].
_ghash_mul H_INC_YMM, H_CUR_YMM, H_INC_YMM, GFPOLY_YMM, \
%ymm0, %ymm1, %ymm2
vinserti64x4 $1, H_CUR_YMM, H_INC, H_CUR
vshufi64x2 $0, H_INC, H_INC, H_INC
.endif
// Store the lowest set of key powers.
vmovdqu8 H_CUR, (POWERS_PTR)
// Compute and store the remaining key powers. With VL=32, repeatedly
// multiply [H^(i+1), H^i] by [H^2, H^2] to get [H^(i+3), H^(i+2)].
// With VL=64, repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
// [H^4, H^4, H^4, H^4] to get [H^(i+7), H^(i+6), H^(i+5), H^(i+4)].
mov $(NUM_H_POWERS*16/VL) - 1, %eax
.Lprecompute_next\@:
sub $VL, POWERS_PTR
_ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, V0, V1, V2
vmovdqu8 H_CUR, (POWERS_PTR)
dec %eax
jnz .Lprecompute_next\@
vzeroupper // This is needed after using ymm or zmm registers.
RET
.endm
// XOR together the 128-bit lanes of \src (whose low lane is \src_xmm) and store
// the result in \dst_xmm. This implicitly zeroizes the other lanes of dst.
.macro _horizontal_xor src, src_xmm, dst_xmm, t0_xmm, t1_xmm, t2_xmm
vextracti32x4 $1, \src, \t0_xmm
.if VL == 32
vpxord \t0_xmm, \src_xmm, \dst_xmm
.elseif VL == 64
vextracti32x4 $2, \src, \t1_xmm
vextracti32x4 $3, \src, \t2_xmm
vpxord \t0_xmm, \src_xmm, \dst_xmm
vpternlogd $0x96, \t1_xmm, \t2_xmm, \dst_xmm
.else
.error "Unsupported vector length"
.endif
.endm
// Do one step of the GHASH update of the data blocks given in the vector
// registers GHASHDATA[0-3]. \i specifies the step to do, 0 through 9. The
// division into steps allows users of this macro to optionally interleave the
// computation with other instructions. This macro uses the vector register
// GHASH_ACC as input/output; GHASHDATA[0-3] as inputs that are clobbered;
// H_POW[4-1], GFPOLY, and BSWAP_MASK as inputs that aren't clobbered; and
// GHASHTMP[0-2] as temporaries. This macro handles the byte-reflection of the
// data blocks. The parameter registers must be preserved across steps.
//
// The GHASH update does: GHASH_ACC = H_POW4*(GHASHDATA0 + GHASH_ACC) +
// H_POW3*GHASHDATA1 + H_POW2*GHASHDATA2 + H_POW1*GHASHDATA3, where the
// operations are vectorized operations on vectors of 16-byte blocks. E.g.,
// with VL=32 there are 2 blocks per vector and the vectorized terms correspond
// to the following non-vectorized terms:
//
// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^8*(blk0 + GHASH_ACC_XMM) and H^7*(blk1 + 0)
// H_POW3*GHASHDATA1 => H^6*blk2 and H^5*blk3
// H_POW2*GHASHDATA2 => H^4*blk4 and H^3*blk5
// H_POW1*GHASHDATA3 => H^2*blk6 and H^1*blk7
//
// With VL=64, we use 4 blocks/vector, H^16 through H^1, and blk0 through blk15.
//
// More concretely, this code does:
// - Do vectorized "schoolbook" multiplications to compute the intermediate
// 256-bit product of each block and its corresponding hash key power.
// There are 4*VL/16 of these intermediate products.
// - Sum (XOR) the intermediate 256-bit products across vectors. This leaves
// VL/16 256-bit intermediate values.
// - Do a vectorized reduction of these 256-bit intermediate values to
// 128-bits each. This leaves VL/16 128-bit intermediate values.
// - Sum (XOR) these values and store the 128-bit result in GHASH_ACC_XMM.
//
// See _ghash_mul_step for the full explanation of the operations performed for
// each individual finite field multiplication and reduction.
