| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * AMD CPU Microcode Update Driver for Linux |
| * |
| * This driver allows to upgrade microcode on F10h AMD |
| * CPUs and later. |
| * |
| * Copyright (C) 2008-2011 Advanced Micro Devices Inc. |
| * 2013-2018 Borislav Petkov <bp@alien8.de> |
| * |
| * Author: Peter Oruba <peter.oruba@amd.com> |
| * |
| * Based on work by: |
| * Tigran Aivazian <aivazian.tigran@gmail.com> |
| * |
| * early loader: |
| * Copyright (C) 2013 Advanced Micro Devices, Inc. |
| * |
| * Author: Jacob Shin <jacob.shin@amd.com> |
| * Fixes: Borislav Petkov <bp@suse.de> |
| */ |
| #define pr_fmt(fmt) "microcode: " fmt |
| |
| #include <linux/earlycpio.h> |
| #include <linux/firmware.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <linux/initrd.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| |
| #include <asm/microcode.h> |
| #include <asm/processor.h> |
| #include <asm/setup.h> |
| #include <asm/cpu.h> |
| #include <asm/msr.h> |
| |
| #include "internal.h" |
| |
| struct ucode_patch { |
| struct list_head plist; |
| void *data; |
| unsigned int size; |
| u32 patch_id; |
| u16 equiv_cpu; |
| }; |
| |
| static LIST_HEAD(microcode_cache); |
| |
| #define UCODE_MAGIC 0x00414d44 |
| #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 |
| #define UCODE_UCODE_TYPE 0x00000001 |
| |
| #define SECTION_HDR_SIZE 8 |
| #define CONTAINER_HDR_SZ 12 |
| |
| struct equiv_cpu_entry { |
| u32 installed_cpu; |
| u32 fixed_errata_mask; |
| u32 fixed_errata_compare; |
| u16 equiv_cpu; |
| u16 res; |
| } __packed; |
| |
| struct microcode_header_amd { |
| u32 data_code; |
| u32 patch_id; |
| u16 mc_patch_data_id; |
| u8 mc_patch_data_len; |
| u8 init_flag; |
| u32 mc_patch_data_checksum; |
| u32 nb_dev_id; |
| u32 sb_dev_id; |
| u16 processor_rev_id; |
| u8 nb_rev_id; |
| u8 sb_rev_id; |
| u8 bios_api_rev; |
| u8 reserved1[3]; |
| u32 match_reg[8]; |
| } __packed; |
| |
| struct microcode_amd { |
| struct microcode_header_amd hdr; |
| unsigned int mpb[]; |
| }; |
| |
| static struct equiv_cpu_table { |
| unsigned int num_entries; |
| struct equiv_cpu_entry *entry; |
| } equiv_table; |
| |
| union zen_patch_rev { |
| struct { |
| __u32 rev : 8, |
| stepping : 4, |
| model : 4, |
| __reserved : 4, |
| ext_model : 4, |
| ext_fam : 8; |
| }; |
| __u32 ucode_rev; |
| }; |
| |
| union cpuid_1_eax { |
| struct { |
| __u32 stepping : 4, |
| model : 4, |
| family : 4, |
| __reserved0 : 4, |
| ext_model : 4, |
| ext_fam : 8, |
| __reserved1 : 4; |
| }; |
| __u32 full; |
| }; |
| |
| /* |
| * This points to the current valid container of microcode patches which we will |
| * save from the initrd/builtin before jettisoning its contents. @mc is the |
| * microcode patch we found to match. |
| */ |
| struct cont_desc { |
| struct microcode_amd *mc; |
| u32 psize; |
| u8 *data; |
| size_t size; |
| }; |
| |
| /* |
| * Microcode patch container file is prepended to the initrd in cpio |
| * format. See Documentation/arch/x86/microcode.rst |
| */ |
| static const char |
| ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; |
| |
| /* |
| * This is CPUID(1).EAX on the BSP. It is used in two ways: |
| * |
| * 1. To ignore the equivalence table on Zen1 and newer. |
| * |
| * 2. To match which patches to load because the patch revision ID |
| * already contains the f/m/s for which the microcode is destined |
| * for. |
| */ |
| static u32 bsp_cpuid_1_eax __ro_after_init; |
| |
| static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) |
| { |
| union zen_patch_rev p; |
| union cpuid_1_eax c; |
| |
| p.ucode_rev = val; |
| c.full = 0; |
| |
| c.stepping = p.stepping; |
| c.model = p.model; |
| c.ext_model = p.ext_model; |
| c.family = 0xf; |
| c.ext_fam = p.ext_fam; |
| |
| return c; |
| } |
| |
| static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) |
