blob: 74adb983ab03e0877286a6524c08623bd55f3584 [file] [log] [blame]
/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/pagemap.h>
#include <linux/sched/task.h>
#include <linux/sched/mm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/dma-buf.h>
#include <linux/sizes.h>
#include <linux/module.h>
#include <drm/drm_drv.h>
#include <drm/ttm/ttm_bo.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_range_manager.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_object.h"
#include "amdgpu_trace.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_sdma.h"
#include "amdgpu_ras.h"
#include "amdgpu_hmm.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_res_cursor.h"
#include "bif/bif_4_1_d.h"
MODULE_IMPORT_NS(DMA_BUF);
#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_resource *bo_mem);
static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
struct ttm_tt *ttm);
static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
unsigned int type,
uint64_t size_in_page)
{
return ttm_range_man_init(&adev->mman.bdev, type,
false, size_in_page);
}
/**
* amdgpu_evict_flags - Compute placement flags
*
* @bo: The buffer object to evict
* @placement: Possible destination(s) for evicted BO
*
* Fill in placement data when ttm_bo_evict() is called
*/
static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_bo *abo;
static const struct ttm_place placements = {
.fpfn = 0,
.lpfn = 0,
.mem_type = TTM_PL_SYSTEM,
.flags = 0
};
/* Don't handle scatter gather BOs */
if (bo->type == ttm_bo_type_sg) {
placement->num_placement = 0;
return;
}
/* Object isn't an AMDGPU object so ignore */
if (!amdgpu_bo_is_amdgpu_bo(bo)) {
placement->placement = &placements;
placement->num_placement = 1;
return;
}
abo = ttm_to_amdgpu_bo(bo);
if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
placement->num_placement = 0;
return;
}
switch (bo->resource->mem_type) {
case AMDGPU_PL_GDS:
case AMDGPU_PL_GWS:
case AMDGPU_PL_OA:
case AMDGPU_PL_DOORBELL:
placement->num_placement = 0;
return;
case TTM_PL_VRAM:
if (!adev->mman.buffer_funcs_enabled) {
/* Move to system memory */
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
!(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
amdgpu_res_cpu_visible(adev, bo->resource)) {
/* Try evicting to the CPU inaccessible part of VRAM
* first, but only set GTT as busy placement, so this
* BO will be evicted to GTT rather than causing other
* BOs to be evicted from VRAM
*/
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT |
AMDGPU_GEM_DOMAIN_CPU);
abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
abo->placements[0].lpfn = 0;
abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
} else {
/* Move to GTT memory */
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
AMDGPU_GEM_DOMAIN_CPU);
}
break;
case TTM_PL_TT:
case AMDGPU_PL_PREEMPT:
default:
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
break;
}
*placement = abo->placement;
}
/**
* amdgpu_ttm_map_buffer - Map memory into the GART windows
* @bo: buffer object to map
* @mem: memory object to map
* @mm_cur: range to map
* @window: which GART window to use
* @ring: DMA ring to use for the copy
* @tmz: if we should setup a TMZ enabled mapping
* @size: in number of bytes to map, out number of bytes mapped
* @addr: resulting address inside the MC address space
*
* Setup one of the GART windows to access a specific piece of memory or return
* the physical address for local memory.
*/
static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
struct ttm_resource *mem,
struct amdgpu_res_cursor *mm_cur,
unsigned int window, struct amdgpu_ring *ring,
bool tmz, uint64_t *size, uint64_t *addr)
{
struct amdgpu_device *adev = ring->adev;
unsigned int offset, num_pages, num_dw, num_bytes;
uint64_t src_addr, dst_addr;
struct amdgpu_job *job;
void *cpu_addr;
uint64_t flags;
unsigned int i;
int r;
BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
return -EINVAL;
/* Map only what can't be accessed directly */
if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
mm_cur->start;
return 0;
}
/*
* If start begins at an offset inside the page, then adjust the size
* and addr accordingly
*/
offset = mm_cur->start & ~PAGE_MASK;
num_pages = PFN_UP(*size + offset);
num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
*addr = adev->gmc.gart_start;
*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
AMDGPU_GPU_PAGE_SIZE;
*addr += offset;
num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
AMDGPU_FENCE_OWNER_UNDEFINED,
num_dw * 4 + num_bytes,
AMDGPU_IB_POOL_DELAYED, &job);
if (r)
return r;
src_addr = num_dw * 4;
src_addr += job->ibs[0].gpu_addr;
dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
dst_addr, num_bytes, 0);
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
if (tmz)
flags |= AMDGPU_PTE_TMZ;
cpu_addr = &job->ibs[0].ptr[num_dw];
if (mem->mem_type == TTM_PL_TT) {
dma_addr_t *dma_addr;
dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
} else {
dma_addr_t dma_address;
dma_address = mm_cur->start;
dma_address += adev->vm_manager.vram_base_offset;
for (i = 0; i < num_pages; ++i) {
amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
flags, cpu_addr);
dma_address += PAGE_SIZE;
}
}
dma_fence_put(amdgpu_job_submit(job));
return 0;
}
/**
* amdgpu_ttm_copy_mem_to_mem - Helper function for copy
* @adev: amdgpu device
* @src: buffer/address where to read from
* @dst: buffer/address where to write to
* @size: number of bytes to copy
* @tmz: if a secure copy should be used
* @resv: resv object to sync to
* @f: Returns the last fence if multiple jobs are submitted.
*
* The function copies @size bytes from {src->mem + src->offset} to
* {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
* move and different for a BO to BO copy.
*
*/
int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
const struct amdgpu_copy_mem *src,
const struct amdgpu_copy_mem *dst,
uint64_t size, bool tmz,
struct dma_resv *resv,
struct dma_fence **f)
{
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct amdgpu_res_cursor src_mm, dst_mm;
struct dma_fence *fence = NULL;
int r = 0;
uint32_t copy_flags = 0;
struct amdgpu_bo *abo_src, *abo_dst;
if (!adev->mman.buffer_funcs_enabled) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
amdgpu_res_first(src->mem, src->offset, size, &src_mm);
amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
mutex_lock(&adev->mman.gtt_window_lock);
while (src_mm.remaining) {
uint64_t from, to, cur_size, tiling_flags;
uint32_t num_type, data_format, max_com;
struct dma_fence *next;
/* Never copy more than 256MiB at once to avoid a timeout */
cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
/* Map src to window 0 and dst to window 1. */
r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
0, ring, tmz, &cur_size, &from);
if (r)
goto error;
r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
1, ring, tmz, &cur_size, &to);
if (r)
goto error;
abo_src = ttm_to_amdgpu_bo(src->bo);
abo_dst = ttm_to_amdgpu_bo(dst->bo);
if (tmz)
copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
(abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
(dst->mem->mem_type == TTM_PL_VRAM)) {
copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format));
}
r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
&next, false, true, copy_flags);
if (r)
goto error;
dma_fence_put(fence);
fence = next;
amdgpu_res_next(&src_mm, cur_size);
amdgpu_res_next(&dst_mm, cur_size);
}
error:
mutex_unlock(&adev->mman.gtt_window_lock);
if (f)
*f = dma_fence_get(fence);
dma_fence_put(fence);
return r;
}
/*
* amdgpu_move_blit - Copy an entire buffer to another buffer
*
* This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
* help move buffers to and from VRAM.