.macro _ghash_step_4x i
.if \i == 0
vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
vpxord GHASH_ACC, GHASHDATA0, GHASHDATA0
vpshufb BSWAP_MASK, GHASHDATA1, GHASHDATA1
vpshufb BSWAP_MASK, GHASHDATA2, GHASHDATA2
.elseif \i == 1
vpshufb BSWAP_MASK, GHASHDATA3, GHASHDATA3
vpclmulqdq $0x00, H_POW4, GHASHDATA0, GHASH_ACC // LO_0
vpclmulqdq $0x00, H_POW3, GHASHDATA1, GHASHTMP0 // LO_1
vpclmulqdq $0x00, H_POW2, GHASHDATA2, GHASHTMP1 // LO_2
.elseif \i == 2
vpxord GHASHTMP0, GHASH_ACC, GHASH_ACC // sum(LO_{1,0})
vpclmulqdq $0x00, H_POW1, GHASHDATA3, GHASHTMP2 // LO_3
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASH_ACC // LO = sum(LO_{3,2,1,0})
vpclmulqdq $0x01, H_POW4, GHASHDATA0, GHASHTMP0 // MI_0
.elseif \i == 3
vpclmulqdq $0x01, H_POW3, GHASHDATA1, GHASHTMP1 // MI_1
vpclmulqdq $0x01, H_POW2, GHASHDATA2, GHASHTMP2 // MI_2
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{2,1,0})
vpclmulqdq $0x01, H_POW1, GHASHDATA3, GHASHTMP1 // MI_3
.elseif \i == 4
vpclmulqdq $0x10, H_POW4, GHASHDATA0, GHASHTMP2 // MI_4
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{4,3,2,1,0})
vpclmulqdq $0x10, H_POW3, GHASHDATA1, GHASHTMP1 // MI_5
vpclmulqdq $0x10, H_POW2, GHASHDATA2, GHASHTMP2 // MI_6
.elseif \i == 5
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{6,5,4,3,2,1,0})
vpclmulqdq $0x01, GHASH_ACC, GFPOLY, GHASHTMP2 // LO_L*(x^63 + x^62 + x^57)
vpclmulqdq $0x10, H_POW1, GHASHDATA3, GHASHTMP1 // MI_7
vpxord GHASHTMP1, GHASHTMP0, GHASHTMP0 // MI = sum(MI_{7,6,5,4,3,2,1,0})
.elseif \i == 6
vpshufd $0x4e, GHASH_ACC, GHASH_ACC // Swap halves of LO
vpclmulqdq $0x11, H_POW4, GHASHDATA0, GHASHDATA0 // HI_0
vpclmulqdq $0x11, H_POW3, GHASHDATA1, GHASHDATA1 // HI_1
vpclmulqdq $0x11, H_POW2, GHASHDATA2, GHASHDATA2 // HI_2
.elseif \i == 7
vpternlogd $0x96, GHASHTMP2, GHASH_ACC, GHASHTMP0 // Fold LO into MI
vpclmulqdq $0x11, H_POW1, GHASHDATA3, GHASHDATA3 // HI_3
vpternlogd $0x96, GHASHDATA2, GHASHDATA1, GHASHDATA0 // sum(HI_{2,1,0})
vpclmulqdq $0x01, GHASHTMP0, GFPOLY, GHASHTMP1 // MI_L*(x^63 + x^62 + x^57)
.elseif \i == 8
vpxord GHASHDATA3, GHASHDATA0, GHASH_ACC // HI = sum(HI_{3,2,1,0})
vpshufd $0x4e, GHASHTMP0, GHASHTMP0 // Swap halves of MI
vpternlogd $0x96, GHASHTMP1, GHASHTMP0, GHASH_ACC // Fold MI into HI
.elseif \i == 9
_horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
.endif
.endm
// Do one non-last round of AES encryption on the counter blocks in V0-V3 using
// the round key that has been broadcast to all 128-bit lanes of \round_key.
.macro _vaesenc_4x round_key
vaesenc \round_key, V0, V0
vaesenc \round_key, V1, V1
vaesenc \round_key, V2, V2
vaesenc \round_key, V3, V3
.endm
// Start the AES encryption of four vectors of counter blocks.