| { |
| unsigned int i; |
| |
| /* Zen and newer do not need an equivalence table. */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) |
| return 0; |
| |
| if (!et || !et->num_entries) |
| return 0; |
| |
| for (i = 0; i < et->num_entries; i++) { |
| struct equiv_cpu_entry *e = &et->entry[i]; |
| |
| if (sig == e->installed_cpu) |
| return e->equiv_cpu; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check whether there is a valid microcode container file at the beginning |
| * of @buf of size @buf_size. |
| */ |
| static bool verify_container(const u8 *buf, size_t buf_size) |
| { |
| u32 cont_magic; |
| |
| if (buf_size <= CONTAINER_HDR_SZ) { |
| pr_debug("Truncated microcode container header.\n"); |
| return false; |
| } |
| |
| cont_magic = *(const u32 *)buf; |
| if (cont_magic != UCODE_MAGIC) { |
| pr_debug("Invalid magic value (0x%08x).\n", cont_magic); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Check whether there is a valid, non-truncated CPU equivalence table at the |
| * beginning of @buf of size @buf_size. |
| */ |
| static bool verify_equivalence_table(const u8 *buf, size_t buf_size) |
| { |
| const u32 *hdr = (const u32 *)buf; |
| u32 cont_type, equiv_tbl_len; |
| |
| if (!verify_container(buf, buf_size)) |
| return false; |
| |
| /* Zen and newer do not need an equivalence table. */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) |
| return true; |
| |
| cont_type = hdr[1]; |
| if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { |
| pr_debug("Wrong microcode container equivalence table type: %u.\n", |
| cont_type); |
| return false; |
| } |
| |
| buf_size -= CONTAINER_HDR_SZ; |
| |
| equiv_tbl_len = hdr[2]; |
| if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || |
| buf_size < equiv_tbl_len) { |
| pr_debug("Truncated equivalence table.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Check whether there is a valid, non-truncated microcode patch section at the |
| * beginning of @buf of size @buf_size. |
| * |
| * On success, @sh_psize returns the patch size according to the section header, |
| * to the caller. |
| */ |
| static bool |
| __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) |
| { |
| u32 p_type, p_size; |
| const u32 *hdr; |
| |
| if (buf_size < SECTION_HDR_SIZE) { |
| pr_debug("Truncated patch section.\n"); |
| return false; |
| } |
| |
| hdr = (const u32 *)buf; |
| p_type = hdr[0]; |
| p_size = hdr[1]; |
| |
| if (p_type != UCODE_UCODE_TYPE) { |
| pr_debug("Invalid type field (0x%x) in container file section header.\n", |
| p_type); |
| return false; |
| } |
| |
| if (p_size < sizeof(struct microcode_header_amd)) { |
| pr_debug("Patch of size %u too short.\n", p_size); |
| return false; |
| } |
| |
| *sh_psize = p_size; |
| |
| return true; |
| } |
| |
| /* |
| * Check whether the passed remaining file @buf_size is large enough to contain |
| * a patch of the indicated @sh_psize (and also whether this size does not |
| * exceed the per-family maximum). @sh_psize is the size read from the section |
| * header. |
| */ |
| static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size) |
| { |
| u8 family = x86_family(bsp_cpuid_1_eax); |
| u32 max_size; |
| |
| if (family >= 0x15) |
| return min_t(u32, sh_psize, buf_size); |
| |
| #define F1XH_MPB_MAX_SIZE 2048 |
| #define F14H_MPB_MAX_SIZE 1824 |
| |
| switch (family) { |
| case 0x10 ... 0x12: |
| max_size = F1XH_MPB_MAX_SIZE; |
| break; |
| case 0x14: |
| max_size = F14H_MPB_MAX_SIZE; |
| break; |
| default: |
| WARN(1, "%s: WTF family: 0x%x\n", __func__, family); |
| return 0; |
| } |
| |
| if (sh_psize > min_t(u32, buf_size, max_size)) |
| return 0; |
| |
| return sh_psize; |
| } |
| |
| /* |
| * Verify the patch in @buf. |
| * |
| * Returns: |
| * negative: on error |
| * positive: patch is not for this family, skip it |