*/
static int amdgpu_move_blit(struct ttm_buffer_object *bo,
bool evict,
struct ttm_resource *new_mem,
struct ttm_resource *old_mem)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
struct amdgpu_copy_mem src, dst;
struct dma_fence *fence = NULL;
int r;
src.bo = bo;
dst.bo = bo;
src.mem = old_mem;
dst.mem = new_mem;
src.offset = 0;
dst.offset = 0;
r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
new_mem->size,
amdgpu_bo_encrypted(abo),
bo->base.resv, &fence);
if (r)
goto error;
/* clear the space being freed */
if (old_mem->mem_type == TTM_PL_VRAM &&
(abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
struct dma_fence *wipe_fence = NULL;
r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
false);
if (r) {
goto error;
} else if (wipe_fence) {
amdgpu_vram_mgr_set_cleared(bo->resource);
dma_fence_put(fence);
fence = wipe_fence;
}
}
/* Always block for VM page tables before committing the new location */
if (bo->type == ttm_bo_type_kernel)
r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
else
r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
dma_fence_put(fence);
return r;
error:
if (fence)
dma_fence_wait(fence, false);
dma_fence_put(fence);
return r;
}
/**
* amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
* @adev: amdgpu device
* @res: the resource to check
*
* Returns: true if the full resource is CPU visible, false otherwise.
*/
bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
struct ttm_resource *res)
{
struct amdgpu_res_cursor cursor;
if (!res)
return false;
if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
return true;
if (res->mem_type != TTM_PL_VRAM)
return false;
amdgpu_res_first(res, 0, res->size, &cursor);
while (cursor.remaining) {
if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
return false;
amdgpu_res_next(&cursor, cursor.size);
}
return true;
}
/*
* amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
*
* Called by amdgpu_bo_move()
*/
static bool amdgpu_res_copyable(struct amdgpu_device *adev,
struct ttm_resource *mem)
{
if (!amdgpu_res_cpu_visible(adev, mem))
return false;
/* ttm_resource_ioremap only supports contiguous memory */
if (mem->mem_type == TTM_PL_VRAM &&
!(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
return false;
return true;
}
/*
* amdgpu_bo_move - Move a buffer object to a new memory location
*
* Called by ttm_bo_handle_move_mem()
*/
static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_mem,
struct ttm_place *hop)
{
struct amdgpu_device *adev;
struct amdgpu_bo *abo;
struct ttm_resource *old_mem = bo->resource;
int r;
if (new_mem->mem_type == TTM_PL_TT ||
new_mem->mem_type == AMDGPU_PL_PREEMPT) {
r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
if (r)
return r;
}
abo = ttm_to_amdgpu_bo(bo);
adev = amdgpu_ttm_adev(bo->bdev);
if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
bo->ttm == NULL)) {
amdgpu_bo_move_notify(bo, evict, new_mem);
ttm_bo_move_null(bo, new_mem);
return 0;
}
if (old_mem->mem_type == TTM_PL_SYSTEM &&
(new_mem->mem_type == TTM_PL_TT ||
new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
amdgpu_bo_move_notify(bo, evict, new_mem);
ttm_bo_move_null(bo, new_mem);
return 0;
}
if ((old_mem->mem_type == TTM_PL_TT ||
old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
new_mem->mem_type == TTM_PL_SYSTEM) {
r = ttm_bo_wait_ctx(bo, ctx);
if (r)
return r;
amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
amdgpu_bo_move_notify(bo, evict, new_mem);
ttm_resource_free(bo, &bo->resource);
ttm_bo_assign_mem(bo, new_mem);
return 0;
}
if (old_mem->mem_type == AMDGPU_PL_GDS ||
old_mem->mem_type == AMDGPU_PL_GWS ||
old_mem->mem_type == AMDGPU_PL_OA ||
old_mem->mem_type == AMDGPU_PL_DOORBELL ||
new_mem->mem_type == AMDGPU_PL_GDS ||
new_mem->mem_type == AMDGPU_PL_GWS ||
new_mem->mem_type == AMDGPU_PL_OA ||
new_mem->mem_type == AMDGPU_PL_DOORBELL) {
/* Nothing to save here */
amdgpu_bo_move_notify(bo, evict, new_mem);
ttm_bo_move_null(bo, new_mem);
return 0;
}
if (bo->type == ttm_bo_type_device &&
new_mem->mem_type == TTM_PL_VRAM &&
old_mem->mem_type != TTM_PL_VRAM) {
/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
* accesses the BO after it's moved.
*/
abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
}
if (adev->mman.buffer_funcs_enabled &&
((old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) ||
(old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM))) {
hop->fpfn = 0;
hop->lpfn = 0;
hop->mem_type = TTM_PL_TT;
hop->flags = TTM_PL_FLAG_TEMPORARY;
return -EMULTIHOP;
}
amdgpu_bo_move_notify(bo, evict, new_mem);
if (adev->mman.buffer_funcs_enabled)
r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
else
r = -ENODEV;
if (r) {
/* Check that all memory is CPU accessible */
if (!amdgpu_res_copyable(adev, old_mem) ||
!amdgpu_res_copyable(adev, new_mem)) {
pr_err("Move buffer fallback to memcpy unavailable\n");
return r;
}
r = ttm_bo_move_memcpy(bo, ctx, new_mem);
if (r)
return r;
}
/* update statistics after the move */
if (evict)
atomic64_inc(&adev->num_evictions);
atomic64_add(bo->base.size, &adev->num_bytes_moved);
return 0;
}
/*
* amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
*
* Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
*/
static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
struct ttm_resource *mem)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* system memory */
return 0;
case TTM_PL_TT:
case AMDGPU_PL_PREEMPT:
break;
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
if (adev->mman.aper_base_kaddr &&
mem->placement & TTM_PL_FLAG_CONTIGUOUS)
mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
mem->bus.offset;
mem->bus.offset += adev->gmc.aper_base;
mem->bus.is_iomem = true;
break;
case AMDGPU_PL_DOORBELL:
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.offset += adev->doorbell.base;
mem->bus.is_iomem = true;
mem->bus.caching = ttm_uncached;
break;
default:
return -EINVAL;
}
return 0;
}
static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
unsigned long page_offset)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_res_cursor cursor;
amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
&cursor);
if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
}
/**
* amdgpu_ttm_domain_start - Returns GPU start address
* @adev: amdgpu device object
* @type: type of the memory
*
* Returns:
* GPU start address of a memory domain
*/
uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
{
switch (type) {
case TTM_PL_TT:
return adev->gmc.gart_start;
case TTM_PL_VRAM:
return adev->gmc.vram_start;
}
return 0;
}
/*
* TTM backend functions.
