blob: b3658d11e7b69224a0e9e59be9d730ae7b9b5f06 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
* 2006 Shaohua Li <shaohua.li@intel.com>
* 2013-2016 Borislav Petkov <bp@alien8.de>
*
* X86 CPU microcode early update for Linux:
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
* (C) 2015 Borislav Petkov <bp@alien8.de>
*
* This driver allows to upgrade microcode on x86 processors.
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/platform_device.h>
#include <linux/stop_machine.h>
#include <linux/syscore_ops.h>
#include <linux/miscdevice.h>
#include <linux/capability.h>
#include <linux/firmware.h>
#include <linux/cpumask.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/cpu.h>
#include <linux/nmi.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/apic.h>
#include <asm/cpu_device_id.h>
#include <asm/perf_event.h>
#include <asm/processor.h>
#include <asm/cmdline.h>
#include <asm/setup.h>
#include "internal.h"
static struct microcode_ops *microcode_ops;
bool dis_ucode_ldr = true;
bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
/*
* Synchronization.
*
* All non cpu-hotplug-callback call sites use:
*
* - cpus_read_lock/unlock() to synchronize with
* the cpu-hotplug-callback call sites.
*
* We guarantee that only a single cpu is being
* updated at any particular moment of time.
*/
struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
struct early_load_data early_data;
/*
* Check the current patch level on this CPU.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
static bool amd_check_current_patch_level(void)
{
u32 lvl, dummy, i;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i])
return true;
}
return false;
}
static bool __init check_loader_disabled_bsp(void)
{
static const char *__dis_opt_str = "dis_ucode_ldr";
const char *cmdline = boot_command_line;
const char *option = __dis_opt_str;
/*
* CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
* completely accurate as xen pv guests don't see that CPUID bit set but
* that's good enough as they don't land on the BSP path anyway.
*/
if (native_cpuid_ecx(1) & BIT(31))
return true;
if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
if (amd_check_current_patch_level())
return true;
}
if (cmdline_find_option_bool(cmdline, option) <= 0)
dis_ucode_ldr = false;
return dis_ucode_ldr;
}
void __init load_ucode_bsp(void)
{
unsigned int cpuid_1_eax;
bool intel = true;
if (!have_cpuid_p())
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) < 6)
return;
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) < 0x10)
return;
intel = false;
break;
default:
return;
}
if (check_loader_disabled_bsp())
return;
if (intel)
load_ucode_intel_bsp(&early_data);
else
load_ucode_amd_bsp(&early_data, cpuid_1_eax);
}
void load_ucode_ap(void)
{
unsigned int cpuid_1_eax;
if (dis_ucode_ldr)
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) >= 6)
load_ucode_intel_ap();
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) >= 0x10)
load_ucode_amd_ap(cpuid_1_eax);
break;
default:
break;
}
}
struct cpio_data __init find_microcode_in_initrd(const char *path)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long start = 0;
size_t size;
#ifdef CONFIG_X86_32
size = boot_params.hdr.ramdisk_size;
/* Early load on BSP has a temporary mapping. */
if (size)
start = initrd_start_early;
#else /* CONFIG_X86_64 */
size = (unsigned long)boot_params.ext_ramdisk_size << 32;
size |= boot_params.hdr.ramdisk_size;
if (size) {
start = (unsigned long)boot_params.ext_ramdisk_image << 32;
start |= boot_params.hdr.ramdisk_image;
start += PAGE_OFFSET;
}
#endif
/*
* Fixup the start address: after reserve_initrd() runs, initrd_start
* has the virtual address of the beginning of the initrd. It also
* possibly relocates the ramdisk. In either case, initrd_start contains
* the updated address so use that instead.
*/
if (initrd_start)
start = initrd_start;
return find_cpio_data(path, (void *)start, size, NULL);
#else /* !CONFIG_BLK_DEV_INITRD */
return (struct cpio_data){ NULL, 0, "" };
#endif
}
static void reload_early_microcode(unsigned int cpu)
{
int vendor, family;
vendor = x86_cpuid_vendor();
family = x86_cpuid_family();
switch (vendor) {
case X86_VENDOR_INTEL:
if (family >= 6)
reload_ucode_intel();
break;
case X86_VENDOR_AMD:
if (family >= 0x10)
reload_ucode_amd(cpu);
break;
default:
break;
}
}
/* fake device for request_firmware */
static struct platform_device *microcode_pdev;
#ifdef CONFIG_MICROCODE_LATE_LOADING
/*
* Late loading dance. Why the heavy-handed stomp_machine effort?
*
* - HT siblings must be idle and not execute other code while the other sibling
* is loading microcode in order to avoid any negative interactions caused by
* the loading.
*
* - In addition, microcode update on the cores must be serialized until this
* requirement can be relaxed in the future. Right now, this is conservative
* and good.
