blob: 4c2d080d26b4fb0032992c796f3f91be1b508435 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PGTABLE_H
#define _ASM_X86_PGTABLE_H
#include <linux/mem_encrypt.h>
#include <asm/page.h>
#include <asm/pgtable_types.h>
/*
* Macro to mark a page protection value as UC-
*/
#define pgprot_noncached(prot) \
((boot_cpu_data.x86 > 3) \
? (__pgprot(pgprot_val(prot) | \
cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
: (prot))
#ifndef __ASSEMBLY__
#include <linux/spinlock.h>
#include <asm/x86_init.h>
#include <asm/pkru.h>
#include <asm/fpu/api.h>
#include <asm/coco.h>
#include <asm-generic/pgtable_uffd.h>
#include <linux/page_table_check.h>
extern pgd_t early_top_pgt[PTRS_PER_PGD];
bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
struct seq_file;
void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
bool user);
bool ptdump_walk_pgd_level_checkwx(void);
#define ptdump_check_wx ptdump_walk_pgd_level_checkwx
void ptdump_walk_user_pgd_level_checkwx(void);
/*
* Macros to add or remove encryption attribute
*/
#define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot)))
#define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot)))
#ifdef CONFIG_DEBUG_WX
#define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx()
#else
#define debug_checkwx_user() do { } while (0)
#endif
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
__visible;
#define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
extern spinlock_t pgd_lock;
extern struct list_head pgd_list;
extern struct mm_struct *pgd_page_get_mm(struct page *page);
extern pmdval_t early_pmd_flags;
#ifdef CONFIG_PARAVIRT_XXL
#include <asm/paravirt.h>
#else /* !CONFIG_PARAVIRT_XXL */
#define set_pte(ptep, pte) native_set_pte(ptep, pte)
#define set_pte_atomic(ptep, pte) \
native_set_pte_atomic(ptep, pte)
#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
#ifndef __PAGETABLE_P4D_FOLDED
#define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
#define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
#endif
#ifndef set_p4d
# define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define p4d_clear(p4d) native_p4d_clear(p4d)
#endif
#ifndef set_pud
# define set_pud(pudp, pud) native_set_pud(pudp, pud)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define pud_clear(pud) native_pud_clear(pud)
#endif
#define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
#define pmd_clear(pmd) native_pmd_clear(pmd)
#define pgd_val(x) native_pgd_val(x)
#define __pgd(x) native_make_pgd(x)
#ifndef __PAGETABLE_P4D_FOLDED
#define p4d_val(x) native_p4d_val(x)
#define __p4d(x) native_make_p4d(x)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define pud_val(x) native_pud_val(x)
#define __pud(x) native_make_pud(x)
#endif
#ifndef __PAGETABLE_PMD_FOLDED
#define pmd_val(x) native_pmd_val(x)
#define __pmd(x) native_make_pmd(x)
#endif
#define pte_val(x) native_pte_val(x)
#define __pte(x) native_make_pte(x)
#define arch_end_context_switch(prev) do {} while(0)
#endif /* CONFIG_PARAVIRT_XXL */
static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
{
pmdval_t v = native_pmd_val(pmd);
return native_make_pmd(v | set);
}
static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
{
pmdval_t v = native_pmd_val(pmd);
return native_make_pmd(v & ~clear);
}
static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
{
pudval_t v = native_pud_val(pud);
return native_make_pud(v | set);
}
static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
{
pudval_t v = native_pud_val(pud);
return native_make_pud(v & ~clear);
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline bool pte_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_DIRTY_BITS;
}
static inline bool pte_shstk(pte_t pte)
{
return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
(pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
}
static inline int pte_young(pte_t pte)
{
return pte_flags(pte) & _PAGE_ACCESSED;
}
static inline bool pte_decrypted(pte_t pte)
{
return cc_mkdec(pte_val(pte)) == pte_val(pte);
}
#define pmd_dirty pmd_dirty
static inline bool pmd_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
}
static inline bool pmd_shstk(pmd_t pmd)
{
return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
(pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
(_PAGE_DIRTY | _PAGE_PSE);
}
#define pmd_young pmd_young
static inline int pmd_young(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_ACCESSED;
}
static inline bool pud_dirty(pud_t pud)
{
return pud_flags(pud) & _PAGE_DIRTY_BITS;
}
static inline int pud_young(pud_t pud)
{
return pud_flags(pud) & _PAGE_ACCESSED;
}
static inline bool pud_shstk(pud_t pud)
{
return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
(pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
(_PAGE_DIRTY | _PAGE_PSE);
}
static inline int pte_write(pte_t pte)
{
/*
* Shadow stack pages are logically writable, but do not have
* _PAGE_RW. Check for them separately from _PAGE_RW itself.