*/
struct amdgpu_ttm_tt {
struct ttm_tt ttm;
struct drm_gem_object *gobj;
u64 offset;
uint64_t userptr;
struct task_struct *usertask;
uint32_t userflags;
bool bound;
int32_t pool_id;
};
#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
#ifdef CONFIG_DRM_AMDGPU_USERPTR
/*
* amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
* memory and start HMM tracking CPU page table update
*
* Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
* once afterwards to stop HMM tracking
*/
int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
struct hmm_range **range)
{
struct ttm_tt *ttm = bo->tbo.ttm;
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
unsigned long start = gtt->userptr;
struct vm_area_struct *vma;
struct mm_struct *mm;
bool readonly;
int r = 0;
/* Make sure get_user_pages_done() can cleanup gracefully */
*range = NULL;
mm = bo->notifier.mm;
if (unlikely(!mm)) {
DRM_DEBUG_DRIVER("BO is not registered?\n");
return -EFAULT;
}
if (!mmget_not_zero(mm)) /* Happens during process shutdown */
return -ESRCH;
mmap_read_lock(mm);
vma = vma_lookup(mm, start);
if (unlikely(!vma)) {
r = -EFAULT;
goto out_unlock;
}
if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
vma->vm_file)) {
r = -EPERM;
goto out_unlock;
}
readonly = amdgpu_ttm_tt_is_readonly(ttm);
r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
readonly, NULL, pages, range);
out_unlock:
mmap_read_unlock(mm);
if (r)
pr_debug("failed %d to get user pages 0x%lx\n", r, start);
mmput(mm);
return r;
}
/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
*/
void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
struct hmm_range *range)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt && gtt->userptr && range)
amdgpu_hmm_range_get_pages_done(range);
}
/*
* amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
* Check if the pages backing this ttm range have been invalidated
*
* Returns: true if pages are still valid
*/
bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
struct hmm_range *range)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (!gtt || !gtt->userptr || !range)
return false;
DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
gtt->userptr, ttm->num_pages);
WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
return !amdgpu_hmm_range_get_pages_done(range);
}
#endif
/*
* amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
*
* Called by amdgpu_cs_list_validate(). This creates the page list
* that backs user memory and will ultimately be mapped into the device
* address space.
*/
void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
{
unsigned long i;
for (i = 0; i < ttm->num_pages; ++i)
ttm->pages[i] = pages ? pages[i] : NULL;
}
/*
* amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
*
* Called by amdgpu_ttm_backend_bind()
**/
static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
int r;
/* Allocate an SG array and squash pages into it */
r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
(u64)ttm->num_pages << PAGE_SHIFT,
GFP_KERNEL);
if (r)
goto release_sg;
/* Map SG to device */
r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
if (r)
goto release_sg;
/* convert SG to linear array of pages and dma addresses */
drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
ttm->num_pages);
return 0;
release_sg:
kfree(ttm->sg);
ttm->sg = NULL;
return r;
}
/*
* amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
*/
static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
/* double check that we don't free the table twice */
if (!ttm->sg || !ttm->sg->sgl)
return;
/* unmap the pages mapped to the device */
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
sg_free_table(ttm->sg);
}
/*
* total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
* MQDn+CtrlStackn where n is the number of XCCs per partition.
* pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
* and uses memory type default, UC. The rest of pages_per_xcc are
* Ctrl stack and modify their memory type to NC.
*/
static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
struct ttm_tt *ttm, uint64_t flags)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
uint64_t total_pages = ttm->num_pages;
int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
uint64_t page_idx, pages_per_xcc;
int i;
uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
pages_per_xcc = total_pages;
do_div(pages_per_xcc, num_xcc);
for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
/* MQD page: use default flags */
amdgpu_gart_bind(adev,
gtt->offset + (page_idx << PAGE_SHIFT),
1, &gtt->ttm.dma_address[page_idx], flags);
/*
* Ctrl pages - modify the memory type to NC (ctrl_flags) from
* the second page of the BO onward.
*/
amdgpu_gart_bind(adev,
gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
pages_per_xcc - 1,
&gtt->ttm.dma_address[page_idx + 1],
ctrl_flags);
}
}
static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
struct ttm_buffer_object *tbo,
uint64_t flags)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
struct ttm_tt *ttm = tbo->ttm;
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (amdgpu_bo_encrypted(abo))
flags |= AMDGPU_PTE_TMZ;
if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
} else {
amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
gtt->ttm.dma_address, flags);
}
gtt->bound = true;
}
/*
* amdgpu_ttm_backend_bind - Bind GTT memory
*
* Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
* This handles binding GTT memory to the device address space.
*/
static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_resource *bo_mem)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
uint64_t flags;
int r;
if (!bo_mem)
return -EINVAL;
if (gtt->bound)
return 0;
if (gtt->userptr) {
r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
if (r) {
DRM_ERROR("failed to pin userptr\n");
return r;
}
} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
if (!ttm->sg) {
struct dma_buf_attachment *attach;
struct sg_table *sgt;
attach = gtt->gobj->import_attach;
sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
if (IS_ERR(sgt))
return PTR_ERR(sgt);
ttm->sg = sgt;
}
drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
ttm->num_pages);
}
if (!ttm->num_pages) {
WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
if (bo_mem->mem_type != TTM_PL_TT ||
!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
gtt->offset = AMDGPU_BO_INVALID_OFFSET;
return 0;
}
/* compute PTE flags relevant to this BO memory */
flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
/* bind pages into GART page tables */
gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
gtt->ttm.dma_address, flags);
gtt->bound = true;
return 0;
}
/*
* amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
* through AGP or GART aperture.
*
* If bo is accessible through AGP aperture, then use AGP aperture
* to access bo; otherwise allocate logical space in GART aperture
* and map bo to GART aperture.
*/
int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
struct ttm_placement placement;
struct ttm_place placements;
struct ttm_resource *tmp;
uint64_t addr, flags;
int r;
if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
return 0;
addr = amdgpu_gmc_agp_addr(bo);
if (addr != AMDGPU_BO_INVALID_OFFSET)
return 0;
/* allocate GART space */
placement.num_placement = 1;
placement.placement = &placements;
placements.fpfn = 0;
placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
placements.mem_type = TTM_PL_TT;
placements.flags = bo->resource->placement;
r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
if (unlikely(r))
return r;
/* compute PTE flags for this buffer object */
flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
/* Bind pages */
gtt->offset = (u64)tmp->start << PAGE_SHIFT;
amdgpu_ttm_gart_bind(adev, bo, flags);
amdgpu_gart_invalidate_tlb(adev);
ttm_resource_free(bo, &bo->resource);
ttm_bo_assign_mem(bo, tmp);
return 0;
}
/*
* amdgpu_ttm_recover_gart - Rebind GTT pages
*
* Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
* rebind GTT pages during a GPU reset.
