| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * CPU Microcode Update Driver for Linux |
| * |
| * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com> |
| * 2006 Shaohua Li <shaohua.li@intel.com> |
| * 2013-2016 Borislav Petkov <bp@alien8.de> |
| * |
| * X86 CPU microcode early update for Linux: |
| * |
| * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> |
| * H Peter Anvin" <hpa@zytor.com> |
| * (C) 2015 Borislav Petkov <bp@alien8.de> |
| * |
| * This driver allows to upgrade microcode on x86 processors. |
| */ |
| |
| #define pr_fmt(fmt) "microcode: " fmt |
| |
| #include <linux/platform_device.h> |
| #include <linux/stop_machine.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/miscdevice.h> |
| #include <linux/capability.h> |
| #include <linux/firmware.h> |
| #include <linux/cpumask.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/cpu.h> |
| #include <linux/nmi.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| |
| #include <asm/apic.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/perf_event.h> |
| #include <asm/processor.h> |
| #include <asm/cmdline.h> |
| #include <asm/setup.h> |
| |
| #include "internal.h" |
| |
| static struct microcode_ops *microcode_ops; |
| bool dis_ucode_ldr = true; |
| |
| bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV); |
| module_param(force_minrev, bool, S_IRUSR | S_IWUSR); |
| |
| /* |
| * Synchronization. |
| * |
| * All non cpu-hotplug-callback call sites use: |
| * |
| * - cpus_read_lock/unlock() to synchronize with |
| * the cpu-hotplug-callback call sites. |
| * |
| * We guarantee that only a single cpu is being |
| * updated at any particular moment of time. |
| */ |
| struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; |
| |
| /* |
| * Those patch levels cannot be updated to newer ones and thus should be final. |
| */ |
| static u32 final_levels[] = { |
| 0x01000098, |
| 0x0100009f, |
| 0x010000af, |
| 0, /* T-101 terminator */ |
| }; |
| |
| struct early_load_data early_data; |
| |
| /* |
| * Check the current patch level on this CPU. |
| * |
| * Returns: |
| * - true: if update should stop |
| * - false: otherwise |
| */ |
| static bool amd_check_current_patch_level(void) |
| { |
| u32 lvl, dummy, i; |
| u32 *levels; |
| |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); |
| |
| levels = final_levels; |
| |
| for (i = 0; levels[i]; i++) { |
| if (lvl == levels[i]) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool __init check_loader_disabled_bsp(void) |
| { |
| static const char *__dis_opt_str = "dis_ucode_ldr"; |
| const char *cmdline = boot_command_line; |
| const char *option = __dis_opt_str; |
| |
| /* |
| * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not |
| * completely accurate as xen pv guests don't see that CPUID bit set but |
| * that's good enough as they don't land on the BSP path anyway. |
| */ |
| if (native_cpuid_ecx(1) & BIT(31)) |
| return true; |
| |
| if (x86_cpuid_vendor() == X86_VENDOR_AMD) { |
| if (amd_check_current_patch_level()) |
| return true; |
| } |
| |
| if (cmdline_find_option_bool(cmdline, option) <= 0) |
| dis_ucode_ldr = false; |
| |
| return dis_ucode_ldr; |
| } |
| |
| void __init load_ucode_bsp(void) |
| { |
| unsigned int cpuid_1_eax; |
| bool intel = true; |
| |
| if (!have_cpuid_p()) |
| return; |
| |
| cpuid_1_eax = native_cpuid_eax(1); |
| |
| switch (x86_cpuid_vendor()) { |
| case X86_VENDOR_INTEL: |
| if (x86_family(cpuid_1_eax) < 6) |
| return; |
| break; |
| |
| case X86_VENDOR_AMD: |
| if (x86_family(cpuid_1_eax) < 0x10) |
| return; |
| intel = false; |
| break; |
| |
| default: |
| return; |
| } |
| |
| if (check_loader_disabled_bsp()) |
| return; |
| |
| if (intel) |
| load_ucode_intel_bsp(&early_data); |
| else |
| load_ucode_amd_bsp(&early_data, cpuid_1_eax); |
| } |
| |
| void load_ucode_ap(void) |
| { |
| unsigned int cpuid_1_eax; |
| |
| if (dis_ucode_ldr) |
| return; |
| |
| cpuid_1_eax = native_cpuid_eax(1); |
| |
| switch (x86_cpuid_vendor()) { |