*/
return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
}
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
/*
* Shadow stack pages are logically writable, but do not have
* _PAGE_RW. Check for them separately from _PAGE_RW itself.
*/
return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
}
#define pud_write pud_write
static inline int pud_write(pud_t pud)
{
return pud_flags(pud) & _PAGE_RW;
}
static inline int pte_huge(pte_t pte)
{
return pte_flags(pte) & _PAGE_PSE;
}
static inline int pte_global(pte_t pte)
{
return pte_flags(pte) & _PAGE_GLOBAL;
}
static inline int pte_exec(pte_t pte)
{
return !(pte_flags(pte) & _PAGE_NX);
}
static inline int pte_special(pte_t pte)
{
return pte_flags(pte) & _PAGE_SPECIAL;
}
/* Entries that were set to PROT_NONE are inverted */
static inline u64 protnone_mask(u64 val);
#define PFN_PTE_SHIFT PAGE_SHIFT
static inline unsigned long pte_pfn(pte_t pte)
{
phys_addr_t pfn = pte_val(pte);
pfn ^= protnone_mask(pfn);
return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
phys_addr_t pfn = pmd_val(pmd);
pfn ^= protnone_mask(pfn);
return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
}
#define pud_pfn pud_pfn
static inline unsigned long pud_pfn(pud_t pud)
{
phys_addr_t pfn = pud_val(pud);
pfn ^= protnone_mask(pfn);
return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
}
static inline unsigned long p4d_pfn(p4d_t p4d)
{
return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
}
static inline unsigned long pgd_pfn(pgd_t pgd)
{
return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
}
#define p4d_leaf p4d_leaf
static inline bool p4d_leaf(p4d_t p4d)
{
/* No 512 GiB pages yet */
return 0;
}
#define pte_page(pte) pfn_to_page(pte_pfn(pte))
#define pmd_leaf pmd_leaf
static inline bool pmd_leaf(pmd_t pte)
{
return pmd_flags(pte) & _PAGE_PSE;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */
static inline int pmd_trans_huge(pmd_t pmd)
{
return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline int pud_trans_huge(pud_t pud)
{
return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
}
#endif
#define has_transparent_hugepage has_transparent_hugepage
static inline int has_transparent_hugepage(void)
{
return boot_cpu_has(X86_FEATURE_PSE);
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pmd_devmap(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_DEVMAP);
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline int pud_devmap(pud_t pud)
{
return !!(pud_val(pud) & _PAGE_DEVMAP);
}
#else
static inline int pud_devmap(pud_t pud)
{
return 0;
}
#endif
#ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
static inline bool pmd_special(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SPECIAL;
}
static inline pmd_t pmd_mkspecial(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SPECIAL);
}
#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
#ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
static inline bool pud_special(pud_t pud)
{
return pud_flags(pud) & _PAGE_SPECIAL;
}
static inline pud_t pud_mkspecial(pud_t pud)
{
return pud_set_flags(pud, _PAGE_SPECIAL);
}
#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
static inline int pgd_devmap(pgd_t pgd)
{
return 0;
}
#endif
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
{
pteval_t v = native_pte_val(pte);
return native_make_pte(v | set);
}
static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
{
pteval_t v = native_pte_val(pte);
return native_make_pte(v & ~clear);
}
/*
* Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
* case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
* when creating dirty, write-protected memory, a software bit is used:
* _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
* Dirty bit to SavedDirty, and vice-vesra.