*/
void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
uint64_t flags;
if (!tbo->ttm)
return;
flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
amdgpu_ttm_gart_bind(adev, tbo, flags);
}
/*
* amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
*
* Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
* ttm_tt_destroy().
*/
static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
/* if the pages have userptr pinning then clear that first */
if (gtt->userptr) {
amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
} else if (ttm->sg && gtt->gobj->import_attach) {
struct dma_buf_attachment *attach;
attach = gtt->gobj->import_attach;
dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
ttm->sg = NULL;
}
if (!gtt->bound)
return;
if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
return;
/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
gtt->bound = false;
}
static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (gtt->usertask)
put_task_struct(gtt->usertask);
ttm_tt_fini(&gtt->ttm);
kfree(gtt);
}
/**
* amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
*
* @bo: The buffer object to create a GTT ttm_tt object around
* @page_flags: Page flags to be added to the ttm_tt object
*
* Called by ttm_tt_create().
*/
static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
uint32_t page_flags)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
struct amdgpu_ttm_tt *gtt;
enum ttm_caching caching;
gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
if (!gtt)
return NULL;
gtt->gobj = &bo->base;
if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
else
gtt->pool_id = abo->xcp_id;
if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
caching = ttm_write_combined;
else
caching = ttm_cached;
/* allocate space for the uninitialized page entries */
if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
kfree(gtt);
return NULL;
}
return &gtt->ttm;
}
/*
* amdgpu_ttm_tt_populate - Map GTT pages visible to the device
*
* Map the pages of a ttm_tt object to an address space visible
* to the underlying device.
*/
static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_operation_ctx *ctx)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
struct ttm_pool *pool;
pgoff_t i;
int ret;
/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
if (gtt->userptr) {
ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!ttm->sg)
return -ENOMEM;
return 0;
}
if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
return 0;
if (adev->mman.ttm_pools && gtt->pool_id >= 0)
pool = &adev->mman.ttm_pools[gtt->pool_id];
else
pool = &adev->mman.bdev.pool;
ret = ttm_pool_alloc(pool, ttm, ctx);
if (ret)
return ret;
for (i = 0; i < ttm->num_pages; ++i)
ttm->pages[i]->mapping = bdev->dev_mapping;
return 0;
}
/*
* amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
*
* Unmaps pages of a ttm_tt object from the device address space and
* unpopulates the page array backing it.
*/
static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
struct amdgpu_device *adev;
struct ttm_pool *pool;
pgoff_t i;
amdgpu_ttm_backend_unbind(bdev, ttm);
if (gtt->userptr) {
amdgpu_ttm_tt_set_user_pages(ttm, NULL);
kfree(ttm->sg);
ttm->sg = NULL;
return;
}
if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
return;
for (i = 0; i < ttm->num_pages; ++i)
ttm->pages[i]->mapping = NULL;
adev = amdgpu_ttm_adev(bdev);
if (adev->mman.ttm_pools && gtt->pool_id >= 0)
pool = &adev->mman.ttm_pools[gtt->pool_id];
else
pool = &adev->mman.bdev.pool;
return ttm_pool_free(pool, ttm);
}
/**
* amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
* task
*
* @tbo: The ttm_buffer_object that contains the userptr
* @user_addr: The returned value
*/
int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
uint64_t *user_addr)
{
struct amdgpu_ttm_tt *gtt;
if (!tbo->ttm)
return -EINVAL;
gtt = (void *)tbo->ttm;
*user_addr = gtt->userptr;
return 0;
}
/**
* amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
* task
*
* @bo: The ttm_buffer_object to bind this userptr to
* @addr: The address in the current tasks VM space to use
* @flags: Requirements of userptr object.
*
* Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
* bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
* initialize GPU VM for a KFD process.
*/
int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
uint64_t addr, uint32_t flags)
{
struct amdgpu_ttm_tt *gtt;
if (!bo->ttm) {
/* TODO: We want a separate TTM object type for userptrs */
bo->ttm = amdgpu_ttm_tt_create(bo, 0);
if (bo->ttm == NULL)
return -ENOMEM;
}
/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
gtt->userptr = addr;
gtt->userflags = flags;
if (gtt->usertask)
put_task_struct(gtt->usertask);
gtt->usertask = current->group_leader;
get_task_struct(gtt->usertask);
return 0;
}
/*
* amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
*/
struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (gtt == NULL)
return NULL;
if (gtt->usertask == NULL)
return NULL;
return gtt->usertask->mm;
}
/*
* amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
* address range for the current task.
*
*/
bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
unsigned long end, unsigned long *userptr)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
unsigned long size;
if (gtt == NULL || !gtt->userptr)
return false;
/* Return false if no part of the ttm_tt object lies within
* the range
*/
size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
if (gtt->userptr > end || gtt->userptr + size <= start)
return false;
if (userptr)
*userptr = gtt->userptr;
return true;
}
/*
* amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
*/
bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (gtt == NULL || !gtt->userptr)
return false;
return true;
}
/*
* amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
*/
bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
if (gtt == NULL)
return false;
return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
}
/**
* amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
*
* @ttm: The ttm_tt object to compute the flags for
* @mem: The memory registry backing this ttm_tt object
*
* Figure out the flags to use for a VM PDE (Page Directory Entry).
*/
uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
{
uint64_t flags = 0;
if (mem && mem->mem_type != TTM_PL_SYSTEM)
flags |= AMDGPU_PTE_VALID;
if (mem && (mem->mem_type == TTM_PL_TT ||
mem->mem_type == AMDGPU_PL_DOORBELL ||
mem->mem_type == AMDGPU_PL_PREEMPT)) {
flags |= AMDGPU_PTE_SYSTEM;
if (ttm->caching == ttm_cached)
flags |= AMDGPU_PTE_SNOOPED;
}
if (mem && mem->mem_type == TTM_PL_VRAM &&
mem->bus.caching == ttm_cached)
flags |= AMDGPU_PTE_SNOOPED;
return flags;
}
/**
* amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
*
* @adev: amdgpu_device pointer
* @ttm: The ttm_tt object to compute the flags for
* @mem: The memory registry backing this ttm_tt object
*
* Figure out the flags to use for a VM PTE (Page Table Entry).