*/
enum sibling_ctrl {
/* Spinwait with timeout */
SCTRL_WAIT,
/* Invoke the microcode_apply() callback */
SCTRL_APPLY,
/* Proceed without invoking the microcode_apply() callback */
SCTRL_DONE,
};
struct microcode_ctrl {
enum sibling_ctrl ctrl;
enum ucode_state result;
unsigned int ctrl_cpu;
bool nmi_enabled;
};
DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
static atomic_t late_cpus_in, offline_in_nmi;
static unsigned int loops_per_usec;
static cpumask_t cpu_offline_mask;
static noinstr bool wait_for_cpus(atomic_t *cnt)
{
unsigned int timeout, loops;
WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
if (!raw_atomic_read(cnt))
return true;
for (loops = 0; loops < loops_per_usec; loops++)
cpu_relax();
/* If invoked directly, tickle the NMI watchdog */
if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
instrumentation_begin();
touch_nmi_watchdog();
instrumentation_end();
}
}
/* Prevent the late comers from making progress and let them time out */
raw_atomic_inc(cnt);
return false;
}
static noinstr bool wait_for_ctrl(void)
{
unsigned int timeout, loops;
for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
return true;
for (loops = 0; loops < loops_per_usec; loops++)
cpu_relax();
/* If invoked directly, tickle the NMI watchdog */
if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
instrumentation_begin();
touch_nmi_watchdog();
instrumentation_end();
}
}
return false;
}
/*
* Protected against instrumentation up to the point where the primary
* thread completed the update. See microcode_nmi_handler() for details.
*/
static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
{
/* Initial rendezvous to ensure that all CPUs have arrived */
if (!wait_for_cpus(&late_cpus_in)) {
raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
return false;
}
/*
* Wait for primary threads to complete. If one of them hangs due
* to the update, there is no way out. This is non-recoverable
* because the CPU might hold locks or resources and confuse the
* scheduler, watchdogs etc. There is no way to safely evacuate the
* machine.
*/
if (wait_for_ctrl())
return true;
instrumentation_begin();
panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
instrumentation_end();
}
/*
* Protected against instrumentation up to the point where the primary
* thread completed the update. See microcode_nmi_handler() for details.
*/
static noinstr void load_secondary(unsigned int cpu)
{
unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
enum ucode_state ret;
if (!load_secondary_wait(ctrl_cpu)) {
instrumentation_begin();
pr_err_once("load: %d CPUs timed out\n",
atomic_read(&late_cpus_in) - 1);
instrumentation_end();
return;
}
/* Primary thread completed. Allow to invoke instrumentable code */
instrumentation_begin();
/*
* If the primary succeeded then invoke the apply() callback,
* otherwise copy the state from the primary thread.
*/
if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
ret = microcode_ops->apply_microcode(cpu);
else
ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
this_cpu_write(ucode_ctrl.result, ret);
this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
instrumentation_end();
}
static void __load_primary(unsigned int cpu)
{
struct cpumask *secondaries = topology_sibling_cpumask(cpu);
enum sibling_ctrl ctrl;
enum ucode_state ret;
unsigned int sibling;
/* Initial rendezvous to ensure that all CPUs have arrived */
if (!wait_for_cpus(&late_cpus_in)) {
this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
return;
}
ret = microcode_ops->apply_microcode(cpu);
this_cpu_write(ucode_ctrl.result, ret);
this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
/*
* If the update was successful, let the siblings run the apply()
* callback. If not, tell them it's done. This also covers the
* case where the CPU has uniform loading at package or system
* scope implemented but does not advertise it.
*/
if (ret == UCODE_UPDATED || ret == UCODE_OK)
ctrl = SCTRL_APPLY;
else
ctrl = SCTRL_DONE;
for_each_cpu(sibling, secondaries) {
if (sibling != cpu)
per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
}
}
static bool kick_offline_cpus(unsigned int nr_offl)
{
unsigned int cpu, timeout;
for_each_cpu(cpu, &cpu_offline_mask) {
/* Enable the rendezvous handler and send NMI */
per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
apic_send_nmi_to_offline_cpu(cpu);
}
/* Wait for them to arrive */
for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
if (atomic_read(&offline_in_nmi) == nr_offl)
return true;
udelay(1);
}
/* Let the others time out */
return false;
}
static void release_offline_cpus(void)
{
unsigned int cpu;
for_each_cpu(cpu, &cpu_offline_mask)
per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
}
static void load_primary(unsigned int cpu)
{
unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
bool proceed = true;
/* Kick soft-offlined SMT siblings if required */
if (!cpu && nr_offl)
proceed = kick_offline_cpus(nr_offl);
/* If the soft-offlined CPUs did not respond, abort */
if (proceed)
__load_primary(cpu);
/* Unconditionally release soft-offlined SMT siblings if required */
if (!cpu && nr_offl)
release_offline_cpus();
}
/*
* Minimal stub rendezvous handler for soft-offlined CPUs which participate
* in the NMI rendezvous to protect against a concurrent NMI on affected
* CPUs.