| case X86_VENDOR_INTEL: |
| if (x86_family(cpuid_1_eax) >= 6) |
| load_ucode_intel_ap(); |
| break; |
| case X86_VENDOR_AMD: |
| if (x86_family(cpuid_1_eax) >= 0x10) |
| load_ucode_amd_ap(cpuid_1_eax); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| struct cpio_data __init find_microcode_in_initrd(const char *path) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| unsigned long start = 0; |
| size_t size; |
| |
| #ifdef CONFIG_X86_32 |
| size = boot_params.hdr.ramdisk_size; |
| /* Early load on BSP has a temporary mapping. */ |
| if (size) |
| start = initrd_start_early; |
| |
| #else /* CONFIG_X86_64 */ |
| size = (unsigned long)boot_params.ext_ramdisk_size << 32; |
| size |= boot_params.hdr.ramdisk_size; |
| |
| if (size) { |
| start = (unsigned long)boot_params.ext_ramdisk_image << 32; |
| start |= boot_params.hdr.ramdisk_image; |
| start += PAGE_OFFSET; |
| } |
| #endif |
| |
| /* |
| * Fixup the start address: after reserve_initrd() runs, initrd_start |
| * has the virtual address of the beginning of the initrd. It also |
| * possibly relocates the ramdisk. In either case, initrd_start contains |
| * the updated address so use that instead. |
| */ |
| if (initrd_start) |
| start = initrd_start; |
| |
| return find_cpio_data(path, (void *)start, size, NULL); |
| #else /* !CONFIG_BLK_DEV_INITRD */ |
| return (struct cpio_data){ NULL, 0, "" }; |
| #endif |
| } |
| |
| static void reload_early_microcode(unsigned int cpu) |
| { |
| int vendor, family; |
| |
| vendor = x86_cpuid_vendor(); |
| family = x86_cpuid_family(); |
| |
| switch (vendor) { |
| case X86_VENDOR_INTEL: |
| if (family >= 6) |
| reload_ucode_intel(); |
| break; |
| case X86_VENDOR_AMD: |
| if (family >= 0x10) |
| reload_ucode_amd(cpu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* fake device for request_firmware */ |
| static struct platform_device *microcode_pdev; |
| |
| #ifdef CONFIG_MICROCODE_LATE_LOADING |
| /* |
| * Late loading dance. Why the heavy-handed stomp_machine effort? |
| * |
| * - HT siblings must be idle and not execute other code while the other sibling |
| * is loading microcode in order to avoid any negative interactions caused by |
| * the loading. |
| * |
| * - In addition, microcode update on the cores must be serialized until this |
| * requirement can be relaxed in the future. Right now, this is conservative |
| * and good. |
| */ |
| enum sibling_ctrl { |
| /* Spinwait with timeout */ |
| SCTRL_WAIT, |
| /* Invoke the microcode_apply() callback */ |
| SCTRL_APPLY, |
| /* Proceed without invoking the microcode_apply() callback */ |
| SCTRL_DONE, |
| }; |
| |
| struct microcode_ctrl { |
| enum sibling_ctrl ctrl; |
| enum ucode_state result; |
| unsigned int ctrl_cpu; |
| bool nmi_enabled; |
| }; |
| |
| DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); |
| static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); |
| static atomic_t late_cpus_in, offline_in_nmi; |
| static unsigned int loops_per_usec; |
| static cpumask_t cpu_offline_mask; |
| |
| static noinstr bool wait_for_cpus(atomic_t *cnt) |
| { |
| unsigned int timeout, loops; |
| |
| WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); |
| |
| for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { |
| if (!raw_atomic_read(cnt)) |
| return true; |
| |
| for (loops = 0; loops < loops_per_usec; loops++) |
| cpu_relax(); |
| |
| /* If invoked directly, tickle the NMI watchdog */ |
| if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { |
| instrumentation_begin(); |
| touch_nmi_watchdog(); |
| instrumentation_end(); |
| } |
| } |
| /* Prevent the late comers from making progress and let them time out */ |
| raw_atomic_inc(cnt); |
| return false; |
| } |
| |
| static noinstr bool wait_for_ctrl(void) |
| { |
| unsigned int timeout, loops; |
| |
| for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { |
| if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) |
| return true; |
| |
| for (loops = 0; loops < loops_per_usec; loops++) |