*/
uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
struct ttm_resource *mem)
{
uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
flags |= adev->gart.gart_pte_flags;
flags |= AMDGPU_PTE_READABLE;
if (!amdgpu_ttm_tt_is_readonly(ttm))
flags |= AMDGPU_PTE_WRITEABLE;
return flags;
}
/*
* amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
* object.
*
* Return true if eviction is sensible. Called by ttm_mem_evict_first() on
* behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
* it can find space for a new object and by ttm_bo_force_list_clean() which is
* used to clean out a memory space.
*/
static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
struct dma_resv_iter resv_cursor;
struct dma_fence *f;
if (!amdgpu_bo_is_amdgpu_bo(bo))
return ttm_bo_eviction_valuable(bo, place);
/* Swapout? */
if (bo->resource->mem_type == TTM_PL_SYSTEM)
return true;
if (bo->type == ttm_bo_type_kernel &&
!amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
return false;
/* If bo is a KFD BO, check if the bo belongs to the current process.
* If true, then return false as any KFD process needs all its BOs to
* be resident to run successfully
*/
dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP, f) {
if (amdkfd_fence_check_mm(f, current->mm) &&
!(place->flags & TTM_PL_FLAG_CONTIGUOUS))
return false;
}
/* Preemptible BOs don't own system resources managed by the
* driver (pages, VRAM, GART space). They point to resources
* owned by someone else (e.g. pageable memory in user mode
* or a DMABuf). They are used in a preemptible context so we
* can guarantee no deadlocks and good QoS in case of MMU
* notifiers or DMABuf move notifiers from the resource owner.
*/
if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
return false;
if (bo->resource->mem_type == TTM_PL_TT &&
amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
return false;
return ttm_bo_eviction_valuable(bo, place);
}
static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
void *buf, size_t size, bool write)
{
while (size) {
uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
uint64_t bytes = 4 - (pos & 0x3);
uint32_t shift = (pos & 0x3) * 8;
uint32_t mask = 0xffffffff << shift;
uint32_t value = 0;
if (size < bytes) {
mask &= 0xffffffff >> (bytes - size) * 8;
bytes = size;
}
if (mask != 0xffffffff) {
amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
if (write) {
value &= ~mask;
value |= (*(uint32_t *)buf << shift) & mask;
amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
} else {
value = (value & mask) >> shift;
memcpy(buf, &value, bytes);
}
} else {
amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
}
pos += bytes;
buf += bytes;
size -= bytes;
}
}
static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
unsigned long offset, void *buf,
int len, int write)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
struct amdgpu_res_cursor src_mm;
struct amdgpu_job *job;
struct dma_fence *fence;
uint64_t src_addr, dst_addr;
unsigned int num_dw;
int r, idx;
if (len != PAGE_SIZE)
return -EINVAL;
if (!adev->mman.sdma_access_ptr)
return -EACCES;
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return -ENODEV;
if (write)
memcpy(adev->mman.sdma_access_ptr, buf, len);
num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
AMDGPU_FENCE_OWNER_UNDEFINED,
num_dw * 4, AMDGPU_IB_POOL_DELAYED,
&job);
if (r)
goto out;
amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
src_mm.start;
dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
if (write)
swap(src_addr, dst_addr);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
PAGE_SIZE, 0);
amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
fence = amdgpu_job_submit(job);
if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
r = -ETIMEDOUT;
dma_fence_put(fence);
if (!(r || write))
memcpy(buf, adev->mman.sdma_access_ptr, len);
out:
drm_dev_exit(idx);
return r;
}
/**
* amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
*
* @bo: The buffer object to read/write
* @offset: Offset into buffer object
* @buf: Secondary buffer to write/read from
* @len: Length in bytes of access
* @write: true if writing
*
* This is used to access VRAM that backs a buffer object via MMIO
* access for debugging purposes.
*/
static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
unsigned long offset, void *buf, int len,
int write)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
struct amdgpu_res_cursor cursor;
int ret = 0;
if (bo->resource->mem_type != TTM_PL_VRAM)
return -EIO;
if (amdgpu_device_has_timeouts_enabled(adev) &&
!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
return len;
amdgpu_res_first(bo->resource, offset, len, &cursor);
while (cursor.remaining) {
size_t count, size = cursor.size;
loff_t pos = cursor.start;
count = amdgpu_device_aper_access(adev, pos, buf, size, write);
size -= count;
if (size) {
/* using MM to access rest vram and handle un-aligned address */
pos += count;
buf += count;
amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
}
ret += cursor.size;
buf += cursor.size;
amdgpu_res_next(&cursor, cursor.size);
}
return ret;
}
static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
{
amdgpu_bo_move_notify(bo, false, NULL);
}
static struct ttm_device_funcs amdgpu_bo_driver = {
.ttm_tt_create = &amdgpu_ttm_tt_create,
.ttm_tt_populate = &amdgpu_ttm_tt_populate,
.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
.evict_flags = &amdgpu_evict_flags,
.move = &amdgpu_bo_move,
.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
.release_notify = &amdgpu_bo_release_notify,
.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
.access_memory = &amdgpu_ttm_access_memory,
};
/*
* Firmware Reservation functions
*/
/**
* amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
*
* @adev: amdgpu_device pointer
*
* free fw reserved vram if it has been reserved.
*/
static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
NULL, &adev->mman.fw_vram_usage_va);
}
/*
* Driver Reservation functions
*/
/**
* amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
*
* @adev: amdgpu_device pointer
*
* free drv reserved vram if it has been reserved.
*/
static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
NULL,
&adev->mman.drv_vram_usage_va);
}
/**
* amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
*
* @adev: amdgpu_device pointer
*
* create bo vram reservation from fw.
*/
static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
{
uint64_t vram_size = adev->gmc.visible_vram_size;
adev->mman.fw_vram_usage_va = NULL;
adev->mman.fw_vram_usage_reserved_bo = NULL;
if (adev->mman.fw_vram_usage_size == 0 ||
adev->mman.fw_vram_usage_size > vram_size)
return 0;
return amdgpu_bo_create_kernel_at(adev,
adev->mman.fw_vram_usage_start_offset,
adev->mman.fw_vram_usage_size,
&adev->mman.fw_vram_usage_reserved_bo,
&adev->mman.fw_vram_usage_va);
}
/**
* amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
*
* @adev: amdgpu_device pointer
*
* create bo vram reservation from drv.
*/
static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
{
u64 vram_size = adev->gmc.visible_vram_size;
adev->mman.drv_vram_usage_va = NULL;
adev->mman.drv_vram_usage_reserved_bo = NULL;
if (adev->mman.drv_vram_usage_size == 0 ||
adev->mman.drv_vram_usage_size > vram_size)
return 0;
return amdgpu_bo_create_kernel_at(adev,
adev->mman.drv_vram_usage_start_offset,
adev->mman.drv_vram_usage_size,
&adev->mman.drv_vram_usage_reserved_bo,
&adev->mman.drv_vram_usage_va);
}
/*
* Memoy training reservation functions
*/
/**
* amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
*
* @adev: amdgpu_device pointer
*
* free memory training reserved vram if it has been reserved.