| * 0: success |
| */ |
| static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) |
| { |
| u8 family = x86_family(bsp_cpuid_1_eax); |
| struct microcode_header_amd *mc_hdr; |
| unsigned int ret; |
| u32 sh_psize; |
| u16 proc_id; |
| u8 patch_fam; |
| |
| if (!__verify_patch_section(buf, buf_size, &sh_psize)) |
| return -1; |
| |
| /* |
| * The section header length is not included in this indicated size |
| * but is present in the leftover file length so we need to subtract |
| * it before passing this value to the function below. |
| */ |
| buf_size -= SECTION_HDR_SIZE; |
| |
| /* |
| * Check if the remaining buffer is big enough to contain a patch of |
| * size sh_psize, as the section claims. |
| */ |
| if (buf_size < sh_psize) { |
| pr_debug("Patch of size %u truncated.\n", sh_psize); |
| return -1; |
| } |
| |
| ret = __verify_patch_size(sh_psize, buf_size); |
| if (!ret) { |
| pr_debug("Per-family patch size mismatch.\n"); |
| return -1; |
| } |
| |
| *patch_size = sh_psize; |
| |
| mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); |
| if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { |
| pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); |
| return -1; |
| } |
| |
| proc_id = mc_hdr->processor_rev_id; |
| patch_fam = 0xf + (proc_id >> 12); |
| if (patch_fam != family) |
| return 1; |
| |
| return 0; |
| } |
| |
| static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) |
| { |
| /* Zen and newer do not need an equivalence table. */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) |
| return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; |
| else |
| return eq_id == mc->hdr.processor_rev_id; |
| } |
| |
| /* |
| * This scans the ucode blob for the proper container as we can have multiple |
| * containers glued together. Returns the equivalence ID from the equivalence |
| * table or 0 if none found. |
| * Returns the amount of bytes consumed while scanning. @desc contains all the |
| * data we're going to use in later stages of the application. |
| */ |
| static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) |
| { |
| struct equiv_cpu_table table; |
| size_t orig_size = size; |
| u32 *hdr = (u32 *)ucode; |
| u16 eq_id; |
| u8 *buf; |
| |
| if (!verify_equivalence_table(ucode, size)) |
| return 0; |
| |
| buf = ucode; |
| |
| table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); |
| table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); |
| |
| /* |
| * Find the equivalence ID of our CPU in this table. Even if this table |
| * doesn't contain a patch for the CPU, scan through the whole container |
| * so that it can be skipped in case there are other containers appended. |
| */ |
| eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); |
| |
| buf += hdr[2] + CONTAINER_HDR_SZ; |
| size -= hdr[2] + CONTAINER_HDR_SZ; |
| |
| /* |
| * Scan through the rest of the container to find where it ends. We do |
| * some basic sanity-checking too. |
| */ |
| while (size > 0) { |
| struct microcode_amd *mc; |
| u32 patch_size; |
| int ret; |
| |
| ret = verify_patch(buf, size, &patch_size); |
| if (ret < 0) { |
| /* |
| * Patch verification failed, skip to the next container, if |
| * there is one. Before exit, check whether that container has |
| * found a patch already. If so, use it. |
| */ |
| goto out; |
| } else if (ret > 0) { |
| goto skip; |
| } |
| |
| mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); |
| if (mc_patch_matches(mc, eq_id)) { |
| desc->psize = patch_size; |
| desc->mc = mc; |
| } |
| |
| skip: |
| /* Skip patch section header too: */ |
| buf += patch_size + SECTION_HDR_SIZE; |
| size -= patch_size + SECTION_HDR_SIZE; |
| } |
| |
| out: |
| /* |
| * If we have found a patch (desc->mc), it means we're looking at the |
