blob: ccfd2a4b4acc850c6f5a12ce9b334c1a7559e36e [file] [log] [blame]
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu.h"
#include "soc15.h"
#include "soc15_common.h"
#include "amdgpu_reg_state.h"
#include "amdgpu_xcp.h"
#include "gfx_v9_4_3.h"
#include "gfxhub_v1_2.h"
#include "sdma_v4_4_2.h"
#define XCP_INST_MASK(num_inst, xcp_id) \
(num_inst ? GENMASK(num_inst - 1, 0) << (xcp_id * num_inst) : 0)
#define AMDGPU_XCP_OPS_KFD (1 << 0)
void aqua_vanjaram_doorbell_index_init(struct amdgpu_device *adev)
{
int i;
adev->doorbell_index.kiq = AMDGPU_DOORBELL_LAYOUT1_KIQ_START;
adev->doorbell_index.mec_ring0 = AMDGPU_DOORBELL_LAYOUT1_MEC_RING_START;
adev->doorbell_index.userqueue_start = AMDGPU_DOORBELL_LAYOUT1_USERQUEUE_START;
adev->doorbell_index.userqueue_end = AMDGPU_DOORBELL_LAYOUT1_USERQUEUE_END;
adev->doorbell_index.xcc_doorbell_range = AMDGPU_DOORBELL_LAYOUT1_XCC_RANGE;
adev->doorbell_index.sdma_doorbell_range = 20;
for (i = 0; i < adev->sdma.num_instances; i++)
adev->doorbell_index.sdma_engine[i] =
AMDGPU_DOORBELL_LAYOUT1_sDMA_ENGINE_START +
i * (adev->doorbell_index.sdma_doorbell_range >> 1);
adev->doorbell_index.ih = AMDGPU_DOORBELL_LAYOUT1_IH;
adev->doorbell_index.vcn.vcn_ring0_1 = AMDGPU_DOORBELL_LAYOUT1_VCN_START;
adev->doorbell_index.first_non_cp = AMDGPU_DOORBELL_LAYOUT1_FIRST_NON_CP;
adev->doorbell_index.last_non_cp = AMDGPU_DOORBELL_LAYOUT1_LAST_NON_CP;
adev->doorbell_index.max_assignment = AMDGPU_DOORBELL_LAYOUT1_MAX_ASSIGNMENT << 1;
}
static bool aqua_vanjaram_xcp_vcn_shared(struct amdgpu_device *adev)
{
return (adev->xcp_mgr->num_xcps > adev->vcn.num_vcn_inst);
}
static void aqua_vanjaram_set_xcp_id(struct amdgpu_device *adev,
uint32_t inst_idx, struct amdgpu_ring *ring)
{
int xcp_id;
enum AMDGPU_XCP_IP_BLOCK ip_blk;
uint32_t inst_mask;
ring->xcp_id = AMDGPU_XCP_NO_PARTITION;
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
adev->gfx.enforce_isolation[0].xcp_id = ring->xcp_id;
if (adev->xcp_mgr->mode == AMDGPU_XCP_MODE_NONE)
return;
inst_mask = 1 << inst_idx;
switch (ring->funcs->type) {
case AMDGPU_HW_IP_GFX:
case AMDGPU_RING_TYPE_COMPUTE:
case AMDGPU_RING_TYPE_KIQ:
ip_blk = AMDGPU_XCP_GFX;
break;
case AMDGPU_RING_TYPE_SDMA:
ip_blk = AMDGPU_XCP_SDMA;
break;
case AMDGPU_RING_TYPE_VCN_ENC:
case AMDGPU_RING_TYPE_VCN_JPEG:
ip_blk = AMDGPU_XCP_VCN;
break;
default:
DRM_ERROR("Not support ring type %d!", ring->funcs->type);
return;
}
for (xcp_id = 0; xcp_id < adev->xcp_mgr->num_xcps; xcp_id++) {
if (adev->xcp_mgr->xcp[xcp_id].ip[ip_blk].inst_mask & inst_mask) {
ring->xcp_id = xcp_id;
dev_dbg(adev->dev, "ring:%s xcp_id :%u", ring->name,
ring->xcp_id);
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
adev->gfx.enforce_isolation[xcp_id].xcp_id = xcp_id;
break;
}
}
}
static void aqua_vanjaram_xcp_gpu_sched_update(
struct amdgpu_device *adev,
struct amdgpu_ring *ring,
unsigned int sel_xcp_id)
{
unsigned int *num_gpu_sched;
num_gpu_sched = &adev->xcp_mgr->xcp[sel_xcp_id]
.gpu_sched[ring->funcs->type][ring->hw_prio].num_scheds;
adev->xcp_mgr->xcp[sel_xcp_id].gpu_sched[ring->funcs->type][ring->hw_prio]
.sched[(*num_gpu_sched)++] = &ring->sched;
DRM_DEBUG("%s :[%d] gpu_sched[%d][%d] = %d", ring->name,
sel_xcp_id, ring->funcs->type,
ring->hw_prio, *num_gpu_sched);
}
static int aqua_vanjaram_xcp_sched_list_update(
struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int i;
for (i = 0; i < MAX_XCP; i++) {
atomic_set(&adev->xcp_mgr->xcp[i].ref_cnt, 0);
memset(adev->xcp_mgr->xcp[i].gpu_sched, 0, sizeof(adev->xcp_mgr->xcp->gpu_sched));
}
if (adev->xcp_mgr->mode == AMDGPU_XCP_MODE_NONE)
return 0;
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
ring = adev->rings[i];
if (!ring || !ring->sched.ready || ring->no_scheduler)
continue;
aqua_vanjaram_xcp_gpu_sched_update(adev, ring, ring->xcp_id);
/* VCN may be shared by two partitions under CPX MODE in certain
* configs.