*/
static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
{
struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
ctx->c2p_bo = NULL;
return 0;
}
static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
uint32_t reserve_size)
{
struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
memset(ctx, 0, sizeof(*ctx));
ctx->c2p_train_data_offset =
ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
ctx->p2c_train_data_offset =
(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
ctx->train_data_size =
GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
ctx->train_data_size,
ctx->p2c_train_data_offset,
ctx->c2p_train_data_offset);
}
/*
* reserve TMR memory at the top of VRAM which holds
* IP Discovery data and is protected by PSP.
*/
static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
{
struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
bool mem_train_support = false;
uint32_t reserve_size = 0;
int ret;
if (adev->bios && !amdgpu_sriov_vf(adev)) {
if (amdgpu_atomfirmware_mem_training_supported(adev))
mem_train_support = true;
else
DRM_DEBUG("memory training does not support!\n");
}
/*
* Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
* the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
*
* Otherwise, fallback to legacy approach to check and reserve tmr block for ip
* discovery data and G6 memory training data respectively
*/
if (adev->bios)
reserve_size =
amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
if (!adev->bios &&
(amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
reserve_size = max(reserve_size, (uint32_t)280 << 20);
else if (!reserve_size)
reserve_size = DISCOVERY_TMR_OFFSET;
if (mem_train_support) {
/* reserve vram for mem train according to TMR location */
amdgpu_ttm_training_data_block_init(adev, reserve_size);
ret = amdgpu_bo_create_kernel_at(adev,
ctx->c2p_train_data_offset,
ctx->train_data_size,
&ctx->c2p_bo,
NULL);
if (ret) {
DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
amdgpu_ttm_training_reserve_vram_fini(adev);
return ret;
}
ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
}
if (!adev->gmc.is_app_apu) {
ret = amdgpu_bo_create_kernel_at(
adev, adev->gmc.real_vram_size - reserve_size,
reserve_size, &adev->mman.fw_reserved_memory, NULL);
if (ret) {
DRM_ERROR("alloc tmr failed(%d)!\n", ret);
amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
NULL, NULL);
return ret;
}
} else {
DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
}
return 0;
}
static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
{
int i;
if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
return 0;
adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
sizeof(*adev->mman.ttm_pools),
GFP_KERNEL);
if (!adev->mman.ttm_pools)
return -ENOMEM;
for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
adev->gmc.mem_partitions[i].numa.node,
false, false);
}
return 0;
}
static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
{
int i;
if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
return;
for (i = 0; i < adev->gmc.num_mem_partitions; i++)
ttm_pool_fini(&adev->mman.ttm_pools[i]);
kfree(adev->mman.ttm_pools);
adev->mman.ttm_pools = NULL;
}
/*
* amdgpu_ttm_init - Init the memory management (ttm) as well as various
* gtt/vram related fields.
*
* This initializes all of the memory space pools that the TTM layer
* will need such as the GTT space (system memory mapped to the device),
* VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
* can be mapped per VMID.
*/
int amdgpu_ttm_init(struct amdgpu_device *adev)
{
uint64_t gtt_size;
int r;
mutex_init(&adev->mman.gtt_window_lock);
/* No others user of address space so set it to 0 */
r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
adev_to_drm(adev)->anon_inode->i_mapping,
adev_to_drm(adev)->vma_offset_manager,
adev->need_swiotlb,
dma_addressing_limited(adev->dev));
if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r;
}
r = amdgpu_ttm_pools_init(adev);
if (r) {
DRM_ERROR("failed to init ttm pools(%d).\n", r);
return r;
}
adev->mman.initialized = true;
/* Initialize VRAM pool with all of VRAM divided into pages */
r = amdgpu_vram_mgr_init(adev);
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
}
/* Change the size here instead of the init above so only lpfn is affected */
amdgpu_ttm_set_buffer_funcs_status(adev, false);
#ifdef CONFIG_64BIT
#ifdef CONFIG_X86
if (adev->gmc.xgmi.connected_to_cpu)
adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
adev->gmc.visible_vram_size);
else if (adev->gmc.is_app_apu)
DRM_DEBUG_DRIVER(
"No need to ioremap when real vram size is 0\n");
else
#endif
adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
adev->gmc.visible_vram_size);
#endif
/*
*The reserved vram for firmware must be pinned to the specified
*place on the VRAM, so reserve it early.
*/
r = amdgpu_ttm_fw_reserve_vram_init(adev);
if (r)
return r;
/*
*The reserved vram for driver must be pinned to the specified
*place on the VRAM, so reserve it early.
*/
r = amdgpu_ttm_drv_reserve_vram_init(adev);
if (r)
return r;
/*
* only NAVI10 and onwards ASIC support for IP discovery.
* If IP discovery enabled, a block of memory should be
* reserved for IP discovey.
*/
if (adev->mman.discovery_bin) {
r = amdgpu_ttm_reserve_tmr(adev);
if (r)
return r;
}
/* allocate memory as required for VGA
* This is used for VGA emulation and pre-OS scanout buffers to
* avoid display artifacts while transitioning between pre-OS
* and driver.
*/
if (!adev->gmc.is_app_apu) {
r = amdgpu_bo_create_kernel_at(adev, 0,
adev->mman.stolen_vga_size,
&adev->mman.stolen_vga_memory,
NULL);
if (r)
return r;
r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
adev->mman.stolen_extended_size,
&adev->mman.stolen_extended_memory,
NULL);
if (r)
return r;
r = amdgpu_bo_create_kernel_at(adev,
adev->mman.stolen_reserved_offset,
adev->mman.stolen_reserved_size,
&adev->mman.stolen_reserved_memory,
NULL);
if (r)
return r;
} else {
DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
}
DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
(unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
/* Compute GTT size, either based on TTM limit
* or whatever the user passed on module init.