*
* This shifting is only done if needed. In the case of shifting
* Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
* shifting SavedDirty->Dirty, the condition is Write=1.
*/
static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
{
pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
v &= ~(cond << _PAGE_BIT_DIRTY);
return v;
}
static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
{
pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
return v;
}
static inline pte_t pte_mksaveddirty(pte_t pte)
{
pteval_t v = native_pte_val(pte);
v = mksaveddirty_shift(v);
return native_make_pte(v);
}
static inline pte_t pte_clear_saveddirty(pte_t pte)
{
pteval_t v = native_pte_val(pte);
v = clear_saveddirty_shift(v);
return native_make_pte(v);
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte = pte_clear_flags(pte, _PAGE_RW);
/*
* Blindly clearing _PAGE_RW might accidentally create
* a shadow stack PTE (Write=0,Dirty=1). Move the hardware
* dirty value to the software bit, if present.
*/
return pte_mksaveddirty(pte);
}
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
static inline int pte_uffd_wp(pte_t pte)
{
return pte_flags(pte) & _PAGE_UFFD_WP;
}
static inline pte_t pte_mkuffd_wp(pte_t pte)
{
return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
}
static inline pte_t pte_clear_uffd_wp(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_UFFD_WP);
}
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
static inline pte_t pte_mkclean(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
}
static inline pte_t pte_mkold(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_ACCESSED);
}
static inline pte_t pte_mkexec(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_NX);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
return pte_mksaveddirty(pte);
}
static inline pte_t pte_mkwrite_shstk(pte_t pte)
{
pte = pte_clear_flags(pte, _PAGE_RW);
return pte_set_flags(pte, _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return pte_set_flags(pte, _PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
return pte_set_flags(pte, _PAGE_RW);
}
struct vm_area_struct;
pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
#define pte_mkwrite pte_mkwrite
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte_set_flags(pte, _PAGE_PSE);
}
static inline pte_t pte_clrhuge(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_PSE);
}
static inline pte_t pte_mkglobal(pte_t pte)
{
return pte_set_flags(pte, _PAGE_GLOBAL);
}
static inline pte_t pte_clrglobal(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_GLOBAL);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SPECIAL);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
}
/* See comments above mksaveddirty_shift() */
static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
{
pmdval_t v = native_pmd_val(pmd);
v = mksaveddirty_shift(v);
return native_make_pmd(v);
}
/* See comments above mksaveddirty_shift() */
static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
{
pmdval_t v = native_pmd_val(pmd);
v = clear_saveddirty_shift(v);
return native_make_pmd(v);
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd = pmd_clear_flags(pmd, _PAGE_RW);
/*
* Blindly clearing _PAGE_RW might accidentally create
* a shadow stack PMD (RW=0, Dirty=1). Move the hardware
* dirty value to the software bit.
*/
return pmd_mksaveddirty(pmd);
}
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
static inline int pmd_uffd_wp(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_UFFD_WP;
}
static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
{
return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
}
static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
}
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
static inline pmd_t pmd_mkold(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
return pmd_mksaveddirty(pmd);
}
static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
{
pmd = pmd_clear_flags(pmd, _PAGE_RW);
return pmd_set_flags(pmd, _PAGE_DIRTY);
}
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_DEVMAP);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_PSE);
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_RW);
}
pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
#define pmd_mkwrite pmd_mkwrite
/* See comments above mksaveddirty_shift() */
static inline pud_t pud_mksaveddirty(pud_t pud)
{
pudval_t v = native_pud_val(pud);
v = mksaveddirty_shift(v);
return native_make_pud(v);
}
/* See comments above mksaveddirty_shift() */
static inline pud_t pud_clear_saveddirty(pud_t pud)
{
pudval_t v = native_pud_val(pud);
v = clear_saveddirty_shift(v);
return native_make_pud(v);
}
static inline pud_t pud_mkold(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_ACCESSED);
}
static inline pud_t pud_mkclean(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
}
static inline pud_t pud_wrprotect(pud_t pud)
{
pud = pud_clear_flags(pud, _PAGE_RW);
/*
* Blindly clearing _PAGE_RW might accidentally create
* a shadow stack PUD (RW=0, Dirty=1). Move the hardware
* dirty value to the software bit.