| * container which has a patch for this CPU so return 0 to mean, @ucode |
| * already points to the proper container. Otherwise, we return the size |
| * we scanned so that we can advance to the next container in the |
| * buffer. |
| */ |
| if (desc->mc) { |
| desc->data = ucode; |
| desc->size = orig_size - size; |
| |
| return 0; |
| } |
| |
| return orig_size - size; |
| } |
| |
| /* |
| * Scan the ucode blob for the proper container as we can have multiple |
| * containers glued together. |
| */ |
| static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) |
| { |
| while (size) { |
| size_t s = parse_container(ucode, size, desc); |
| if (!s) |
| return; |
| |
| /* catch wraparound */ |
| if (size >= s) { |
| ucode += s; |
| size -= s; |
| } else { |
| return; |
| } |
| } |
| } |
| |
| static int __apply_microcode_amd(struct microcode_amd *mc) |
| { |
| u32 rev, dummy; |
| |
| native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code); |
| |
| /* verify patch application was successful */ |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); |
| |
| if (rev != mc->hdr.patch_id) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * Early load occurs before we can vmalloc(). So we look for the microcode |
| * patch container file in initrd, traverse equivalent cpu table, look for a |
| * matching microcode patch, and update, all in initrd memory in place. |
| * When vmalloc() is available for use later -- on 64-bit during first AP load, |
| * and on 32-bit during save_microcode_in_initrd_amd() -- we can call |
| * load_microcode_amd() to save equivalent cpu table and microcode patches in |
| * kernel heap memory. |
| * |
| * Returns true if container found (sets @desc), false otherwise. |
| */ |
| static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size) |
| { |
| struct cont_desc desc = { 0 }; |
| struct microcode_amd *mc; |
| bool ret = false; |
| |
| scan_containers(ucode, size, &desc); |
| |
| mc = desc.mc; |
| if (!mc) |
| return ret; |
| |
| /* |
| * Allow application of the same revision to pick up SMT-specific |
| * changes even if the revision of the other SMT thread is already |
| * up-to-date. |
| */ |
| if (old_rev > mc->hdr.patch_id) |
| return ret; |
| |
| return !__apply_microcode_amd(mc); |
| } |
| |
| static bool get_builtin_microcode(struct cpio_data *cp) |
| { |
| char fw_name[36] = "amd-ucode/microcode_amd.bin"; |
| u8 family = x86_family(bsp_cpuid_1_eax); |
| struct firmware fw; |
| |
| if (IS_ENABLED(CONFIG_X86_32)) |
| return false; |
| |
| if (family >= 0x15) |
| snprintf(fw_name, sizeof(fw_name), |
| "amd-ucode/microcode_amd_fam%02hhxh.bin", family); |
| |
| if (firmware_request_builtin(&fw, fw_name)) { |
| cp->size = fw.size; |
| cp->data = (void *)fw.data; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void __init find_blobs_in_containers(struct cpio_data *ret) |
| { |
| struct cpio_data cp; |
| |
| if (!get_builtin_microcode(&cp)) |
| cp = find_microcode_in_initrd(ucode_path); |
| |
| *ret = cp; |
| } |
| |
| void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) |
| { |
| struct cpio_data cp = { }; |
| u32 dummy; |
| |
| bsp_cpuid_1_eax = cpuid_1_eax; |
| |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy); |
| |
| /* Needed in load_microcode_amd() */ |
| ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; |
| |
| find_blobs_in_containers(&cp); |
| if (!(cp.data && cp.size)) |
| return; |
| |
| if (early_apply_microcode(ed->old_rev, cp.data, cp.size)) |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy); |
| } |
| |
| static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size); |
| |
| static int __init save_microcode_in_initrd(void) |
| { |
| unsigned int cpuid_1_eax = native_cpuid_eax(1); |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| struct cont_desc desc = { 0 }; |
| enum ucode_state ret; |