*/
void noinstr microcode_offline_nmi_handler(void)
{
if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
return;
raw_cpu_write(ucode_ctrl.nmi_enabled, false);
raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
raw_atomic_inc(&offline_in_nmi);
wait_for_ctrl();
}
static noinstr bool microcode_update_handler(void)
{
unsigned int cpu = raw_smp_processor_id();
if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
instrumentation_begin();
load_primary(cpu);
instrumentation_end();
} else {
load_secondary(cpu);
}
instrumentation_begin();
touch_nmi_watchdog();
instrumentation_end();
return true;
}
/*
* Protection against instrumentation is required for CPUs which are not
* safe against an NMI which is delivered to the secondary SMT sibling
* while the primary thread updates the microcode. Instrumentation can end
* up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
* which is the opposite of what the NMI rendezvous is trying to achieve.
*
* The primary thread is safe versus instrumentation as the actual
* microcode update handles this correctly. It's only the sibling code
* path which must be NMI safe until the primary thread completed the
* update.
*/
bool noinstr microcode_nmi_handler(void)
{
if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
return false;
raw_cpu_write(ucode_ctrl.nmi_enabled, false);
return microcode_update_handler();
}
static int load_cpus_stopped(void *unused)
{
if (microcode_ops->use_nmi) {
/* Enable the NMI handler and raise NMI */
this_cpu_write(ucode_ctrl.nmi_enabled, true);
apic->send_IPI(smp_processor_id(), NMI_VECTOR);
} else {
/* Just invoke the handler directly */
microcode_update_handler();
}
return 0;
}
static int load_late_stop_cpus(bool is_safe)
{
unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
unsigned int nr_offl, offline = 0;
int old_rev = boot_cpu_data.microcode;
struct cpuinfo_x86 prev_info;
if (!is_safe) {
pr_err("Late microcode loading without minimal revision check.\n");
pr_err("You should switch to early loading, if possible.\n");
}
atomic_set(&late_cpus_in, num_online_cpus());
atomic_set(&offline_in_nmi, 0);
loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
/*
* Take a snapshot before the microcode update in order to compare and
* check whether any bits changed after an update.
*/
store_cpu_caps(&prev_info);
if (microcode_ops->use_nmi)
static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
if (microcode_ops->use_nmi)
static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
/* Analyze the results */
for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
switch (per_cpu(ucode_ctrl.result, cpu)) {
case UCODE_UPDATED: updated++; break;
case UCODE_TIMEOUT: timedout++; break;
case UCODE_OK: siblings++; break;
case UCODE_OFFLINE: offline++; break;
default: failed++; break;
}
}
if (microcode_ops->finalize_late_load)
microcode_ops->finalize_late_load(!updated);
if (!updated) {
/* Nothing changed. */
if (!failed && !timedout)
return 0;
nr_offl = cpumask_weight(&cpu_offline_mask);
if (offline < nr_offl) {
pr_warn("%u offline siblings did not respond.\n",
nr_offl - atomic_read(&offline_in_nmi));
return -EIO;
}
pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
failed, timedout);
return -EIO;
}
if (!is_safe || failed || timedout)
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
if (failed || timedout) {
pr_err("load incomplete. %u CPUs timed out or failed\n",
num_online_cpus() - (updated + siblings));
}
pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
microcode_check(&prev_info);
return updated + siblings == num_online_cpus() ? 0 : -EIO;
}
/*
* This function does two things:
*
* 1) Ensure that all required CPUs which are present and have been booted
* once are online.
*
* To pass this check, all primary threads must be online.
*
* If the microcode load is not safe against NMI then all SMT threads
* must be online as well because they still react to NMIs when they are
* soft-offlined and parked in one of the play_dead() variants. So if a
* NMI hits while the primary thread updates the microcode the resulting
* behaviour is undefined. The default play_dead() implementation on
* modern CPUs uses MWAIT, which is also not guaranteed to be safe
* against a microcode update which affects MWAIT.
*
* As soft-offlined CPUs still react on NMIs, the SMT sibling
* restriction can be lifted when the vendor driver signals to use NMI
* for rendezvous and the APIC provides a mechanism to send an NMI to a
* soft-offlined CPU. The soft-offlined CPUs are then able to
* participate in the rendezvous in a trivial stub handler.
*
* 2) Initialize the per CPU control structure and create a cpumask
* which contains "offline"; secondary threads, so they can be handled
* correctly by a control CPU.