*/
return pud_mksaveddirty(pud);
}
static inline pud_t pud_mkdirty(pud_t pud)
{
pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
return pud_mksaveddirty(pud);
}
static inline pud_t pud_mkdevmap(pud_t pud)
{
return pud_set_flags(pud, _PAGE_DEVMAP);
}
static inline pud_t pud_mkhuge(pud_t pud)
{
return pud_set_flags(pud, _PAGE_PSE);
}
static inline pud_t pud_mkyoung(pud_t pud)
{
return pud_set_flags(pud, _PAGE_ACCESSED);
}
static inline pud_t pud_mkwrite(pud_t pud)
{
pud = pud_set_flags(pud, _PAGE_RW);
return pud_clear_saveddirty(pud);
}
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_SOFT_DIRTY;
}
static inline int pmd_soft_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
}
static inline int pud_soft_dirty(pud_t pud)
{
return pud_flags(pud) & _PAGE_SOFT_DIRTY;
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
}
static inline pud_t pud_mksoft_dirty(pud_t pud)
{
return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
}
static inline pud_t pud_clear_soft_dirty(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
/*
* Mask out unsupported bits in a present pgprot. Non-present pgprots
* can use those bits for other purposes, so leave them be.
*/
static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
{
pgprotval_t protval = pgprot_val(pgprot);
if (protval & _PAGE_PRESENT)
protval &= __supported_pte_mask;
return protval;
}
static inline pgprotval_t check_pgprot(pgprot_t pgprot)
{
pgprotval_t massaged_val = massage_pgprot(pgprot);
/* mmdebug.h can not be included here because of dependencies */
#ifdef CONFIG_DEBUG_VM
WARN_ONCE(pgprot_val(pgprot) != massaged_val,
"attempted to set unsupported pgprot: %016llx "
"bits: %016llx supported: %016llx\n",
(u64)pgprot_val(pgprot),
(u64)pgprot_val(pgprot) ^ massaged_val,
(u64)__supported_pte_mask);
#endif
return massaged_val;
}
static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PTE_PFN_MASK;
return __pte(pfn | check_pgprot(pgprot));
}
static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PHYSICAL_PMD_PAGE_MASK;
return __pmd(pfn | check_pgprot(pgprot));
}
static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PHYSICAL_PUD_PAGE_MASK;
return __pud(pfn | check_pgprot(pgprot));
}
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
{
return pfn_pmd(pmd_pfn(pmd),
__pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
}
static inline pud_t pud_mkinvalid(pud_t pud)
{
return pfn_pud(pud_pfn(pud),
__pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
}
static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pteval_t val = pte_val(pte), oldval = val;
pte_t pte_result;
/*
* Chop off the NX bit (if present), and add the NX portion of
* the newprot (if present):
*/
val &= _PAGE_CHG_MASK;
val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
pte_result = __pte(val);
/*
* To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
* 1. Marking Write=0 PTEs Dirty=1
* 2. Marking Dirty=1 PTEs Write=0
*
* The first case cannot happen because the _PAGE_CHG_MASK will filter
* out any Dirty bit passed in newprot. Handle the second case by
* going through the mksaveddirty exercise. Only do this if the old
* value was Write=1 to avoid doing this on Shadow Stack PTEs.