| cpu_relax(); |
| |
| /* If invoked directly, tickle the NMI watchdog */ |
| if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { |
| instrumentation_begin(); |
| touch_nmi_watchdog(); |
| instrumentation_end(); |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Protected against instrumentation up to the point where the primary |
| * thread completed the update. See microcode_nmi_handler() for details. |
| */ |
| static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) |
| { |
| /* Initial rendezvous to ensure that all CPUs have arrived */ |
| if (!wait_for_cpus(&late_cpus_in)) { |
| raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); |
| return false; |
| } |
| |
| /* |
| * Wait for primary threads to complete. If one of them hangs due |
| * to the update, there is no way out. This is non-recoverable |
| * because the CPU might hold locks or resources and confuse the |
| * scheduler, watchdogs etc. There is no way to safely evacuate the |
| * machine. |
| */ |
| if (wait_for_ctrl()) |
| return true; |
| |
| instrumentation_begin(); |
| panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); |
| instrumentation_end(); |
| } |
| |
| /* |
| * Protected against instrumentation up to the point where the primary |
| * thread completed the update. See microcode_nmi_handler() for details. |
| */ |
| static noinstr void load_secondary(unsigned int cpu) |
| { |
| unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); |
| enum ucode_state ret; |
| |
| if (!load_secondary_wait(ctrl_cpu)) { |
| instrumentation_begin(); |
| pr_err_once("load: %d CPUs timed out\n", |
| atomic_read(&late_cpus_in) - 1); |
| instrumentation_end(); |
| return; |
| } |
| |
| /* Primary thread completed. Allow to invoke instrumentable code */ |
| instrumentation_begin(); |
| /* |
| * If the primary succeeded then invoke the apply() callback, |
| * otherwise copy the state from the primary thread. |
| */ |
| if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) |
| ret = microcode_ops->apply_microcode(cpu); |
| else |
| ret = per_cpu(ucode_ctrl.result, ctrl_cpu); |
| |
| this_cpu_write(ucode_ctrl.result, ret); |
| this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); |
| instrumentation_end(); |
| } |
| |
| static void __load_primary(unsigned int cpu) |
| { |
| struct cpumask *secondaries = topology_sibling_cpumask(cpu); |
| enum sibling_ctrl ctrl; |
| enum ucode_state ret; |
| unsigned int sibling; |
| |
| /* Initial rendezvous to ensure that all CPUs have arrived */ |
| if (!wait_for_cpus(&late_cpus_in)) { |
| this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); |
| pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); |
| return; |
| } |
| |
| ret = microcode_ops->apply_microcode(cpu); |
| this_cpu_write(ucode_ctrl.result, ret); |
| this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); |
| |
| /* |
| * If the update was successful, let the siblings run the apply() |
| * callback. If not, tell them it's done. This also covers the |
| * case where the CPU has uniform loading at package or system |
| * scope implemented but does not advertise it. |
| */ |
| if (ret == UCODE_UPDATED || ret == UCODE_OK) |
| ctrl = SCTRL_APPLY; |
| else |
| ctrl = SCTRL_DONE; |
| |
| for_each_cpu(sibling, secondaries) { |
| if (sibling != cpu) |
| per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; |
| } |
| } |
| |
| static bool kick_offline_cpus(unsigned int nr_offl) |
| { |
| unsigned int cpu, timeout; |
| |
| for_each_cpu(cpu, &cpu_offline_mask) { |
| /* Enable the rendezvous handler and send NMI */ |
| per_cpu(ucode_ctrl.nmi_enabled, cpu) = true; |
| apic_send_nmi_to_offline_cpu(cpu); |
| } |
| |
| /* Wait for them to arrive */ |
| for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) { |
| if (atomic_read(&offline_in_nmi) == nr_offl) |
| return true; |
| udelay(1); |
| } |
| /* Let the others time out */ |
| return false; |
| } |
| |
| static void release_offline_cpus(void) |
| { |
| unsigned int cpu; |
| |