*/
if ((ring->funcs->type == AMDGPU_RING_TYPE_VCN_ENC ||
ring->funcs->type == AMDGPU_RING_TYPE_VCN_JPEG) &&
aqua_vanjaram_xcp_vcn_shared(adev))
aqua_vanjaram_xcp_gpu_sched_update(adev, ring, ring->xcp_id + 1);
}
return 0;
}
static int aqua_vanjaram_update_partition_sched_list(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->num_rings; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE ||
ring->funcs->type == AMDGPU_RING_TYPE_KIQ)
aqua_vanjaram_set_xcp_id(adev, ring->xcc_id, ring);
else
aqua_vanjaram_set_xcp_id(adev, ring->me, ring);
}
return aqua_vanjaram_xcp_sched_list_update(adev);
}
static int aqua_vanjaram_select_scheds(
struct amdgpu_device *adev,
u32 hw_ip,
u32 hw_prio,
struct amdgpu_fpriv *fpriv,
unsigned int *num_scheds,
struct drm_gpu_scheduler ***scheds)
{
u32 sel_xcp_id;
int i;
if (fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION) {
u32 least_ref_cnt = ~0;
fpriv->xcp_id = 0;
for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
u32 total_ref_cnt;
total_ref_cnt = atomic_read(&adev->xcp_mgr->xcp[i].ref_cnt);
if (total_ref_cnt < least_ref_cnt) {
fpriv->xcp_id = i;
least_ref_cnt = total_ref_cnt;
}
}
}
sel_xcp_id = fpriv->xcp_id;
if (adev->xcp_mgr->xcp[sel_xcp_id].gpu_sched[hw_ip][hw_prio].num_scheds) {
*num_scheds = adev->xcp_mgr->xcp[fpriv->xcp_id].gpu_sched[hw_ip][hw_prio].num_scheds;
*scheds = adev->xcp_mgr->xcp[fpriv->xcp_id].gpu_sched[hw_ip][hw_prio].sched;
atomic_inc(&adev->xcp_mgr->xcp[sel_xcp_id].ref_cnt);
DRM_DEBUG("Selected partition #%d", sel_xcp_id);
} else {
DRM_ERROR("Failed to schedule partition #%d.", sel_xcp_id);
return -ENOENT;
}
return 0;
}
static int8_t aqua_vanjaram_logical_to_dev_inst(struct amdgpu_device *adev,
enum amd_hw_ip_block_type block,
int8_t inst)
{
int8_t dev_inst;
switch (block) {
case GC_HWIP:
case SDMA0_HWIP:
/* Both JPEG and VCN as JPEG is only alias of VCN */
case VCN_HWIP:
dev_inst = adev->ip_map.dev_inst[block][inst];
break;
default:
/* For rest of the IPs, no look up required.