*/
if (amdgpu_gtt_size == -1)
gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
else
gtt_size = (uint64_t)amdgpu_gtt_size << 20;
/* Initialize GTT memory pool */
r = amdgpu_gtt_mgr_init(adev, gtt_size);
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
(unsigned int)(gtt_size / (1024 * 1024)));
/* Initialize doorbell pool on PCI BAR */
r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
if (r) {
DRM_ERROR("Failed initializing doorbell heap.\n");
return r;
}
/* Create a boorbell page for kernel usages */
r = amdgpu_doorbell_create_kernel_doorbells(adev);
if (r) {
DRM_ERROR("Failed to initialize kernel doorbells.\n");
return r;
}
/* Initialize preemptible memory pool */
r = amdgpu_preempt_mgr_init(adev);
if (r) {
DRM_ERROR("Failed initializing PREEMPT heap.\n");
return r;
}
/* Initialize various on-chip memory pools */
r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
if (r) {
DRM_ERROR("Failed initializing GDS heap.\n");
return r;
}
r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
if (r) {
DRM_ERROR("Failed initializing gws heap.\n");
return r;
}
r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
if (r) {
DRM_ERROR("Failed initializing oa heap.\n");
return r;
}
if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->mman.sdma_access_bo, NULL,
&adev->mman.sdma_access_ptr))
DRM_WARN("Debug VRAM access will use slowpath MM access\n");
return 0;
}
/*
* amdgpu_ttm_fini - De-initialize the TTM memory pools
*/
void amdgpu_ttm_fini(struct amdgpu_device *adev)
{
int idx;
if (!adev->mman.initialized)
return;
amdgpu_ttm_pools_fini(adev);
amdgpu_ttm_training_reserve_vram_fini(adev);
/* return the stolen vga memory back to VRAM */
if (!adev->gmc.is_app_apu) {
amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
/* return the FW reserved memory back to VRAM */
amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
NULL);
if (adev->mman.stolen_reserved_size)
amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
NULL, NULL);
}
amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
&adev->mman.sdma_access_ptr);
amdgpu_ttm_fw_reserve_vram_fini(adev);
amdgpu_ttm_drv_reserve_vram_fini(adev);
if (drm_dev_enter(adev_to_drm(adev), &idx)) {
if (adev->mman.aper_base_kaddr)
iounmap(adev->mman.aper_base_kaddr);
adev->mman.aper_base_kaddr = NULL;
drm_dev_exit(idx);
}
amdgpu_vram_mgr_fini(adev);
amdgpu_gtt_mgr_fini(adev);
amdgpu_preempt_mgr_fini(adev);
ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
ttm_device_fini(&adev->mman.bdev);
adev->mman.initialized = false;
DRM_INFO("amdgpu: ttm finalized\n");
}
/**
* amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
*
* @adev: amdgpu_device pointer
* @enable: true when we can use buffer functions.
*
* Enable/disable use of buffer functions during suspend/resume. This should
* only be called at bootup or when userspace isn't running.
*/
void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
{
struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
uint64_t size;
int r;
if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
return;
if (enable) {
struct amdgpu_ring *ring;
struct drm_gpu_scheduler *sched;
ring = adev->mman.buffer_funcs_ring;
sched = &ring->sched;
r = drm_sched_entity_init(&adev->mman.high_pr,
DRM_SCHED_PRIORITY_KERNEL, &sched,
1, NULL);
if (r) {
DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
r);
return;
}
r = drm_sched_entity_init(&adev->mman.low_pr,
DRM_SCHED_PRIORITY_NORMAL, &sched,
1, NULL);
if (r) {
DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
r);
goto error_free_entity;
}
} else {
drm_sched_entity_destroy(&adev->mman.high_pr);
drm_sched_entity_destroy(&adev->mman.low_pr);
dma_fence_put(man->move);
man->move = NULL;
}
/* this just adjusts TTM size idea, which sets lpfn to the correct value */
if (enable)
size = adev->gmc.real_vram_size;
else
size = adev->gmc.visible_vram_size;
man->size = size;
adev->mman.buffer_funcs_enabled = enable;
return;
error_free_entity:
drm_sched_entity_destroy(&adev->mman.high_pr);
}
static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
bool direct_submit,
unsigned int num_dw,
struct dma_resv *resv,
bool vm_needs_flush,
struct amdgpu_job **job,
bool delayed)
{
enum amdgpu_ib_pool_type pool = direct_submit ?
AMDGPU_IB_POOL_DIRECT :
AMDGPU_IB_POOL_DELAYED;
int r;
struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
&adev->mman.high_pr;
r = amdgpu_job_alloc_with_ib(adev, entity,
AMDGPU_FENCE_OWNER_UNDEFINED,
num_dw * 4, pool, job);
if (r)
return r;
if (vm_needs_flush) {
(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
adev->gmc.pdb0_bo :
adev->gart.bo);
(*job)->vm_needs_flush = true;
}
if (!resv)
return 0;
return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
DMA_RESV_USAGE_BOOKKEEP);
}
int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
uint64_t dst_offset, uint32_t byte_count,
struct dma_resv *resv,
struct dma_fence **fence, bool direct_submit,
bool vm_needs_flush, uint32_t copy_flags)
{
struct amdgpu_device *adev = ring->adev;
unsigned int num_loops, num_dw;
struct amdgpu_job *job;
uint32_t max_bytes;
unsigned int i;
int r;
if (!direct_submit && !ring->sched.ready) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
num_loops = DIV_ROUND_UP(byte_count, max_bytes);
num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
resv, vm_needs_flush, &job, false);
if (r)
return r;
for (i = 0; i < num_loops; i++) {
uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
dst_offset, cur_size_in_bytes, copy_flags);
src_offset += cur_size_in_bytes;
dst_offset += cur_size_in_bytes;
byte_count -= cur_size_in_bytes;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
if (direct_submit)
r = amdgpu_job_submit_direct(job, ring, fence);
else
*fence = amdgpu_job_submit(job);
if (r)
goto error_free;
return r;
error_free:
amdgpu_job_free(job);
DRM_ERROR("Error scheduling IBs (%d)\n", r);
return r;
}
static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
uint64_t dst_addr, uint32_t byte_count,
struct dma_resv *resv,
struct dma_fence **fence,
bool vm_needs_flush, bool delayed)
{
struct amdgpu_device *adev = ring->adev;
unsigned int num_loops, num_dw;
struct amdgpu_job *job;
uint32_t max_bytes;
unsigned int i;
int r;
max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
&job, delayed);
if (r)
return r;
for (i = 0; i < num_loops; i++) {
uint32_t cur_size = min(byte_count, max_bytes);
amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
cur_size);
dst_addr += cur_size;
byte_count -= cur_size;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
*fence = amdgpu_job_submit(job);
return 0;
}
/**
* amdgpu_ttm_clear_buffer - clear memory buffers
* @bo: amdgpu buffer object
* @resv: reservation object
* @fence: dma_fence associated with the operation
*
* Clear the memory buffer resource.
*
* Returns:
* 0 for success or a negative error code on failure.