.macro _ctr_begin_4x
// Increment LE_CTR four times to generate four vectors of little-endian
// counter blocks, swap each to big-endian, and store them in V0-V3.
vpshufb BSWAP_MASK, LE_CTR, V0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V1
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V2
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpshufb BSWAP_MASK, LE_CTR, V3
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
// AES "round zero": XOR in the zero-th round key.
vpxord RNDKEY0, V0, V0
vpxord RNDKEY0, V1, V1
vpxord RNDKEY0, V2, V2
vpxord RNDKEY0, V3, V3
.endm
// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_avx10 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// const u8 *src, u8 *dst, int datalen);
//
// This macro generates a GCM encryption or decryption update function with the
// above prototype (with \enc selecting which one). This macro supports both
// VL=32 and VL=64. _set_veclen must have been invoked with the desired length.
//
// This function computes the next portion of the CTR keystream, XOR's it with
// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the
// next |datalen| ciphertext bytes.
//
// |datalen| must be a multiple of 16, except on the last call where it can be
// any length. The caller must do any buffering needed to ensure this. Both
// in-place and out-of-place en/decryption are supported.
//
// |le_ctr| must give the current counter in little-endian format. For a new
// message, the low word of the counter must be 2. This function loads the
// counter from |le_ctr| and increments the loaded counter as needed, but it
// does *not* store the updated counter back to |le_ctr|. The caller must
// update |le_ctr| if any more data segments follow. Internally, only the low
// 32-bit word of the counter is incremented, following the GCM standard.
.macro _aes_gcm_update enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set GHASH_ACC_PTR, %rdx
.set SRC, %rcx
.set DST, %r8
.set DATALEN, %r9d
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
// Additional local variables
// %rax and %k1 are used as temporary registers. LE_CTR_PTR is also
// available as a temporary register after the counter is loaded.
// AES key length in bytes
.set AESKEYLEN, %r10d
.set AESKEYLEN64, %r10
// Pointer to the last AES round key for the chosen AES variant
.set RNDKEYLAST_PTR, %r11
// In the main loop, V0-V3 are used as AES input and output. Elsewhere
// they are used as temporary registers.
// GHASHDATA[0-3] hold the ciphertext blocks and GHASH input data.
.set GHASHDATA0, V4
.set GHASHDATA0_XMM, %xmm4
.set GHASHDATA1, V5
.set GHASHDATA1_XMM, %xmm5
.set GHASHDATA2, V6
.set GHASHDATA2_XMM, %xmm6
.set GHASHDATA3, V7
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
// using vpshufb, copied to all 128-bit lanes.
.set BSWAP_MASK, V8
// RNDKEY temporarily holds the next AES round key.
.set RNDKEY, V9
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
// more than one lane may be used, and they need to be XOR'd together.
.set GHASH_ACC, V10
.set GHASH_ACC_XMM, %xmm10
// LE_CTR_INC is the vector of 32-bit words that need to be added to a
// vector of little-endian counter blocks to advance it forwards.
.set LE_CTR_INC, V11
// LE_CTR contains the next set of little-endian counter blocks.
.set LE_CTR, V12
// RNDKEY0, RNDKEYLAST, and RNDKEY_M[9-5] contain cached AES round keys,
// copied to all 128-bit lanes. RNDKEY0 is the zero-th round key,
// RNDKEYLAST the last, and RNDKEY_M\i the one \i-th from the last.
.set RNDKEY0, V13
.set RNDKEYLAST, V14
.set RNDKEY_M9, V15
.set RNDKEY_M8, V16
.set RNDKEY_M7, V17
.set RNDKEY_M6, V18
.set RNDKEY_M5, V19
// RNDKEYLAST[0-3] temporarily store the last AES round key XOR'd with
// the corresponding block of source data. This is useful because
// vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a), and key ^ b can
// be computed in parallel with the AES rounds.
.set RNDKEYLAST0, V20
.set RNDKEYLAST1, V21
.set RNDKEYLAST2, V22
.set RNDKEYLAST3, V23
// GHASHTMP[0-2] are temporary variables used by _ghash_step_4x. These
// cannot coincide with anything used for AES encryption, since for
// performance reasons GHASH and AES encryption are interleaved.