* Assume 'logical instance == physical instance' for all configs. */
dev_inst = inst;
break;
}
return dev_inst;
}
static uint32_t aqua_vanjaram_logical_to_dev_mask(struct amdgpu_device *adev,
enum amd_hw_ip_block_type block,
uint32_t mask)
{
uint32_t dev_mask = 0;
int8_t log_inst, dev_inst;
while (mask) {
log_inst = ffs(mask) - 1;
dev_inst = aqua_vanjaram_logical_to_dev_inst(adev, block, log_inst);
dev_mask |= (1 << dev_inst);
mask &= ~(1 << log_inst);
}
return dev_mask;
}
static void aqua_vanjaram_populate_ip_map(struct amdgpu_device *adev,
enum amd_hw_ip_block_type ip_block,
uint32_t inst_mask)
{
int l = 0, i;
while (inst_mask) {
i = ffs(inst_mask) - 1;
adev->ip_map.dev_inst[ip_block][l++] = i;
inst_mask &= ~(1 << i);
}
for (; l < HWIP_MAX_INSTANCE; l++)
adev->ip_map.dev_inst[ip_block][l] = -1;
}
void aqua_vanjaram_ip_map_init(struct amdgpu_device *adev)
{
u32 ip_map[][2] = {
{ GC_HWIP, adev->gfx.xcc_mask },
{ SDMA0_HWIP, adev->sdma.sdma_mask },
{ VCN_HWIP, adev->vcn.inst_mask },
};
int i;
for (i = 0; i < ARRAY_SIZE(ip_map); ++i)
aqua_vanjaram_populate_ip_map(adev, ip_map[i][0], ip_map[i][1]);
adev->ip_map.logical_to_dev_inst = aqua_vanjaram_logical_to_dev_inst;
adev->ip_map.logical_to_dev_mask = aqua_vanjaram_logical_to_dev_mask;
}
/* Fixed pattern for smn addressing on different AIDs:
* bit[34]: indicate cross AID access
* bit[33:32]: indicate target AID id
* AID id range is 0 ~ 3 as maximum AID number is 4.
*/
u64 aqua_vanjaram_encode_ext_smn_addressing(int ext_id)
{
u64 ext_offset;
/* local routing and bit[34:32] will be zeros */
if (ext_id == 0)
return 0;
/* Initiated from host, accessing to all non-zero aids are cross traffic */
ext_offset = ((u64)(ext_id & 0x3) << 32) | (1ULL << 34);
return ext_offset;
}
static enum amdgpu_gfx_partition
__aqua_vanjaram_calc_xcp_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc, num_xcc_per_xcp = 0, mode = 0;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
if (adev->gfx.funcs->get_xccs_per_xcp)
num_xcc_per_xcp = adev->gfx.funcs->get_xccs_per_xcp(adev);
if ((num_xcc_per_xcp) && (num_xcc % num_xcc_per_xcp == 0))
mode = num_xcc / num_xcc_per_xcp;
if (num_xcc_per_xcp == 1)
return AMDGPU_CPX_PARTITION_MODE;
switch (mode) {
case 1:
return AMDGPU_SPX_PARTITION_MODE;
case 2:
return AMDGPU_DPX_PARTITION_MODE;
case 3:
return AMDGPU_TPX_PARTITION_MODE;
case 4:
return AMDGPU_QPX_PARTITION_MODE;
default:
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
static int aqua_vanjaram_query_partition_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
enum amdgpu_gfx_partition derv_mode,
mode = AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
struct amdgpu_device *adev = xcp_mgr->adev;
derv_mode = __aqua_vanjaram_calc_xcp_mode(xcp_mgr);
if (amdgpu_sriov_vf(adev))
return derv_mode;
if (adev->nbio.funcs->get_compute_partition_mode) {
mode = adev->nbio.funcs->get_compute_partition_mode(adev);
if (mode != derv_mode)
dev_warn(
adev->dev,
"Mismatch in compute partition mode - reported : %d derived : %d",
mode, derv_mode);
}
return mode;
}
static int __aqua_vanjaram_get_xcc_per_xcp(struct amdgpu_xcp_mgr *xcp_mgr, int mode)
{
int num_xcc, num_xcc_per_xcp = 0;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
switch (mode) {
case AMDGPU_SPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc;
break;
case AMDGPU_DPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 2;
break;
case AMDGPU_TPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 3;