*/
if (oldval & _PAGE_RW)
pte_result = pte_mksaveddirty(pte_result);
else
pte_result = pte_clear_saveddirty(pte_result);
return pte_result;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
pmdval_t val = pmd_val(pmd), oldval = val;
pmd_t pmd_result;
val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
pmd_result = __pmd(val);
/*
* Avoid creating shadow stack PMD by accident. See comment in
* pte_modify().
*/
if (oldval & _PAGE_RW)
pmd_result = pmd_mksaveddirty(pmd_result);
else
pmd_result = pmd_clear_saveddirty(pmd_result);
return pmd_result;
}
static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
{
pudval_t val = pud_val(pud), oldval = val;
pud_t pud_result;
val &= _HPAGE_CHG_MASK;
val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK);
pud_result = __pud(val);
/*
* Avoid creating shadow stack PUD by accident. See comment in
* pte_modify().
*/
if (oldval & _PAGE_RW)
pud_result = pud_mksaveddirty(pud_result);
else
pud_result = pud_clear_saveddirty(pud_result);
return pud_result;
}
/*
* mprotect needs to preserve PAT and encryption bits when updating
* vm_page_prot
*/
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
return __pgprot(preservebits | addbits);
}
#define pte_pgprot(x) __pgprot(pte_flags(x))
#define pmd_pgprot(x) __pgprot(pmd_flags(x))
#define pud_pgprot(x) __pgprot(pud_flags(x))
#define p4d_pgprot(x) __pgprot(p4d_flags(x))
#define canon_pgprot(p) __pgprot(massage_pgprot(p))
static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
enum page_cache_mode pcm,
enum page_cache_mode new_pcm)
{
/*
* PAT type is always WB for untracked ranges, so no need to check.
*/
if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
return 1;
/*
* Certain new memtypes are not allowed with certain
* requested memtype:
* - request is uncached, return cannot be write-back
* - request is write-combine, return cannot be write-back
* - request is write-through, return cannot be write-back
* - request is write-through, return cannot be write-combine
*/
if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WC &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WT &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WT &&
new_pcm == _PAGE_CACHE_MODE_WC)) {
return 0;
}
return 1;
}
pmd_t *populate_extra_pmd(unsigned long vaddr);
pte_t *populate_extra_pte(unsigned long vaddr);
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
/*
* Take a PGD location (pgdp) and a pgd value that needs to be set there.
* Populates the user and returns the resulting PGD that must be set in
* the kernel copy of the page tables.
*/
static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
{
if (!static_cpu_has(X86_FEATURE_PTI))
return pgd;
return __pti_set_user_pgtbl(pgdp, pgd);
}
#else /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
{
return pgd;
}
#endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_X86_32
# include <asm/pgtable_32.h>
#else
# include <asm/pgtable_64.h>
#endif
#ifndef __ASSEMBLY__
#include <linux/mm_types.h>
#include <linux/mmdebug.h>
#include <linux/log2.h>
#include <asm/fixmap.h>
static inline int pte_none(pte_t pte)
{
return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t a, pte_t b)
{
return a.pte == b.pte;
}
static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
{
if (__pte_needs_invert(pte_val(pte)))
return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
}
#define pte_advance_pfn pte_advance_pfn
static inline int pte_present(pte_t a)
{
return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t a)
{
return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
}
#endif
#define pte_accessible pte_accessible
static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
{
if (pte_flags(a) & _PAGE_PRESENT)
return true;
if ((pte_flags(a) & _PAGE_PROTNONE) &&
atomic_read(&mm->tlb_flush_pending))
return true;
return false;
}
static inline int pmd_present(pmd_t pmd)
{
/*
* Checking for _PAGE_PSE is needed too because
* split_huge_page will temporarily clear the present bit (but
* the _PAGE_PSE flag will remain set at all times while the
* _PAGE_PRESENT bit is clear).