| for_each_cpu(cpu, &cpu_offline_mask) |
| per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE; |
| } |
| |
| static void load_primary(unsigned int cpu) |
| { |
| unsigned int nr_offl = cpumask_weight(&cpu_offline_mask); |
| bool proceed = true; |
| |
| /* Kick soft-offlined SMT siblings if required */ |
| if (!cpu && nr_offl) |
| proceed = kick_offline_cpus(nr_offl); |
| |
| /* If the soft-offlined CPUs did not respond, abort */ |
| if (proceed) |
| __load_primary(cpu); |
| |
| /* Unconditionally release soft-offlined SMT siblings if required */ |
| if (!cpu && nr_offl) |
| release_offline_cpus(); |
| } |
| |
| /* |
| * Minimal stub rendezvous handler for soft-offlined CPUs which participate |
| * in the NMI rendezvous to protect against a concurrent NMI on affected |
| * CPUs. |
| */ |
| void noinstr microcode_offline_nmi_handler(void) |
| { |
| if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) |
| return; |
| raw_cpu_write(ucode_ctrl.nmi_enabled, false); |
| raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE); |
| raw_atomic_inc(&offline_in_nmi); |
| wait_for_ctrl(); |
| } |
| |
| static noinstr bool microcode_update_handler(void) |
| { |
| unsigned int cpu = raw_smp_processor_id(); |
| |
| if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { |
| instrumentation_begin(); |
| load_primary(cpu); |
| instrumentation_end(); |
| } else { |
| load_secondary(cpu); |
| } |
| |
| instrumentation_begin(); |
| touch_nmi_watchdog(); |
| instrumentation_end(); |
| |
| return true; |
| } |
| |
| /* |
| * Protection against instrumentation is required for CPUs which are not |
| * safe against an NMI which is delivered to the secondary SMT sibling |
| * while the primary thread updates the microcode. Instrumentation can end |
| * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI |
| * which is the opposite of what the NMI rendezvous is trying to achieve. |
| * |
| * The primary thread is safe versus instrumentation as the actual |
| * microcode update handles this correctly. It's only the sibling code |
| * path which must be NMI safe until the primary thread completed the |
| * update. |
| */ |
| bool noinstr microcode_nmi_handler(void) |
| { |
| if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) |
| return false; |
| |
| raw_cpu_write(ucode_ctrl.nmi_enabled, false); |
| return microcode_update_handler(); |
| } |
| |
| static int load_cpus_stopped(void *unused) |
| { |
| if (microcode_ops->use_nmi) { |
| /* Enable the NMI handler and raise NMI */ |
| this_cpu_write(ucode_ctrl.nmi_enabled, true); |
| apic->send_IPI(smp_processor_id(), NMI_VECTOR); |
| } else { |
| /* Just invoke the handler directly */ |
| microcode_update_handler(); |
| } |
| return 0; |
| } |
| |
| static int load_late_stop_cpus(bool is_safe) |
| { |
| unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; |
| unsigned int nr_offl, offline = 0; |
| int old_rev = boot_cpu_data.microcode; |
| struct cpuinfo_x86 prev_info; |
| |
| if (!is_safe) { |
| pr_err("Late microcode loading without minimal revision check.\n"); |
| pr_err("You should switch to early loading, if possible.\n"); |
| } |
| |
| atomic_set(&late_cpus_in, num_online_cpus()); |
| atomic_set(&offline_in_nmi, 0); |
| loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); |
| |
| /* |
| * Take a snapshot before the microcode update in order to compare and |
| * check whether any bits changed after an update. |
| */ |
| store_cpu_caps(&prev_info); |
| |
| if (microcode_ops->use_nmi) |
| static_branch_enable_cpuslocked(µcode_nmi_handler_enable); |
| |
| stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); |
| |
| if (microcode_ops->use_nmi) |
| static_branch_disable_cpuslocked(µcode_nmi_handler_enable); |
| |
| /* Analyze the results */ |
| for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { |
| switch (per_cpu(ucode_ctrl.result, cpu)) { |
| case UCODE_UPDATED: updated++; break; |
| case UCODE_TIMEOUT: timedout++; break; |
| case UCODE_OK: siblings++; break; |