break;
case AMDGPU_QPX_PARTITION_MODE:
num_xcc_per_xcp = num_xcc / 4;
break;
case AMDGPU_CPX_PARTITION_MODE:
num_xcc_per_xcp = 1;
break;
}
return num_xcc_per_xcp;
}
static int __aqua_vanjaram_get_xcp_ip_info(struct amdgpu_xcp_mgr *xcp_mgr, int xcp_id,
enum AMDGPU_XCP_IP_BLOCK ip_id,
struct amdgpu_xcp_ip *ip)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_sdma, num_vcn, num_shared_vcn, num_xcp;
int num_xcc_xcp, num_sdma_xcp, num_vcn_xcp;
num_sdma = adev->sdma.num_instances;
num_vcn = adev->vcn.num_vcn_inst;
num_shared_vcn = 1;
num_xcc_xcp = adev->gfx.num_xcc_per_xcp;
num_xcp = NUM_XCC(adev->gfx.xcc_mask) / num_xcc_xcp;
switch (xcp_mgr->mode) {
case AMDGPU_SPX_PARTITION_MODE:
case AMDGPU_DPX_PARTITION_MODE:
case AMDGPU_TPX_PARTITION_MODE:
case AMDGPU_QPX_PARTITION_MODE:
case AMDGPU_CPX_PARTITION_MODE:
num_sdma_xcp = DIV_ROUND_UP(num_sdma, num_xcp);
num_vcn_xcp = DIV_ROUND_UP(num_vcn, num_xcp);
break;
default:
return -EINVAL;
}
if (num_vcn && num_xcp > num_vcn)
num_shared_vcn = num_xcp / num_vcn;
switch (ip_id) {
case AMDGPU_XCP_GFXHUB:
ip->inst_mask = XCP_INST_MASK(num_xcc_xcp, xcp_id);
ip->ip_funcs = &gfxhub_v1_2_xcp_funcs;
break;
case AMDGPU_XCP_GFX:
ip->inst_mask = XCP_INST_MASK(num_xcc_xcp, xcp_id);
ip->ip_funcs = &gfx_v9_4_3_xcp_funcs;
break;
case AMDGPU_XCP_SDMA:
ip->inst_mask = XCP_INST_MASK(num_sdma_xcp, xcp_id);
ip->ip_funcs = &sdma_v4_4_2_xcp_funcs;
break;
case AMDGPU_XCP_VCN:
ip->inst_mask =
XCP_INST_MASK(num_vcn_xcp, xcp_id / num_shared_vcn);
/* TODO : Assign IP funcs */
break;
default:
return -EINVAL;
}
ip->ip_id = ip_id;
return 0;
}
static enum amdgpu_gfx_partition
__aqua_vanjaram_get_auto_mode(struct amdgpu_xcp_mgr *xcp_mgr)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc;
num_xcc = NUM_XCC(xcp_mgr->adev->gfx.xcc_mask);
if (adev->gmc.num_mem_partitions == 1)
return AMDGPU_SPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == num_xcc)
return AMDGPU_CPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == num_xcc / 2)
return (adev->flags & AMD_IS_APU) ? AMDGPU_TPX_PARTITION_MODE :
AMDGPU_CPX_PARTITION_MODE;
if (adev->gmc.num_mem_partitions == 2 && !(adev->flags & AMD_IS_APU))
return AMDGPU_DPX_PARTITION_MODE;
return AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE;
}
static bool __aqua_vanjaram_is_valid_mode(struct amdgpu_xcp_mgr *xcp_mgr,
enum amdgpu_gfx_partition mode)
{
struct amdgpu_device *adev = xcp_mgr->adev;
int num_xcc, num_xccs_per_xcp;
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
switch (mode) {
case AMDGPU_SPX_PARTITION_MODE:
return adev->gmc.num_mem_partitions == 1 && num_xcc > 0;
case AMDGPU_DPX_PARTITION_MODE:
return adev->gmc.num_mem_partitions <= 2 && (num_xcc % 4) == 0;
case AMDGPU_TPX_PARTITION_MODE:
return (adev->gmc.num_mem_partitions == 1 ||
adev->gmc.num_mem_partitions == 3) &&
((num_xcc % 3) == 0);
case AMDGPU_QPX_PARTITION_MODE:
num_xccs_per_xcp = num_xcc / 4;
return (adev->gmc.num_mem_partitions == 1 ||
adev->gmc.num_mem_partitions == 4) &&
(num_xccs_per_xcp >= 2);
case AMDGPU_CPX_PARTITION_MODE:
return ((num_xcc > 1) &&
(adev->gmc.num_mem_partitions == 1 || adev->gmc.num_mem_partitions == 4) &&
(num_xcc % adev->gmc.num_mem_partitions) == 0);
default:
return false;
}
return false;
}
static int __aqua_vanjaram_pre_partition_switch(struct amdgpu_xcp_mgr *xcp_mgr, u32 flags)
{
/* TODO:
* Stop user queues and threads, and make sure GPU is empty of work.