| struct cpio_data cp; |
| |
| if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) |
| return 0; |
| |
| find_blobs_in_containers(&cp); |
| if (!(cp.data && cp.size)) |
| return -EINVAL; |
| |
| scan_containers(cp.data, cp.size, &desc); |
| if (!desc.mc) |
| return -EINVAL; |
| |
| ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); |
| if (ret > UCODE_UPDATED) |
| return -EINVAL; |
| |
| return 0; |
| } |
| early_initcall(save_microcode_in_initrd); |
| |
| static inline bool patch_cpus_equivalent(struct ucode_patch *p, |
| struct ucode_patch *n, |
| bool ignore_stepping) |
| { |
| /* Zen and newer hardcode the f/m/s in the patch ID */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) { |
| union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); |
| union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); |
| |
| if (ignore_stepping) { |
| p_cid.stepping = 0; |
| n_cid.stepping = 0; |
| } |
| |
| return p_cid.full == n_cid.full; |
| } else { |
| return p->equiv_cpu == n->equiv_cpu; |
| } |
| } |
| |
| /* |
| * a small, trivial cache of per-family ucode patches |
| */ |
| static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) |
| { |
| struct ucode_patch *p; |
| struct ucode_patch n; |
| |
| n.equiv_cpu = equiv_cpu; |
| n.patch_id = uci->cpu_sig.rev; |
| |
| WARN_ON_ONCE(!n.patch_id); |
| |
| list_for_each_entry(p, µcode_cache, plist) |
| if (patch_cpus_equivalent(p, &n, false)) |
| return p; |
| |
| return NULL; |
| } |
| |
| static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) |
| { |
| /* Zen and newer hardcode the f/m/s in the patch ID */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) { |
| union zen_patch_rev zp, zn; |
| |
| zp.ucode_rev = p->patch_id; |
| zn.ucode_rev = n->patch_id; |
| |
| if (zn.stepping != zp.stepping) |
| return -1; |
| |
| return zn.rev > zp.rev; |
| } else { |
| return n->patch_id > p->patch_id; |
| } |
| } |
| |
| static void update_cache(struct ucode_patch *new_patch) |
| { |
| struct ucode_patch *p; |
| int ret; |
| |
| list_for_each_entry(p, µcode_cache, plist) { |
| if (patch_cpus_equivalent(p, new_patch, true)) { |
| ret = patch_newer(p, new_patch); |
| if (ret < 0) |
| continue; |
| else if (!ret) { |
| /* we already have the latest patch */ |
| kfree(new_patch->data); |
| kfree(new_patch); |
| return; |
| } |
| |
| list_replace(&p->plist, &new_patch->plist); |
| kfree(p->data); |
| kfree(p); |
| return; |
| } |
| } |
| /* no patch found, add it */ |
| list_add_tail(&new_patch->plist, µcode_cache); |
| } |
| |
| static void free_cache(void) |
| { |
| struct ucode_patch *p, *tmp; |
| |
| list_for_each_entry_safe(p, tmp, µcode_cache, plist) { |
| __list_del(p->plist.prev, p->plist.next); |
| kfree(p->data); |
| kfree(p); |
| } |
| } |
| |
| static struct ucode_patch *find_patch(unsigned int cpu) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| u32 rev, dummy __always_unused; |
| u16 equiv_id = 0; |
| |
| /* fetch rev if not populated yet: */ |
| if (!uci->cpu_sig.rev) { |
| rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); |
| uci->cpu_sig.rev = rev; |
| } |
| |
| if (x86_family(bsp_cpuid_1_eax) < 0x17) { |
| equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); |
| if (!equiv_id) |
| return NULL; |
| } |
| |
| return cache_find_patch(uci, equiv_id); |
| } |
| |
| void reload_ucode_amd(unsigned int cpu) |
| { |
| u32 rev, dummy __always_unused; |
| struct microcode_amd *mc; |
| struct ucode_patch *p; |
| |
| p = find_patch(cpu); |
| if (!p) |
| return; |
| |
| mc = p->data; |
| |
| rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); |
| |
| if (rev < mc->hdr.patch_id) { |
| if (!__apply_microcode_amd(mc)) |
| pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id); |
| } |
| } |
| |
| static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| struct ucode_patch *p; |