*/
int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
struct dma_resv *resv,
struct dma_fence **fence)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct amdgpu_res_cursor cursor;
u64 addr;
int r;
if (!adev->mman.buffer_funcs_enabled)
return -EINVAL;
if (!fence)
return -EINVAL;
*fence = dma_fence_get_stub();
amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
mutex_lock(&adev->mman.gtt_window_lock);
while (cursor.remaining) {
struct dma_fence *next = NULL;
u64 size;
if (amdgpu_res_cleared(&cursor)) {
amdgpu_res_next(&cursor, cursor.size);
continue;
}
/* Never clear more than 256MiB at once to avoid timeouts */
size = min(cursor.size, 256ULL << 20);
r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
1, ring, false, &size, &addr);
if (r)
goto err;
r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
&next, true, true);
if (r)
goto err;
dma_fence_put(*fence);
*fence = next;
amdgpu_res_next(&cursor, size);
}
err:
mutex_unlock(&adev->mman.gtt_window_lock);
return r;
}
int amdgpu_fill_buffer(struct amdgpu_bo *bo,
uint32_t src_data,
struct dma_resv *resv,
struct dma_fence **f,
bool delayed)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct dma_fence *fence = NULL;
struct amdgpu_res_cursor dst;
int r;
if (!adev->mman.buffer_funcs_enabled) {
DRM_ERROR("Trying to clear memory with ring turned off.\n");
return -EINVAL;
}
amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
mutex_lock(&adev->mman.gtt_window_lock);
while (dst.remaining) {
struct dma_fence *next;
uint64_t cur_size, to;
/* Never fill more than 256MiB at once to avoid timeouts */
cur_size = min(dst.size, 256ULL << 20);
r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
1, ring, false, &cur_size, &to);
if (r)
goto error;
r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
&next, true, delayed);
if (r)
goto error;
dma_fence_put(fence);
fence = next;
amdgpu_res_next(&dst, cur_size);
}
error:
mutex_unlock(&adev->mman.gtt_window_lock);
if (f)
*f = dma_fence_get(fence);
dma_fence_put(fence);
return r;
}
/**
* amdgpu_ttm_evict_resources - evict memory buffers
* @adev: amdgpu device object
* @mem_type: evicted BO's memory type
*
* Evicts all @mem_type buffers on the lru list of the memory type.
*
* Returns:
* 0 for success or a negative error code on failure.
*/
int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
{
struct ttm_resource_manager *man;
switch (mem_type) {
case TTM_PL_VRAM:
case TTM_PL_TT:
case AMDGPU_PL_GWS:
case AMDGPU_PL_GDS:
case AMDGPU_PL_OA:
man = ttm_manager_type(&adev->mman.bdev, mem_type);
break;
default:
DRM_ERROR("Trying to evict invalid memory type\n");
return -EINVAL;
}
return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
}
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = m->private;
return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
}
DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
/*
* amdgpu_ttm_vram_read - Linear read access to VRAM
*
* Accesses VRAM via MMIO for debugging purposes.
*/
static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (*pos >= adev->gmc.mc_vram_size)
return -ENXIO;
size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
while (size) {
size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
amdgpu_device_vram_access(adev, *pos, value, bytes, false);
if (copy_to_user(buf, value, bytes))
return -EFAULT;
result += bytes;
buf += bytes;
*pos += bytes;
size -= bytes;
}
return result;
}
/*
* amdgpu_ttm_vram_write - Linear write access to VRAM
*
* Accesses VRAM via MMIO for debugging purposes.
*/
static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (*pos >= adev->gmc.mc_vram_size)
return -ENXIO;
while (size) {
uint32_t value;
if (*pos >= adev->gmc.mc_vram_size)
return result;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
amdgpu_device_mm_access(adev, *pos, &value, 4, true);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static const struct file_operations amdgpu_ttm_vram_fops = {
.owner = THIS_MODULE,
.read = amdgpu_ttm_vram_read,
.write = amdgpu_ttm_vram_write,
.llseek = default_llseek,
};
/*
* amdgpu_iomem_read - Virtual read access to GPU mapped memory
*
* This function is used to read memory that has been mapped to the
* GPU and the known addresses are not physical addresses but instead
* bus addresses (e.g., what you'd put in an IB or ring buffer).
*/
static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
struct iommu_domain *dom;
ssize_t result = 0;
int r;
/* retrieve the IOMMU domain if any for this device */
dom = iommu_get_domain_for_dev(adev->dev);
while (size) {
phys_addr_t addr = *pos & PAGE_MASK;
loff_t off = *pos & ~PAGE_MASK;
size_t bytes = PAGE_SIZE - off;
unsigned long pfn;
struct page *p;
void *ptr;
bytes = min(bytes, size);
/* Translate the bus address to a physical address. If
* the domain is NULL it means there is no IOMMU active
* and the address translation is the identity
*/
addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
pfn = addr >> PAGE_SHIFT;
if (!pfn_valid(pfn))
return -EPERM;
p = pfn_to_page(pfn);
if (p->mapping != adev->mman.bdev.dev_mapping)
return -EPERM;
ptr = kmap_local_page(p);
r = copy_to_user(buf, ptr + off, bytes);
kunmap_local(ptr);
if (r)
return -EFAULT;
size -= bytes;
*pos += bytes;
result += bytes;
}
return result;
}
/*
* amdgpu_iomem_write - Virtual write access to GPU mapped memory
*
* This function is used to write memory that has been mapped to the
* GPU and the known addresses are not physical addresses but instead
* bus addresses (e.g., what you'd put in an IB or ring buffer).
*/
static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
struct iommu_domain *dom;
ssize_t result = 0;
int r;
dom = iommu_get_domain_for_dev(adev->dev);
while (size) {
phys_addr_t addr = *pos & PAGE_MASK;
loff_t off = *pos & ~PAGE_MASK;
size_t bytes = PAGE_SIZE - off;
unsigned long pfn;
struct page *p;
void *ptr;
bytes = min(bytes, size);
addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
pfn = addr >> PAGE_SHIFT;
if (!pfn_valid(pfn))
return -EPERM;
p = pfn_to_page(pfn);
if (p->mapping != adev->mman.bdev.dev_mapping)
return -EPERM;
ptr = kmap_local_page(p);
r = copy_from_user(ptr + off, buf, bytes);
kunmap_local(ptr);
if (r)
return -EFAULT;
size -= bytes;
*pos += bytes;
result += bytes;
}
return result;
}
static const struct file_operations amdgpu_ttm_iomem_fops = {
.owner = THIS_MODULE,
.read = amdgpu_iomem_read,
.write = amdgpu_iomem_write,
.llseek = default_llseek
};
#endif
void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *root = minor->debugfs_root;
debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
&amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
debugfs_create_file("amdgpu_iomem", 0444, root, adev,
&amdgpu_ttm_iomem_fops);
debugfs_create_file("ttm_page_pool", 0444, root, adev,
&amdgpu_ttm_page_pool_fops);
ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
TTM_PL_VRAM),
root, "amdgpu_vram_mm");
ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
TTM_PL_TT),
root, "amdgpu_gtt_mm");
ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
AMDGPU_PL_GDS),
root, "amdgpu_gds_mm");
ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
AMDGPU_PL_GWS),
root, "amdgpu_gws_mm");
ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
AMDGPU_PL_OA),
root, "amdgpu_oa_mm");
#endif
}