*/
if (flags & AMDGPU_XCP_OPS_KFD)
amdgpu_amdkfd_device_fini_sw(xcp_mgr->adev);
return 0;
}
static int __aqua_vanjaram_post_partition_switch(struct amdgpu_xcp_mgr *xcp_mgr, u32 flags)
{
int ret = 0;
if (flags & AMDGPU_XCP_OPS_KFD) {
amdgpu_amdkfd_device_probe(xcp_mgr->adev);
amdgpu_amdkfd_device_init(xcp_mgr->adev);
/* If KFD init failed, return failure */
if (!xcp_mgr->adev->kfd.init_complete)
ret = -EIO;
}
return ret;
}
static int aqua_vanjaram_switch_partition_mode(struct amdgpu_xcp_mgr *xcp_mgr,
int mode, int *num_xcps)
{
int num_xcc_per_xcp, num_xcc, ret;
struct amdgpu_device *adev;
u32 flags = 0;
adev = xcp_mgr->adev;
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
if (mode == AMDGPU_AUTO_COMPUTE_PARTITION_MODE) {
mode = __aqua_vanjaram_get_auto_mode(xcp_mgr);
if (mode == AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE) {
dev_err(adev->dev,
"Invalid config, no compatible compute partition mode found, available memory partitions: %d",
adev->gmc.num_mem_partitions);
return -EINVAL;
}
} else if (!__aqua_vanjaram_is_valid_mode(xcp_mgr, mode)) {
dev_err(adev->dev,
"Invalid compute partition mode requested, requested: %s, available memory partitions: %d",
amdgpu_gfx_compute_mode_desc(mode), adev->gmc.num_mem_partitions);
return -EINVAL;
}
if (adev->kfd.init_complete && !amdgpu_in_reset(adev))
flags |= AMDGPU_XCP_OPS_KFD;
if (flags & AMDGPU_XCP_OPS_KFD) {
ret = amdgpu_amdkfd_check_and_lock_kfd(adev);
if (ret)
goto out;
}
ret = __aqua_vanjaram_pre_partition_switch(xcp_mgr, flags);
if (ret)
goto unlock;
num_xcc_per_xcp = __aqua_vanjaram_get_xcc_per_xcp(xcp_mgr, mode);
if (adev->gfx.funcs->switch_partition_mode)
adev->gfx.funcs->switch_partition_mode(xcp_mgr->adev,
num_xcc_per_xcp);
/* Init info about new xcps */
*num_xcps = num_xcc / num_xcc_per_xcp;
amdgpu_xcp_init(xcp_mgr, *num_xcps, mode);
ret = __aqua_vanjaram_post_partition_switch(xcp_mgr, flags);
unlock:
if (flags & AMDGPU_XCP_OPS_KFD)
amdgpu_amdkfd_unlock_kfd(adev);
out:
return ret;
}
static int __aqua_vanjaram_get_xcp_mem_id(struct amdgpu_device *adev,
int xcc_id, uint8_t *mem_id)
{
/* memory/spatial modes validation check is already done */
*mem_id = xcc_id / adev->gfx.num_xcc_per_xcp;
*mem_id /= adev->xcp_mgr->num_xcp_per_mem_partition;
return 0;
}
static int aqua_vanjaram_get_xcp_mem_id(struct amdgpu_xcp_mgr *xcp_mgr,
struct amdgpu_xcp *xcp, uint8_t *mem_id)
{
struct amdgpu_numa_info numa_info;
struct amdgpu_device *adev;
uint32_t xcc_mask;
int r, i, xcc_id;
adev = xcp_mgr->adev;
/* TODO: BIOS is not returning the right info now
* Check on this later
*/
/*
if (adev->gmc.gmc_funcs->query_mem_partition_mode)
mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
*/
if (adev->gmc.num_mem_partitions == 1) {
/* Only one range */
*mem_id = 0;
return 0;
}
r = amdgpu_xcp_get_inst_details(xcp, AMDGPU_XCP_GFX, &xcc_mask);
if (r || !xcc_mask)
return -EINVAL;
xcc_id = ffs(xcc_mask) - 1;
if (!adev->gmc.is_app_apu)
return __aqua_vanjaram_get_xcp_mem_id(adev, xcc_id, mem_id);
r = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
if (r)
return r;
r = -EINVAL;
for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
if (adev->gmc.mem_partitions[i].numa.node == numa_info.nid) {
*mem_id = i;
r = 0;
break;
}
}
return r;
}
static int aqua_vanjaram_get_xcp_ip_details(struct amdgpu_xcp_mgr *xcp_mgr, int xcp_id,
enum AMDGPU_XCP_IP_BLOCK ip_id,
struct amdgpu_xcp_ip *ip)
{
if (!ip)
return -EINVAL;
return __aqua_vanjaram_get_xcp_ip_info(xcp_mgr, xcp_id, ip_id, ip);