*/
static bool setup_cpus(void)
{
struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
bool allow_smt_offline;
unsigned int cpu;
allow_smt_offline = microcode_ops->nmi_safe ||
(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
cpumask_clear(&cpu_offline_mask);
for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
/*
* Offline CPUs sit in one of the play_dead() functions
* with interrupts disabled, but they still react on NMIs
* and execute arbitrary code. Also MWAIT being updated
* while the offline CPU sits there is not necessarily safe
* on all CPU variants.
*
* Mark them in the offline_cpus mask which will be handled
* by CPU0 later in the update process.
*
* Ensure that the primary thread is online so that it is
* guaranteed that all cores are updated.
*/
if (!cpu_online(cpu)) {
if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
pr_err("CPU %u not online, loading aborted\n", cpu);
return false;
}
cpumask_set_cpu(cpu, &cpu_offline_mask);
per_cpu(ucode_ctrl, cpu) = ctrl;
continue;
}
/*
* Initialize the per CPU state. This is core scope for now,
* but prepared to take package or system scope into account.
*/
ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
per_cpu(ucode_ctrl, cpu) = ctrl;
}
return true;
}
static int load_late_locked(void)
{
if (!setup_cpus())
return -EBUSY;
switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
case UCODE_NEW:
return load_late_stop_cpus(false);
case UCODE_NEW_SAFE:
return load_late_stop_cpus(true);
case UCODE_NFOUND:
return -ENOENT;
default:
return -EBADFD;
}
}
static ssize_t reload_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 0, &val);
if (ret || val != 1)
return -EINVAL;
cpus_read_lock();
ret = load_late_locked();
cpus_read_unlock();
return ret ? : size;
}
static DEVICE_ATTR_WO(reload);
#endif
static ssize_t version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
}
static ssize_t processor_flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
}
static DEVICE_ATTR_RO(version);
static DEVICE_ATTR_RO(processor_flags);
static struct attribute *mc_default_attrs[] = {
&dev_attr_version.attr,
&dev_attr_processor_flags.attr,
NULL
};
static const struct attribute_group mc_attr_group = {
.attrs = mc_default_attrs,
.name = "microcode",
};
static void microcode_fini_cpu(int cpu)
{
if (microcode_ops->microcode_fini_cpu)
microcode_ops->microcode_fini_cpu(cpu);
}
/**
* microcode_bsp_resume - Update boot CPU microcode during resume.
*/
void microcode_bsp_resume(void)
{
int cpu = smp_processor_id();
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
if (uci->mc)
microcode_ops->apply_microcode(cpu);
else
reload_early_microcode(cpu);
}
static struct syscore_ops mc_syscore_ops = {
.resume = microcode_bsp_resume,
};
static int mc_cpu_online(unsigned int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct device *dev = get_cpu_device(cpu);
memset(uci, 0, sizeof(*uci));
microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
cpu_data(cpu).microcode = uci->cpu_sig.rev;
if (!cpu)
boot_cpu_data.microcode = uci->cpu_sig.rev;
if (sysfs_create_group(&dev->kobj, &mc_attr_group))
pr_err("Failed to create group for CPU%d\n", cpu);
return 0;
}
static int mc_cpu_down_prep(unsigned int cpu)
{
struct device *dev = get_cpu_device(cpu);
microcode_fini_cpu(cpu);
sysfs_remove_group(&dev->kobj, &mc_attr_group);
return 0;
}
static struct attribute *cpu_root_microcode_attrs[] = {
#ifdef CONFIG_MICROCODE_LATE_LOADING
&dev_attr_reload.attr,
#endif
NULL
};
static const struct attribute_group cpu_root_microcode_group = {
.name = "microcode",
.attrs = cpu_root_microcode_attrs,
};
static int __init microcode_init(void)
{
struct device *dev_root;
struct cpuinfo_x86 *c = &boot_cpu_data;
int error;
if (dis_ucode_ldr)
return -EINVAL;
if (c->x86_vendor == X86_VENDOR_INTEL)
microcode_ops = init_intel_microcode();
else if (c->x86_vendor == X86_VENDOR_AMD)
microcode_ops = init_amd_microcode();
else
pr_err("no support for this CPU vendor\n");
if (!microcode_ops)
return -ENODEV;
pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
if (early_data.new_rev)
pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
if (IS_ERR(microcode_pdev))
return PTR_ERR(microcode_pdev);
dev_root = bus_get_dev_root(&cpu_subsys);
if (dev_root) {
error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
put_device(dev_root);
if (error) {
pr_err("Error creating microcode group!\n");
goto out_pdev;
}
}
register_syscore_ops(&mc_syscore_ops);
cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
mc_cpu_online, mc_cpu_down_prep);
return 0;
out_pdev:
platform_device_unregister(microcode_pdev);
return error;
}
late_initcall(microcode_init);