*/
return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
}
#ifdef CONFIG_NUMA_BALANCING
/*
* These work without NUMA balancing but the kernel does not care. See the
* comment in include/linux/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
== _PAGE_PROTNONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
== _PAGE_PROTNONE;
}
#endif /* CONFIG_NUMA_BALANCING */
static inline int pmd_none(pmd_t pmd)
{
/* Only check low word on 32-bit platforms, since it might be
out of sync with upper half. */
unsigned long val = native_pmd_val(pmd);
return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* (Currently stuck as a macro because of indirect forward reference
* to linux/mm.h:page_to_nid())
*/
#define mk_pte(page, pgprot) \
({ \
pgprot_t __pgprot = pgprot; \
\
WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
_PAGE_DIRTY); \
pfn_pte(page_to_pfn(page), __pgprot); \
})
static inline int pmd_bad(pmd_t pmd)
{
return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
(_KERNPG_TABLE & ~_PAGE_ACCESSED);
}
static inline unsigned long pages_to_mb(unsigned long npg)
{
return npg >> (20 - PAGE_SHIFT);
}
#if CONFIG_PGTABLE_LEVELS > 2
static inline int pud_none(pud_t pud)
{
return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
}
static inline int pud_present(pud_t pud)
{
return pud_flags(pud) & _PAGE_PRESENT;
}
static inline pmd_t *pud_pgtable(pud_t pud)
{
return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pud_page(pud) pfn_to_page(pud_pfn(pud))
#define pud_leaf pud_leaf
static inline bool pud_leaf(pud_t pud)
{
return pud_val(pud) & _PAGE_PSE;
}
static inline int pud_bad(pud_t pud)
{
return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
}
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#if CONFIG_PGTABLE_LEVELS > 3
static inline int p4d_none(p4d_t p4d)
{
return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
}
static inline int p4d_present(p4d_t p4d)
{
return p4d_flags(p4d) & _PAGE_PRESENT;
}
static inline pud_t *p4d_pgtable(p4d_t p4d)
{
return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
static inline int p4d_bad(p4d_t p4d)
{
unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
ignore_flags |= _PAGE_NX;
return (p4d_flags(p4d) & ~ignore_flags) != 0;
}
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
static inline unsigned long p4d_index(unsigned long address)
{
return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
}
#if CONFIG_PGTABLE_LEVELS > 4
static inline int pgd_present(pgd_t pgd)
{
if (!pgtable_l5_enabled())
return 1;
return pgd_flags(pgd) & _PAGE_PRESENT;
}
static inline unsigned long pgd_page_vaddr(pgd_t pgd)
{
return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
/* to find an entry in a page-table-directory. */
static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
{
if (!pgtable_l5_enabled())
return (p4d_t *)pgd;
return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
}
static inline int pgd_bad(pgd_t pgd)
{
unsigned long ignore_flags = _PAGE_USER;
if (!pgtable_l5_enabled())
return 0;
if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
ignore_flags |= _PAGE_NX;
return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
}
static inline int pgd_none(pgd_t pgd)
{
if (!pgtable_l5_enabled())
return 0;
/*
* There is no need to do a workaround for the KNL stray
* A/D bit erratum here. PGDs only point to page tables
* except on 32-bit non-PAE which is not supported on
* KNL.
*/
return !native_pgd_val(pgd);
}
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#endif /* __ASSEMBLY__ */
#define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
#ifndef __ASSEMBLY__
extern int direct_gbpages;
void init_mem_mapping(void);
void early_alloc_pgt_buf(void);
void __init poking_init(void);
unsigned long init_memory_mapping(unsigned long start,
unsigned long end, pgprot_t prot);
#ifdef CONFIG_X86_64
extern pgd_t trampoline_pgd_entry;
#endif
/* local pte updates need not use xchg for locking */
static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
{
pte_t res = *ptep;
/* Pure native function needs no input for mm, addr */
native_pte_clear(NULL, 0, ptep);
return res;
}
static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
{
pmd_t res = *pmdp;
native_pmd_clear(pmdp);
return res;
}
static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
{
pud_t res = *pudp;
native_pud_clear(pudp);
return res;
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(mm, pmdp, pmd);
set_pmd(pmdp, pmd);
}
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, pud_t pud)
{
page_table_check_pud_set(mm, pudp, pud);
native_set_pud(pudp, pud);
}
/*
* We only update the dirty/accessed state if we set
* the dirty bit by hand in the kernel, since the hardware
* will do the accessed bit for us, and we don't want to
* race with other CPU's that might be updating the dirty
* bit at the same time.