| case UCODE_OFFLINE: offline++; break; |
| default: failed++; break; |
| } |
| } |
| |
| if (microcode_ops->finalize_late_load) |
| microcode_ops->finalize_late_load(!updated); |
| |
| if (!updated) { |
| /* Nothing changed. */ |
| if (!failed && !timedout) |
| return 0; |
| |
| nr_offl = cpumask_weight(&cpu_offline_mask); |
| if (offline < nr_offl) { |
| pr_warn("%u offline siblings did not respond.\n", |
| nr_offl - atomic_read(&offline_in_nmi)); |
| return -EIO; |
| } |
| pr_err("update failed: %u CPUs failed %u CPUs timed out\n", |
| failed, timedout); |
| return -EIO; |
| } |
| |
| if (!is_safe || failed || timedout) |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| |
| pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); |
| if (failed || timedout) { |
| pr_err("load incomplete. %u CPUs timed out or failed\n", |
| num_online_cpus() - (updated + siblings)); |
| } |
| pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); |
| microcode_check(&prev_info); |
| |
| return updated + siblings == num_online_cpus() ? 0 : -EIO; |
| } |
| |
| /* |
| * This function does two things: |
| * |
| * 1) Ensure that all required CPUs which are present and have been booted |
| * once are online. |
| * |
| * To pass this check, all primary threads must be online. |
| * |
| * If the microcode load is not safe against NMI then all SMT threads |
| * must be online as well because they still react to NMIs when they are |
| * soft-offlined and parked in one of the play_dead() variants. So if a |
| * NMI hits while the primary thread updates the microcode the resulting |
| * behaviour is undefined. The default play_dead() implementation on |
| * modern CPUs uses MWAIT, which is also not guaranteed to be safe |
| * against a microcode update which affects MWAIT. |
| * |
| * As soft-offlined CPUs still react on NMIs, the SMT sibling |
| * restriction can be lifted when the vendor driver signals to use NMI |
| * for rendezvous and the APIC provides a mechanism to send an NMI to a |
| * soft-offlined CPU. The soft-offlined CPUs are then able to |
| * participate in the rendezvous in a trivial stub handler. |
| * |
| * 2) Initialize the per CPU control structure and create a cpumask |
| * which contains "offline"; secondary threads, so they can be handled |
| * correctly by a control CPU. |
| */ |
| static bool setup_cpus(void) |
| { |
| struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; |
| bool allow_smt_offline; |
| unsigned int cpu; |
| |
| allow_smt_offline = microcode_ops->nmi_safe || |
| (microcode_ops->use_nmi && apic->nmi_to_offline_cpu); |
| |
| cpumask_clear(&cpu_offline_mask); |
| |
| for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { |
| /* |
| * Offline CPUs sit in one of the play_dead() functions |
| * with interrupts disabled, but they still react on NMIs |
| * and execute arbitrary code. Also MWAIT being updated |
| * while the offline CPU sits there is not necessarily safe |
| * on all CPU variants. |
| * |
| * Mark them in the offline_cpus mask which will be handled |
| * by CPU0 later in the update process. |
| * |
| * Ensure that the primary thread is online so that it is |
| * guaranteed that all cores are updated. |
| */ |
| if (!cpu_online(cpu)) { |
| if (topology_is_primary_thread(cpu) || !allow_smt_offline) { |
| pr_err("CPU %u not online, loading aborted\n", cpu); |
| return false; |
| } |
| cpumask_set_cpu(cpu, &cpu_offline_mask); |
| per_cpu(ucode_ctrl, cpu) = ctrl; |
| continue; |
| } |
| |
| /* |
| * Initialize the per CPU state. This is core scope for now, |
| * but prepared to take package or system scope into account. |
| */ |
| ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); |
| per_cpu(ucode_ctrl, cpu) = ctrl; |
| } |
| return true; |
| } |
| |
| static int load_late_locked(void) |
| { |
| if (!setup_cpus()) |
| return -EBUSY; |
| |
| switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { |
| case UCODE_NEW: |
| return load_late_stop_cpus(false); |
| case UCODE_NEW_SAFE: |