| |
| csig->sig = cpuid_eax(0x00000001); |
| csig->rev = c->microcode; |
| |
| /* |
| * a patch could have been loaded early, set uci->mc so that |
| * mc_bp_resume() can call apply_microcode() |
| */ |
| p = find_patch(cpu); |
| if (p && (p->patch_id == csig->rev)) |
| uci->mc = p->data; |
| |
| return 0; |
| } |
| |
| static enum ucode_state apply_microcode_amd(int cpu) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| struct microcode_amd *mc_amd; |
| struct ucode_cpu_info *uci; |
| struct ucode_patch *p; |
| enum ucode_state ret; |
| u32 rev; |
| |
| BUG_ON(raw_smp_processor_id() != cpu); |
| |
| uci = ucode_cpu_info + cpu; |
| |
| p = find_patch(cpu); |
| if (!p) |
| return UCODE_NFOUND; |
| |
| rev = uci->cpu_sig.rev; |
| |
| mc_amd = p->data; |
| uci->mc = p->data; |
| |
| /* need to apply patch? */ |
| if (rev > mc_amd->hdr.patch_id) { |
| ret = UCODE_OK; |
| goto out; |
| } |
| |
| if (__apply_microcode_amd(mc_amd)) { |
| pr_err("CPU%d: update failed for patch_level=0x%08x\n", |
| cpu, mc_amd->hdr.patch_id); |
| return UCODE_ERROR; |
| } |
| |
| rev = mc_amd->hdr.patch_id; |
| ret = UCODE_UPDATED; |
| |
| out: |
| uci->cpu_sig.rev = rev; |
| c->microcode = rev; |
| |
| /* Update boot_cpu_data's revision too, if we're on the BSP: */ |
| if (c->cpu_index == boot_cpu_data.cpu_index) |
| boot_cpu_data.microcode = rev; |
| |
| return ret; |
| } |
| |
| void load_ucode_amd_ap(unsigned int cpuid_1_eax) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; |
| apply_microcode_amd(cpu); |
| } |
| |
| static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) |
| { |
| u32 equiv_tbl_len; |
| const u32 *hdr; |
| |
| if (!verify_equivalence_table(buf, buf_size)) |
| return 0; |
| |
| hdr = (const u32 *)buf; |
| equiv_tbl_len = hdr[2]; |
| |
| /* Zen and newer do not need an equivalence table. */ |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) |
| goto out; |
| |
| equiv_table.entry = vmalloc(equiv_tbl_len); |
| if (!equiv_table.entry) { |
| pr_err("failed to allocate equivalent CPU table\n"); |
| return 0; |
| } |
| |
| memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); |
| equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); |
| |
| out: |
| /* add header length */ |
| return equiv_tbl_len + CONTAINER_HDR_SZ; |
| } |
| |
| static void free_equiv_cpu_table(void) |
| { |
| if (x86_family(bsp_cpuid_1_eax) >= 0x17) |
| return; |
| |
| vfree(equiv_table.entry); |
| memset(&equiv_table, 0, sizeof(equiv_table)); |
| } |
| |
| static void cleanup(void) |
| { |
| free_equiv_cpu_table(); |
| free_cache(); |
| } |
| |
| /* |
| * Return a non-negative value even if some of the checks failed so that |
| * we can skip over the next patch. If we return a negative value, we |
| * signal a grave error like a memory allocation has failed and the |
| * driver cannot continue functioning normally. In such cases, we tear |
| * down everything we've used up so far and exit. |
| */ |
| static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, |
| unsigned int *patch_size) |
| { |
| struct microcode_header_amd *mc_hdr; |
| struct ucode_patch *patch; |
| u16 proc_id; |
| int ret; |
| |
| ret = verify_patch(fw, leftover, patch_size); |
| if (ret) |
| return ret; |
| |
| patch = kzalloc(sizeof(*patch), GFP_KERNEL); |
| if (!patch) { |
| pr_err("Patch allocation failure.\n"); |
| return -EINVAL; |
| } |
| |
| patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); |
| if (!patch->data) { |
| pr_err("Patch data allocation failure.\n"); |
| kfree(patch); |
| return -EINVAL; |
| } |
| patch->size = *patch_size; |
| |
| mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); |
| proc_id = mc_hdr->processor_rev_id; |
| |
| INIT_LIST_HEAD(&patch->plist); |
| patch->patch_id = mc_hdr->patch_id; |
| patch->equiv_cpu = proc_id; |