.set GHASHTMP0, V24
.set GHASHTMP1, V25
.set GHASHTMP2, V26
// H_POW[4-1] contain the powers of the hash key H^(4*VL/16)...H^1. The
// descending numbering reflects the order of the key powers.
.set H_POW4, V27
.set H_POW3, V28
.set H_POW2, V29
.set H_POW1, V30
// GFPOLY contains the .Lgfpoly constant, copied to all 128-bit lanes.
.set GFPOLY, V31
// Load some constants.
vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
// Load the GHASH accumulator and the starting counter.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
vbroadcasti32x4 (LE_CTR_PTR), LE_CTR
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Make RNDKEYLAST_PTR point to the last AES round key. This is the
// round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
// respectively. Then load the zero-th and last round keys.
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
vbroadcasti32x4 (KEY), RNDKEY0
vbroadcasti32x4 (RNDKEYLAST_PTR), RNDKEYLAST
// Finish initializing LE_CTR by adding [0, 1, ...] to its low words.
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
// Initialize LE_CTR_INC to contain VL/16 in all 128-bit lanes.
.if VL == 32
vbroadcasti32x4 .Linc_2blocks(%rip), LE_CTR_INC
.elseif VL == 64
vbroadcasti32x4 .Linc_4blocks(%rip), LE_CTR_INC
.else
.error "Unsupported vector length"
.endif
// If there are at least 4*VL bytes of data, then continue into the loop
// that processes 4*VL bytes of data at a time. Otherwise skip it.
//
// Pre-subtracting 4*VL from DATALEN saves an instruction from the main
// loop and also ensures that at least one write always occurs to
// DATALEN, zero-extending it and allowing DATALEN64 to be used later.
sub $4*VL, DATALEN
jl .Lcrypt_loop_4x_done\@
// Load powers of the hash key.
vmovdqu8 OFFSETOFEND_H_POWERS-4*VL(KEY), H_POW4
vmovdqu8 OFFSETOFEND_H_POWERS-3*VL(KEY), H_POW3
vmovdqu8 OFFSETOFEND_H_POWERS-2*VL(KEY), H_POW2
vmovdqu8 OFFSETOFEND_H_POWERS-1*VL(KEY), H_POW1
// Main loop: en/decrypt and hash 4 vectors at a time.
//
// When possible, interleave the AES encryption of the counter blocks
// with the GHASH update of the ciphertext blocks. This improves
// performance on many CPUs because the execution ports used by the VAES
// instructions often differ from those used by vpclmulqdq and other
// instructions used in GHASH. For example, many Intel CPUs dispatch
// vaesenc to ports 0 and 1 and vpclmulqdq to port 5.
//
// The interleaving is easiest to do during decryption, since during
// decryption the ciphertext blocks are immediately available. For
// encryption, instead encrypt the first set of blocks, then hash those
// blocks while encrypting the next set of blocks, repeat that as
// needed, and finally hash the last set of blocks.
.if \enc
// Encrypt the first 4 vectors of plaintext blocks. Leave the resulting
// ciphertext in GHASHDATA[0-3] for GHASH.
_ctr_begin_4x
lea 16(KEY), %rax
1:
vbroadcasti32x4 (%rax), RNDKEY
_vaesenc_4x RNDKEY
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
vaesenclast RNDKEYLAST0, V0, GHASHDATA0
vaesenclast RNDKEYLAST1, V1, GHASHDATA1
vaesenclast RNDKEYLAST2, V2, GHASHDATA2
vaesenclast RNDKEYLAST3, V3, GHASHDATA3
vmovdqu8 GHASHDATA0, 0*VL(DST)
vmovdqu8 GHASHDATA1, 1*VL(DST)
vmovdqu8 GHASHDATA2, 2*VL(DST)
vmovdqu8 GHASHDATA3, 3*VL(DST)
add $4*VL, SRC
add $4*VL, DST
sub $4*VL, DATALEN
jl .Lghash_last_ciphertext_4x\@
.endif
// Cache as many additional AES round keys as possible.