}
struct amdgpu_xcp_mgr_funcs aqua_vanjaram_xcp_funcs = {
.switch_partition_mode = &aqua_vanjaram_switch_partition_mode,
.query_partition_mode = &aqua_vanjaram_query_partition_mode,
.get_ip_details = &aqua_vanjaram_get_xcp_ip_details,
.get_xcp_mem_id = &aqua_vanjaram_get_xcp_mem_id,
.select_scheds = &aqua_vanjaram_select_scheds,
.update_partition_sched_list = &aqua_vanjaram_update_partition_sched_list
};
static int aqua_vanjaram_xcp_mgr_init(struct amdgpu_device *adev)
{
int ret;
if (amdgpu_sriov_vf(adev))
aqua_vanjaram_xcp_funcs.switch_partition_mode = NULL;
ret = amdgpu_xcp_mgr_init(adev, AMDGPU_UNKNOWN_COMPUTE_PARTITION_MODE, 1,
&aqua_vanjaram_xcp_funcs);
if (ret)
return ret;
/* TODO: Default memory node affinity init */
return ret;
}
int aqua_vanjaram_init_soc_config(struct amdgpu_device *adev)
{
u32 mask, avail_inst, inst_mask = adev->sdma.sdma_mask;
int ret, i;
/* generally 1 AID supports 4 instances */
adev->sdma.num_inst_per_aid = 4;
adev->sdma.num_instances = NUM_SDMA(adev->sdma.sdma_mask);
adev->aid_mask = i = 1;
inst_mask >>= adev->sdma.num_inst_per_aid;
for (mask = (1 << adev->sdma.num_inst_per_aid) - 1; inst_mask;
inst_mask >>= adev->sdma.num_inst_per_aid, ++i) {
avail_inst = inst_mask & mask;
if (avail_inst == mask || avail_inst == 0x3 ||
avail_inst == 0xc)
adev->aid_mask |= (1 << i);
}
/* Harvest config is not used for aqua vanjaram. VCN and JPEGs will be
* addressed based on logical instance ids.
*/
adev->vcn.harvest_config = 0;
adev->vcn.num_inst_per_aid = 1;
adev->vcn.num_vcn_inst = hweight32(adev->vcn.inst_mask);
adev->jpeg.harvest_config = 0;
adev->jpeg.num_inst_per_aid = 1;
adev->jpeg.num_jpeg_inst = hweight32(adev->jpeg.inst_mask);
ret = aqua_vanjaram_xcp_mgr_init(adev);
if (ret)
return ret;
aqua_vanjaram_ip_map_init(adev);
return 0;
}
static void aqua_read_smn(struct amdgpu_device *adev,
struct amdgpu_smn_reg_data *regdata,
uint64_t smn_addr)
{
regdata->addr = smn_addr;
regdata->value = RREG32_PCIE(smn_addr);
}
struct aqua_reg_list {
uint64_t start_addr;
uint32_t num_regs;
uint32_t incrx;
};
#define DW_ADDR_INCR 4
static void aqua_read_smn_ext(struct amdgpu_device *adev,
struct amdgpu_smn_reg_data *regdata,
uint64_t smn_addr, int i)
{
regdata->addr =
smn_addr + adev->asic_funcs->encode_ext_smn_addressing(i);
regdata->value = RREG32_PCIE_EXT(regdata->addr);
}
#define smnreg_0x1A340218 0x1A340218
#define smnreg_0x1A3402E4 0x1A3402E4
#define smnreg_0x1A340294 0x1A340294
#define smreg_0x1A380088 0x1A380088
#define NUM_PCIE_SMN_REGS 14
static struct aqua_reg_list pcie_reg_addrs[] = {
{ smnreg_0x1A340218, 1, 0 },
{ smnreg_0x1A3402E4, 1, 0 },
{ smnreg_0x1A340294, 6, DW_ADDR_INCR },
{ smreg_0x1A380088, 6, DW_ADDR_INCR },
};
static ssize_t aqua_vanjaram_read_pcie_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_pcie_v1_0 *pcie_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_pcie_v1_0 *pcie_regs;
struct amdgpu_smn_reg_data *reg_data;
struct pci_dev *us_pdev, *ds_pdev;
int aer_cap, r, n;
if (!buf || !max_size)
return -EINVAL;
pcie_reg_state = (struct amdgpu_reg_state_pcie_v1_0 *)buf;
szbuf = sizeof(*pcie_reg_state) +
amdgpu_reginst_size(1, sizeof(*pcie_regs), NUM_PCIE_SMN_REGS);
/* Only one instance of pcie regs */
if (max_size < szbuf)
return -EOVERFLOW;
pcie_regs = (struct amdgpu_regs_pcie_v1_0 *)((uint8_t *)buf +
sizeof(*pcie_reg_state));
pcie_regs->inst_header.instance = 0;
pcie_regs->inst_header.state = AMDGPU_INST_S_OK;