| return load_late_stop_cpus(true); |
| case UCODE_NFOUND: |
| return -ENOENT; |
| default: |
| return -EBADFD; |
| } |
| } |
| |
| static ssize_t reload_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret || val != 1) |
| return -EINVAL; |
| |
| cpus_read_lock(); |
| ret = load_late_locked(); |
| cpus_read_unlock(); |
| |
| return ret ? : size; |
| } |
| |
| static DEVICE_ATTR_WO(reload); |
| #endif |
| |
| static ssize_t version_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; |
| |
| return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); |
| } |
| |
| static ssize_t processor_flags_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; |
| |
| return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); |
| } |
| |
| static DEVICE_ATTR_RO(version); |
| static DEVICE_ATTR_RO(processor_flags); |
| |
| static struct attribute *mc_default_attrs[] = { |
| &dev_attr_version.attr, |
| &dev_attr_processor_flags.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group mc_attr_group = { |
| .attrs = mc_default_attrs, |
| .name = "microcode", |
| }; |
| |
| static void microcode_fini_cpu(int cpu) |
| { |
| if (microcode_ops->microcode_fini_cpu) |
| microcode_ops->microcode_fini_cpu(cpu); |
| } |
| |
| /** |
| * microcode_bsp_resume - Update boot CPU microcode during resume. |
| */ |
| void microcode_bsp_resume(void) |
| { |
| int cpu = smp_processor_id(); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| |
| if (uci->mc) |
| microcode_ops->apply_microcode(cpu); |
| else |
| reload_early_microcode(cpu); |
| } |
| |
| static struct syscore_ops mc_syscore_ops = { |
| .resume = microcode_bsp_resume, |
| }; |
| |
| static int mc_cpu_online(unsigned int cpu) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| struct device *dev = get_cpu_device(cpu); |
| |
| memset(uci, 0, sizeof(*uci)); |
| |
| microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); |
| cpu_data(cpu).microcode = uci->cpu_sig.rev; |
| if (!cpu) |
| boot_cpu_data.microcode = uci->cpu_sig.rev; |
| |
| if (sysfs_create_group(&dev->kobj, &mc_attr_group)) |
| pr_err("Failed to create group for CPU%d\n", cpu); |
| return 0; |
| } |
| |
| static int mc_cpu_down_prep(unsigned int cpu) |
| { |
| struct device *dev = get_cpu_device(cpu); |
| |
| microcode_fini_cpu(cpu); |
| sysfs_remove_group(&dev->kobj, &mc_attr_group); |
| return 0; |
| } |
| |
| static struct attribute *cpu_root_microcode_attrs[] = { |
| #ifdef CONFIG_MICROCODE_LATE_LOADING |
| &dev_attr_reload.attr, |
| #endif |
| NULL |
| }; |
| |
| static const struct attribute_group cpu_root_microcode_group = { |
| .name = "microcode", |
| .attrs = cpu_root_microcode_attrs, |
| }; |
| |
| static int __init microcode_init(void) |
| { |
| struct device *dev_root; |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| int error; |
| |
| if (dis_ucode_ldr) |
| return -EINVAL; |
| |
| if (c->x86_vendor == X86_VENDOR_INTEL) |
| microcode_ops = init_intel_microcode(); |
| else if (c->x86_vendor == X86_VENDOR_AMD) |
| microcode_ops = init_amd_microcode(); |
| else |
| pr_err("no support for this CPU vendor\n"); |
| |
| if (!microcode_ops) |
| return -ENODEV; |
| |
| pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev)); |
| |
| if (early_data.new_rev) |
| pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev); |
| |
| microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); |
| if (IS_ERR(microcode_pdev)) |
| return PTR_ERR(microcode_pdev); |
| |
| dev_root = bus_get_dev_root(&cpu_subsys); |
| if (dev_root) { |
| error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); |
| put_device(dev_root); |
| if (error) { |
| pr_err("Error creating microcode group!\n"); |
| goto out_pdev; |
| } |
| } |
| |
| register_syscore_ops(&mc_syscore_ops); |
| cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", |
| mc_cpu_online, mc_cpu_down_prep); |
| |
| return 0; |
| |
| out_pdev: |
| platform_device_unregister(microcode_pdev); |
| return error; |
| |
| } |
| late_initcall(microcode_init); |