.irp i, 9,8,7,6,5
vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY_M\i
.endr
.Lcrypt_loop_4x\@:
// If decrypting, load more ciphertext blocks into GHASHDATA[0-3]. If
// encrypting, GHASHDATA[0-3] already contain the previous ciphertext.
.if !\enc
vmovdqu8 0*VL(SRC), GHASHDATA0
vmovdqu8 1*VL(SRC), GHASHDATA1
vmovdqu8 2*VL(SRC), GHASHDATA2
vmovdqu8 3*VL(SRC), GHASHDATA3
.endif
// Start the AES encryption of the counter blocks.
_ctr_begin_4x
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vbroadcasti32x4 -13*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
vbroadcasti32x4 -12*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
192:
vbroadcasti32x4 -11*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
vbroadcasti32x4 -10*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
128:
// XOR the source data with the last round key, saving the result in
// RNDKEYLAST[0-3]. This reduces latency by taking advantage of the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
.if \enc
vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
.else
vpxord GHASHDATA0, RNDKEYLAST, RNDKEYLAST0
vpxord GHASHDATA1, RNDKEYLAST, RNDKEYLAST1
vpxord GHASHDATA2, RNDKEYLAST, RNDKEYLAST2
vpxord GHASHDATA3, RNDKEYLAST, RNDKEYLAST3
.endif
// Finish the AES encryption of the counter blocks in V0-V3, interleaved
// with the GHASH update of the ciphertext blocks in GHASHDATA[0-3].
.irp i, 9,8,7,6,5
_vaesenc_4x RNDKEY_M\i
_ghash_step_4x (9 - \i)
.endr
.irp i, 4,3,2,1
vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY
_vaesenc_4x RNDKEY
_ghash_step_4x (9 - \i)
.endr
_ghash_step_4x 9
// Do the last AES round. This handles the XOR with the source data
// too, as per the optimization described above.
vaesenclast RNDKEYLAST0, V0, GHASHDATA0
vaesenclast RNDKEYLAST1, V1, GHASHDATA1
vaesenclast RNDKEYLAST2, V2, GHASHDATA2
vaesenclast RNDKEYLAST3, V3, GHASHDATA3
// Store the en/decrypted data to DST.
vmovdqu8 GHASHDATA0, 0*VL(DST)
vmovdqu8 GHASHDATA1, 1*VL(DST)
vmovdqu8 GHASHDATA2, 2*VL(DST)
vmovdqu8 GHASHDATA3, 3*VL(DST)
add $4*VL, SRC
add $4*VL, DST
sub $4*VL, DATALEN
jge .Lcrypt_loop_4x\@
.if \enc
.Lghash_last_ciphertext_4x\@:
// Update GHASH with the last set of ciphertext blocks.
.irp i, 0,1,2,3,4,5,6,7,8,9
_ghash_step_4x \i
.endr
.endif
.Lcrypt_loop_4x_done\@:
// Undo the extra subtraction by 4*VL and check whether data remains.
add $4*VL, DATALEN
jz .Ldone\@
// The data length isn't a multiple of 4*VL. Process the remaining data
// of length 1 <= DATALEN < 4*VL, up to one vector (VL bytes) at a time.
// Going one vector at a time may seem inefficient compared to having
// separate code paths for each possible number of vectors remaining.
// However, using a loop keeps the code size down, and it performs
// surprising well; modern CPUs will start executing the next iteration
// before the previous one finishes and also predict the number of loop
// iterations. For a similar reason, we roll up the AES rounds.
//
// On the last iteration, the remaining length may be less than VL.
// Handle this using masking.
//
// Since there are enough key powers available for all remaining data,
// there is no need to do a GHASH reduction after each iteration.
// Instead, multiply each remaining block by its own key power, and only
// do a GHASH reduction at the very end.
// Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
// is the number of blocks that remain.