pcie_regs->inst_header.num_smn_regs = NUM_PCIE_SMN_REGS;
reg_data = pcie_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(pcie_reg_addrs); r++) {
start_addr = pcie_reg_addrs[r].start_addr;
incrx = pcie_reg_addrs[r].incrx;
num_regs = pcie_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn(adev, reg_data, start_addr + n * incrx);
++reg_data;
}
}
ds_pdev = pci_upstream_bridge(adev->pdev);
us_pdev = pci_upstream_bridge(ds_pdev);
pcie_capability_read_word(us_pdev, PCI_EXP_DEVSTA,
&pcie_regs->device_status);
pcie_capability_read_word(us_pdev, PCI_EXP_LNKSTA,
&pcie_regs->link_status);
aer_cap = pci_find_ext_capability(us_pdev, PCI_EXT_CAP_ID_ERR);
if (aer_cap) {
pci_read_config_dword(us_pdev, aer_cap + PCI_ERR_COR_STATUS,
&pcie_regs->pcie_corr_err_status);
pci_read_config_dword(us_pdev, aer_cap + PCI_ERR_UNCOR_STATUS,
&pcie_regs->pcie_uncorr_err_status);
}
pci_read_config_dword(us_pdev, PCI_PRIMARY_BUS,
&pcie_regs->sub_bus_number_latency);
pcie_reg_state->common_header.structure_size = szbuf;
pcie_reg_state->common_header.format_revision = 1;
pcie_reg_state->common_header.content_revision = 0;
pcie_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_PCIE;
pcie_reg_state->common_header.num_instances = 1;
return pcie_reg_state->common_header.structure_size;
}
#define smnreg_0x11A00050 0x11A00050
#define smnreg_0x11A00180 0x11A00180
#define smnreg_0x11A00070 0x11A00070
#define smnreg_0x11A00200 0x11A00200
#define smnreg_0x11A0020C 0x11A0020C
#define smnreg_0x11A00210 0x11A00210
#define smnreg_0x11A00108 0x11A00108
#define XGMI_LINK_REG(smnreg, l) ((smnreg) | (l << 20))
#define NUM_XGMI_SMN_REGS 25
static struct aqua_reg_list xgmi_reg_addrs[] = {
{ smnreg_0x11A00050, 1, 0 },
{ smnreg_0x11A00180, 16, DW_ADDR_INCR },
{ smnreg_0x11A00070, 4, DW_ADDR_INCR },
{ smnreg_0x11A00200, 1, 0 },
{ smnreg_0x11A0020C, 1, 0 },
{ smnreg_0x11A00210, 1, 0 },
{ smnreg_0x11A00108, 1, 0 },
};
static ssize_t aqua_vanjaram_read_xgmi_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_xgmi_v1_0 *xgmi_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_xgmi_v1_0 *xgmi_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_xgmi_instances = 8;
int inst = 0, i, j, r, n;
const int xgmi_inst = 2;
void *p;
if (!buf || !max_size)
return -EINVAL;
xgmi_reg_state = (struct amdgpu_reg_state_xgmi_v1_0 *)buf;
szbuf = sizeof(*xgmi_reg_state) +
amdgpu_reginst_size(max_xgmi_instances, sizeof(*xgmi_regs),
NUM_XGMI_SMN_REGS);
/* Only one instance of pcie regs */
if (max_size < szbuf)
return -EOVERFLOW;
p = &xgmi_reg_state->xgmi_state_regs[0];
for_each_inst(i, adev->aid_mask) {
for (j = 0; j < xgmi_inst; ++j) {
xgmi_regs = (struct amdgpu_regs_xgmi_v1_0 *)p;
xgmi_regs->inst_header.instance = inst++;
xgmi_regs->inst_header.state = AMDGPU_INST_S_OK;
xgmi_regs->inst_header.num_smn_regs = NUM_XGMI_SMN_REGS;
reg_data = xgmi_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(xgmi_reg_addrs); r++) {
start_addr = xgmi_reg_addrs[r].start_addr;
incrx = xgmi_reg_addrs[r].incrx;
num_regs = xgmi_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(
adev, reg_data,
XGMI_LINK_REG(start_addr, j) +
n * incrx,
i);
++reg_data;
}
}
p = reg_data;
}
}
xgmi_reg_state->common_header.structure_size = szbuf;
xgmi_reg_state->common_header.format_revision = 1;
xgmi_reg_state->common_header.content_revision = 0;
xgmi_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_XGMI;
xgmi_reg_state->common_header.num_instances = max_xgmi_instances;