*/
struct vm_area_struct;
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
extern int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_t pte = native_ptep_get_and_clear(ptep);
page_table_check_pte_clear(mm, pte);
return pte;
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
int full)
{
pte_t pte;
if (full) {
/*
* Full address destruction in progress; paravirt does not
* care about updates and native needs no locking
*/
pte = native_local_ptep_get_and_clear(ptep);
page_table_check_pte_clear(mm, pte);
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
/*
* Avoid accidentally creating shadow stack PTEs
* (Write=0,Dirty=1). Use cmpxchg() to prevent races with
* the hardware setting Dirty=1.
*/
pte_t old_pte, new_pte;
old_pte = READ_ONCE(*ptep);
do {
new_pte = pte_wrprotect(old_pte);
} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
}
#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
extern int pudp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
pud_t entry, int dirty);
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pud_t *pudp);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
pmd_t pmd = native_pmdp_get_and_clear(pmdp);
page_table_check_pmd_clear(mm, pmd);
return pmd;
}
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pud_t *pudp)
{
pud_t pud = native_pudp_get_and_clear(pudp);
page_table_check_pud_clear(mm, pud);
return pud;
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
/*
* Avoid accidentally creating shadow stack PTEs
* (Write=0,Dirty=1). Use cmpxchg() to prevent races with
* the hardware setting Dirty=1.
*/
pmd_t old_pmd, new_pmd;
old_pmd = READ_ONCE(*pmdp);
do {
new_pmd = pmd_wrprotect(old_pmd);
} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
}
#ifndef pmdp_establish
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
if (IS_ENABLED(CONFIG_SMP)) {
return xchg(pmdp, pmd);
} else {
pmd_t old = *pmdp;
WRITE_ONCE(*pmdp, pmd);
return old;
}
}
#endif
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline pud_t pudp_establish(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp, pud_t pud)
{
page_table_check_pud_set(vma->vm_mm, pudp, pud);
if (IS_ENABLED(CONFIG_SMP)) {
return xchg(pudp, pud);
} else {
pud_t old = *pudp;
WRITE_ONCE(*pudp, pud);
return old;
}
}
#endif
#define __HAVE_ARCH_PMDP_INVALIDATE_AD
extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
pud_t *pudp);
/*
* Page table pages are page-aligned. The lower half of the top
* level is used for userspace and the top half for the kernel.
*
* Returns true for parts of the PGD that map userspace and
* false for the parts that map the kernel.
*/
static inline bool pgdp_maps_userspace(void *__ptr)
{
unsigned long ptr = (unsigned long)__ptr;
return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
}
#define pgd_leaf pgd_leaf
static inline bool pgd_leaf(pgd_t pgd) { return false; }
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
/*
* All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
* (8k-aligned and 8k in size). The kernel one is at the beginning 4k and
* the user one is in the last 4k. To switch between them, you
* just need to flip the 12th bit in their addresses.
*/
#define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT
/*
* This generates better code than the inline assembly in
* __set_bit().
*/
static inline void *ptr_set_bit(void *ptr, int bit)
{
unsigned long __ptr = (unsigned long)ptr;
__ptr |= BIT(bit);
return (void *)__ptr;
}
static inline void *ptr_clear_bit(void *ptr, int bit)
{
unsigned long __ptr = (unsigned long)ptr;
__ptr &= ~BIT(bit);
return (void *)__ptr;
}
static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
{
return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
}
static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
{
return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
}
static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
{
return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
}
static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
{
return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
}
#endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
/*
* clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
*
* dst - pointer to pgd range anywhere on a pgd page
* src - ""
* count - the number of pgds to copy.