.set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
mov DATALEN, %eax
neg %rax
and $~15, %rax // -round_up(DATALEN, 16)
lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
.set LO, GHASHDATA0
.set LO_XMM, GHASHDATA0_XMM
.set MI, GHASHDATA1
.set MI_XMM, GHASHDATA1_XMM
.set HI, GHASHDATA2
.set HI_XMM, GHASHDATA2_XMM
vpxor LO_XMM, LO_XMM, LO_XMM
vpxor MI_XMM, MI_XMM, MI_XMM
vpxor HI_XMM, HI_XMM, HI_XMM
.Lcrypt_loop_1x\@:
// Select the appropriate mask for this iteration: all 1's if
// DATALEN >= VL, otherwise DATALEN 1's. Do this branchlessly using the
// bzhi instruction from BMI2. (This relies on DATALEN <= 255.)
.if VL < 64
mov $-1, %eax
bzhi DATALEN, %eax, %eax
kmovd %eax, %k1
.else
mov $-1, %rax
bzhi DATALEN64, %rax, %rax
kmovq %rax, %k1
.endif
// Encrypt a vector of counter blocks. This does not need to be masked.
vpshufb BSWAP_MASK, LE_CTR, V0
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
vpxord RNDKEY0, V0, V0
lea 16(KEY), %rax
1:
vbroadcasti32x4 (%rax), RNDKEY
vaesenc RNDKEY, V0, V0
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
vaesenclast RNDKEYLAST, V0, V0
// XOR the data with the appropriate number of keystream bytes.
vmovdqu8 (SRC), V1{%k1}{z}
vpxord V1, V0, V0
vmovdqu8 V0, (DST){%k1}
// Update GHASH with the ciphertext block(s), without reducing.
//
// In the case of DATALEN < VL, the ciphertext is zero-padded to VL.
// (If decrypting, it's done by the above masked load. If encrypting,
// it's done by the below masked register-to-register move.) Note that
// if DATALEN <= VL - 16, there will be additional padding beyond the
// padding of the last block specified by GHASH itself; i.e., there may
// be whole block(s) that get processed by the GHASH multiplication and
// reduction instructions but should not actually be included in the
// GHASH. However, any such blocks are all-zeroes, and the values that
// they're multiplied with are also all-zeroes. Therefore they just add
// 0 * 0 = 0 to the final GHASH result, which makes no difference.
vmovdqu8 (POWERS_PTR), H_POW1
.if \enc
vmovdqu8 V0, V1{%k1}{z}
.endif
vpshufb BSWAP_MASK, V1, V0
vpxord GHASH_ACC, V0, V0
_ghash_mul_noreduce H_POW1, V0, LO, MI, HI, GHASHDATA3, V1, V2, V3
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
add $VL, POWERS_PTR
add $VL, SRC
add $VL, DST
sub $VL, DATALEN
jg .Lcrypt_loop_1x\@
// Finally, do the GHASH reduction.
_ghash_reduce LO, MI, HI, GFPOLY, V0
_horizontal_xor HI, HI_XMM, GHASH_ACC_XMM, %xmm0, %xmm1, %xmm2
.Ldone\@:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper // This is needed after using ymm or zmm registers.
RET
.endm
// void aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
// const u32 le_ctr[4], u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen);
// bool aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
// const u32 le_ctr[4],
// const u8 ghash_acc[16],
// u64 total_aadlen, u64 total_datalen,
// const u8 tag[16], int taglen);
//
// This macro generates one of the above two functions (with \enc selecting
// which one). Both functions finish computing the GCM authentication tag by
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
// |total_aadlen| and |total_datalen| must be the total length of the additional
// authenticated data and the en/decrypted data in bytes, respectively.
//
// The encryption function then stores the full-length (16-byte) computed
// authentication tag to |ghash_acc|. The decryption function instead loads the
// expected authentication tag (the one that was transmitted) from the 16-byte
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
// computed tag in constant time, and returns true if and only if they match.
.macro _aes_gcm_final enc
// Function arguments
.set KEY, %rdi
.set LE_CTR_PTR, %rsi
.set GHASH_ACC_PTR, %rdx
.set TOTAL_AADLEN, %rcx
.set TOTAL_DATALEN, %r8
.set TAG, %r9
.set TAGLEN, %r10d // Originally at 8(%rsp)
// Additional local variables.
// %rax, %xmm0-%xmm3, and %k1 are used as temporary registers.