| |
| pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", |
| __func__, patch->patch_id, proc_id); |
| |
| /* ... and add to cache. */ |
| update_cache(patch); |
| |
| return 0; |
| } |
| |
| /* Scan the blob in @data and add microcode patches to the cache. */ |
| static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, |
| size_t size) |
| { |
| u8 *fw = (u8 *)data; |
| size_t offset; |
| |
| offset = install_equiv_cpu_table(data, size); |
| if (!offset) |
| return UCODE_ERROR; |
| |
| fw += offset; |
| size -= offset; |
| |
| if (*(u32 *)fw != UCODE_UCODE_TYPE) { |
| pr_err("invalid type field in container file section header\n"); |
| free_equiv_cpu_table(); |
| return UCODE_ERROR; |
| } |
| |
| while (size > 0) { |
| unsigned int crnt_size = 0; |
| int ret; |
| |
| ret = verify_and_add_patch(family, fw, size, &crnt_size); |
| if (ret < 0) |
| return UCODE_ERROR; |
| |
| fw += crnt_size + SECTION_HDR_SIZE; |
| size -= (crnt_size + SECTION_HDR_SIZE); |
| } |
| |
| return UCODE_OK; |
| } |
| |
| static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) |
| { |
| enum ucode_state ret; |
| |
| /* free old equiv table */ |
| free_equiv_cpu_table(); |
| |
| ret = __load_microcode_amd(family, data, size); |
| if (ret != UCODE_OK) |
| cleanup(); |
| |
| return ret; |
| } |
| |
| static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) |
| { |
| struct cpuinfo_x86 *c; |
| unsigned int nid, cpu; |
| struct ucode_patch *p; |
| enum ucode_state ret; |
| |
| ret = _load_microcode_amd(family, data, size); |
| if (ret != UCODE_OK) |
| return ret; |
| |
| for_each_node(nid) { |
| cpu = cpumask_first(cpumask_of_node(nid)); |
| c = &cpu_data(cpu); |
| |
| p = find_patch(cpu); |
| if (!p) |
| continue; |
| |
| if (c->microcode >= p->patch_id) |
| continue; |
| |
| ret = UCODE_NEW; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * AMD microcode firmware naming convention, up to family 15h they are in |
| * the legacy file: |
| * |
| * amd-ucode/microcode_amd.bin |
| * |
| * This legacy file is always smaller than 2K in size. |
| * |
| * Beginning with family 15h, they are in family-specific firmware files: |
| * |
| * amd-ucode/microcode_amd_fam15h.bin |
| * amd-ucode/microcode_amd_fam16h.bin |
| * ... |
| * |
| * These might be larger than 2K. |
| */ |
| static enum ucode_state request_microcode_amd(int cpu, struct device *device) |
| { |
| char fw_name[36] = "amd-ucode/microcode_amd.bin"; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| enum ucode_state ret = UCODE_NFOUND; |
| const struct firmware *fw; |
| |
| if (force_minrev) |
| return UCODE_NFOUND; |
| |
| if (c->x86 >= 0x15) |
| snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); |
| |
| if (request_firmware_direct(&fw, (const char *)fw_name, device)) { |
| pr_debug("failed to load file %s\n", fw_name); |
| goto out; |
| } |
| |
| ret = UCODE_ERROR; |
| if (!verify_container(fw->data, fw->size)) |
| goto fw_release; |
| |
| ret = load_microcode_amd(c->x86, fw->data, fw->size); |
| |
| fw_release: |
| release_firmware(fw); |
| |
| out: |
| return ret; |
| } |
| |
| static void microcode_fini_cpu_amd(int cpu) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| |
| uci->mc = NULL; |
| } |
| |
| static struct microcode_ops microcode_amd_ops = { |
| .request_microcode_fw = request_microcode_amd, |
| .collect_cpu_info = collect_cpu_info_amd, |
| .apply_microcode = apply_microcode_amd, |
| .microcode_fini_cpu = microcode_fini_cpu_amd, |
| .nmi_safe = true, |
| }; |
| |
| struct microcode_ops * __init init_amd_microcode(void) |
| { |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { |
| pr_warn("AMD CPU family 0x%x not supported\n", c->x86); |
| return NULL; |
| } |
| return µcode_amd_ops; |
| } |
| |
| void __exit exit_amd_microcode(void) |
| { |
| cleanup(); |
| } |