*
* dst and src can be on the same page, but the range must not overlap,
* and must not cross a page boundary.
*/
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
memcpy(dst, src, count * sizeof(pgd_t));
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
if (!static_cpu_has(X86_FEATURE_PTI))
return;
/* Clone the user space pgd as well */
memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
count * sizeof(pgd_t));
#endif
}
#define PTE_SHIFT ilog2(PTRS_PER_PTE)
static inline int page_level_shift(enum pg_level level)
{
return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
}
static inline unsigned long page_level_size(enum pg_level level)
{
return 1UL << page_level_shift(level);
}
static inline unsigned long page_level_mask(enum pg_level level)
{
return ~(page_level_size(level) - 1);
}
/*
* The x86 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
}
static inline void update_mmu_cache_range(struct vm_fault *vmf,
struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep, unsigned int nr)
{
}
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd)
{
}
static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
{
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
}
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
}
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
}
static inline int pte_swp_soft_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
}
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
}
static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
}
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
}
#endif
#endif
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
}
static inline int pte_swp_uffd_wp(pte_t pte)
{
return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
}
static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
}
static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
}
static inline int pmd_swp_uffd_wp(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
}
static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
}
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
static inline u16 pte_flags_pkey(unsigned long pte_flags)
{
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
/* ifdef to avoid doing 59-bit shift on 32-bit values */
return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
#else
return 0;
#endif
}
static inline bool __pkru_allows_pkey(u16 pkey, bool write)
{
u32 pkru = read_pkru();
if (!__pkru_allows_read(pkru, pkey))
return false;
if (write && !__pkru_allows_write(pkru, pkey))
return false;
return true;
}
/*
* 'pteval' can come from a PTE, PMD or PUD. We only check
* _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
* same value on all 3 types.
*/
static inline bool __pte_access_permitted(unsigned long pteval, bool write)
{
unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
/*
* Write=0,Dirty=1 PTEs are shadow stack, which the kernel
* shouldn't generally allow access to, but since they
* are already Write=0, the below logic covers both cases.
*/
if (write)
need_pte_bits |= _PAGE_RW;
if ((pteval & need_pte_bits) != need_pte_bits)
return 0;
return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
}
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
return __pte_access_permitted(pte_val(pte), write);
}
#define pmd_access_permitted pmd_access_permitted
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
{
return __pte_access_permitted(pmd_val(pmd), write);
}
#define pud_access_permitted pud_access_permitted
static inline bool pud_access_permitted(pud_t pud, bool write)
{
return __pte_access_permitted(pud_val(pud), write);
}
#define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
static inline bool arch_has_pfn_modify_check(void)
{
return boot_cpu_has_bug(X86_BUG_L1TF);
}
#define arch_check_zapped_pte arch_check_zapped_pte
void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
#define arch_check_zapped_pmd arch_check_zapped_pmd
void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
#define arch_check_zapped_pud arch_check_zapped_pud
void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud);
#ifdef CONFIG_XEN_PV
#define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
static inline bool arch_has_hw_nonleaf_pmd_young(void)
{
return !cpu_feature_enabled(X86_FEATURE_XENPV);
}
#endif
#ifdef CONFIG_PAGE_TABLE_CHECK
static inline bool pte_user_accessible_page(pte_t pte)
{
return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
}
static inline bool pmd_user_accessible_page(pmd_t pmd)
{
return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
}
static inline bool pud_user_accessible_page(pud_t pud)
{
return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
}
#endif
#ifdef CONFIG_X86_SGX
int arch_memory_failure(unsigned long pfn, int flags);
#define arch_memory_failure arch_memory_failure
bool arch_is_platform_page(u64 paddr);
#define arch_is_platform_page arch_is_platform_page
#endif
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_PGTABLE_H */