.set AESKEYLEN, %r11d
.set AESKEYLEN64, %r11
.set GFPOLY, %xmm4
.set BSWAP_MASK, %xmm5
.set LE_CTR, %xmm6
.set GHASH_ACC, %xmm7
.set H_POW1, %xmm8
// Load some constants.
vmovdqa .Lgfpoly(%rip), GFPOLY
vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
// Load the AES key length in bytes.
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
// Set up a counter block with 1 in the low 32-bit word. This is the
// counter that produces the ciphertext needed to encrypt the auth tag.
// GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
// Build the lengths block and XOR it with the GHASH accumulator.
// Although the lengths block is defined as the AAD length followed by
// the en/decrypted data length, both in big-endian byte order, a byte
// reflection of the full block is needed because of the way we compute
// GHASH (see _ghash_mul_step). By using little-endian values in the
// opposite order, we avoid having to reflect any bytes here.
vmovq TOTAL_DATALEN, %xmm0
vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
vpsllq $3, %xmm0, %xmm0 // Bytes to bits
vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
// Load the first hash key power (H^1), which is stored last.
vmovdqu8 OFFSETOFEND_H_POWERS-16(KEY), H_POW1
.if !\enc
// Prepare a mask of TAGLEN one bits.
movl 8(%rsp), TAGLEN
mov $-1, %eax
bzhi TAGLEN, %eax, %eax
kmovd %eax, %k1
.endif
// Make %rax point to the last AES round key for the chosen AES variant.
lea 6*16(KEY,AESKEYLEN64,4), %rax
// Start the AES encryption of the counter block by swapping the counter
// block to big-endian and XOR-ing it with the zero-th AES round key.
vpshufb BSWAP_MASK, LE_CTR, %xmm0
vpxor (KEY), %xmm0, %xmm0
// Complete the AES encryption and multiply GHASH_ACC by H^1.
// Interleave the AES and GHASH instructions to improve performance.
cmp $24, AESKEYLEN
jl 128f // AES-128?
je 192f // AES-192?
// AES-256
vaesenc -13*16(%rax), %xmm0, %xmm0
vaesenc -12*16(%rax), %xmm0, %xmm0
192:
vaesenc -11*16(%rax), %xmm0, %xmm0
vaesenc -10*16(%rax), %xmm0, %xmm0
128:
.irp i, 0,1,2,3,4,5,6,7,8
_ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
.endr
_ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%xmm1, %xmm2, %xmm3
// Undo the byte reflection of the GHASH accumulator.
vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
// Do the last AES round and XOR the resulting keystream block with the
// GHASH accumulator to produce the full computed authentication tag.
//
// Reduce latency by taking advantage of the property vaesenclast(key,
// a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
// round key, instead of XOR'ing the final AES output with GHASH_ACC.
//
// enc_final then returns the computed auth tag, while dec_final
// compares it with the transmitted one and returns a bool. To compare
// the tags, dec_final XORs them together and uses vptest to check
// whether the result is all-zeroes. This should be constant-time.
// dec_final applies the vaesenclast optimization to this additional
// value XOR'd too, using vpternlogd to XOR the last round key, GHASH
// accumulator, and transmitted auth tag together in one instruction.
.if \enc
vpxor (%rax), GHASH_ACC, %xmm1
vaesenclast %xmm1, %xmm0, GHASH_ACC
vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
.else
vmovdqu (TAG), %xmm1
vpternlogd $0x96, (%rax), GHASH_ACC, %xmm1
vaesenclast %xmm1, %xmm0, %xmm0
xor %eax, %eax
vmovdqu8 %xmm0, %xmm0{%k1}{z} // Truncate to TAGLEN bytes
vptest %xmm0, %xmm0
sete %al
.endif
// No need for vzeroupper here, since only used xmm registers were used.
RET
.endm
_set_veclen 32
SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_256)
_aes_gcm_precompute
SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_256)
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_256)
_aes_gcm_update 1
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_256)
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_256)
_aes_gcm_update 0
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_256)
_set_veclen 64
SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_512)
_aes_gcm_precompute
SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_512)
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_512)
_aes_gcm_update 1
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_512)
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_512)
_aes_gcm_update 0
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_512)
// void aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
// u8 ghash_acc[16],
// const u8 *aad, int aadlen);
//
// This function processes the AAD (Additional Authenticated Data) in GCM.
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
// data given by |aad| and |aadlen|. |key->ghash_key_powers| must have been
// initialized. On the first call, |ghash_acc| must be all zeroes. |aadlen|
// must be a multiple of 16, except on the last call where it can be any length.
// The caller must do any buffering needed to ensure this.
//
// AES-GCM is almost always used with small amounts of AAD, less than 32 bytes.
// Therefore, for AAD processing we currently only provide this implementation
// which uses 256-bit vectors (ymm registers) and only has a 1x-wide loop. This
// keeps the code size down, and it enables some micro-optimizations, e.g. using
// VEX-coded instructions instead of EVEX-coded to save some instruction bytes.
// To optimize for large amounts of AAD, we could implement a 4x-wide loop and
// provide a version using 512-bit vectors, but that doesn't seem to be useful.
SYM_FUNC_START(aes_gcm_aad_update_vaes_avx10)
// Function arguments
.set KEY, %rdi
.set GHASH_ACC_PTR, %rsi
.set AAD, %rdx
.set AADLEN, %ecx
.set AADLEN64, %rcx // Zero-extend AADLEN before using!
// Additional local variables.
// %rax, %ymm0-%ymm3, and %k1 are used as temporary registers.
.set BSWAP_MASK, %ymm4
.set GFPOLY, %ymm5
.set GHASH_ACC, %ymm6
.set GHASH_ACC_XMM, %xmm6
.set H_POW1, %ymm7
// Load some constants.
vbroadcasti128 .Lbswap_mask(%rip), BSWAP_MASK
vbroadcasti128 .Lgfpoly(%rip), GFPOLY
// Load the GHASH accumulator.
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
// Update GHASH with 32 bytes of AAD at a time.
//
// Pre-subtracting 32 from AADLEN saves an instruction from the loop and
// also ensures that at least one write always occurs to AADLEN,
// zero-extending it and allowing AADLEN64 to be used later.
sub $32, AADLEN
jl .Laad_loop_1x_done
vmovdqu8 OFFSETOFEND_H_POWERS-32(KEY), H_POW1 // [H^2, H^1]
.Laad_loop_1x:
vmovdqu (AAD), %ymm0
vpshufb BSWAP_MASK, %ymm0, %ymm0
vpxor %ymm0, GHASH_ACC, GHASH_ACC
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%ymm0, %ymm1, %ymm2
vextracti128 $1, GHASH_ACC, %xmm0
vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
add $32, AAD
sub $32, AADLEN
jge .Laad_loop_1x
.Laad_loop_1x_done:
add $32, AADLEN
jz .Laad_done
// Update GHASH with the remaining 1 <= AADLEN < 32 bytes of AAD.
mov $-1, %eax
bzhi AADLEN, %eax, %eax
kmovd %eax, %k1
vmovdqu8 (AAD), %ymm0{%k1}{z}
neg AADLEN64
and $~15, AADLEN64 // -round_up(AADLEN, 16)
vmovdqu8 OFFSETOFEND_H_POWERS(KEY,AADLEN64), H_POW1
vpshufb BSWAP_MASK, %ymm0, %ymm0
vpxor %ymm0, GHASH_ACC, GHASH_ACC
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
%ymm0, %ymm1, %ymm2
vextracti128 $1, GHASH_ACC, %xmm0
vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
.Laad_done:
// Store the updated GHASH accumulator back to memory.
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
vzeroupper // This is needed after using ymm or zmm registers.
RET
SYM_FUNC_END(aes_gcm_aad_update_vaes_avx10)
SYM_FUNC_START(aes_gcm_enc_final_vaes_avx10)
_aes_gcm_final 1
SYM_FUNC_END(aes_gcm_enc_final_vaes_avx10)
SYM_FUNC_START(aes_gcm_dec_final_vaes_avx10)
_aes_gcm_final 0
SYM_FUNC_END(aes_gcm_dec_final_vaes_avx10)