return xgmi_reg_state->common_header.structure_size;
}
#define smnreg_0x11C00070 0x11C00070
#define smnreg_0x11C00210 0x11C00210
static struct aqua_reg_list wafl_reg_addrs[] = {
{ smnreg_0x11C00070, 4, DW_ADDR_INCR },
{ smnreg_0x11C00210, 1, 0 },
};
#define WAFL_LINK_REG(smnreg, l) ((smnreg) | (l << 20))
#define NUM_WAFL_SMN_REGS 5
static ssize_t aqua_vanjaram_read_wafl_state(struct amdgpu_device *adev,
void *buf, size_t max_size)
{
struct amdgpu_reg_state_wafl_v1_0 *wafl_reg_state;
uint32_t start_addr, incrx, num_regs, szbuf;
struct amdgpu_regs_wafl_v1_0 *wafl_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_wafl_instances = 8;
int inst = 0, i, j, r, n;
const int wafl_inst = 2;
void *p;
if (!buf || !max_size)
return -EINVAL;
wafl_reg_state = (struct amdgpu_reg_state_wafl_v1_0 *)buf;
szbuf = sizeof(*wafl_reg_state) +
amdgpu_reginst_size(max_wafl_instances, sizeof(*wafl_regs),
NUM_WAFL_SMN_REGS);
if (max_size < szbuf)
return -EOVERFLOW;
p = &wafl_reg_state->wafl_state_regs[0];
for_each_inst(i, adev->aid_mask) {
for (j = 0; j < wafl_inst; ++j) {
wafl_regs = (struct amdgpu_regs_wafl_v1_0 *)p;
wafl_regs->inst_header.instance = inst++;
wafl_regs->inst_header.state = AMDGPU_INST_S_OK;
wafl_regs->inst_header.num_smn_regs = NUM_WAFL_SMN_REGS;
reg_data = wafl_regs->smn_reg_values;
for (r = 0; r < ARRAY_SIZE(wafl_reg_addrs); r++) {
start_addr = wafl_reg_addrs[r].start_addr;
incrx = wafl_reg_addrs[r].incrx;
num_regs = wafl_reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(
adev, reg_data,
WAFL_LINK_REG(start_addr, j) +
n * incrx,
i);
++reg_data;
}
}
p = reg_data;
}
}
wafl_reg_state->common_header.structure_size = szbuf;
wafl_reg_state->common_header.format_revision = 1;
wafl_reg_state->common_header.content_revision = 0;
wafl_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_WAFL;
wafl_reg_state->common_header.num_instances = max_wafl_instances;
return wafl_reg_state->common_header.structure_size;
}
#define smnreg_0x1B311060 0x1B311060
#define smnreg_0x1B411060 0x1B411060
#define smnreg_0x1B511060 0x1B511060
#define smnreg_0x1B611060 0x1B611060
#define smnreg_0x1C307120 0x1C307120
#define smnreg_0x1C317120 0x1C317120
#define smnreg_0x1C320830 0x1C320830
#define smnreg_0x1C380830 0x1C380830
#define smnreg_0x1C3D0830 0x1C3D0830
#define smnreg_0x1C420830 0x1C420830
#define smnreg_0x1C320100 0x1C320100
#define smnreg_0x1C380100 0x1C380100
#define smnreg_0x1C3D0100 0x1C3D0100
#define smnreg_0x1C420100 0x1C420100
#define smnreg_0x1B310500 0x1B310500
#define smnreg_0x1C300400 0x1C300400
#define USR_CAKE_INCR 0x11000
#define USR_LINK_INCR 0x100000
#define USR_CP_INCR 0x10000
#define NUM_USR_SMN_REGS 20
struct aqua_reg_list usr_reg_addrs[] = {
{ smnreg_0x1B311060, 4, DW_ADDR_INCR },
{ smnreg_0x1B411060, 4, DW_ADDR_INCR },
{ smnreg_0x1B511060, 4, DW_ADDR_INCR },
{ smnreg_0x1B611060, 4, DW_ADDR_INCR },
{ smnreg_0x1C307120, 2, DW_ADDR_INCR },
{ smnreg_0x1C317120, 2, DW_ADDR_INCR },
};
#define NUM_USR1_SMN_REGS 46
struct aqua_reg_list usr1_reg_addrs[] = {
{ smnreg_0x1C320830, 6, USR_CAKE_INCR },
{ smnreg_0x1C380830, 5, USR_CAKE_INCR },
{ smnreg_0x1C3D0830, 5, USR_CAKE_INCR },
{ smnreg_0x1C420830, 4, USR_CAKE_INCR },
{ smnreg_0x1C320100, 6, USR_CAKE_INCR },
{ smnreg_0x1C380100, 5, USR_CAKE_INCR },
{ smnreg_0x1C3D0100, 5, USR_CAKE_INCR },
{ smnreg_0x1C420100, 4, USR_CAKE_INCR },
{ smnreg_0x1B310500, 4, USR_LINK_INCR },
{ smnreg_0x1C300400, 2, USR_CP_INCR },
};
static ssize_t aqua_vanjaram_read_usr_state(struct amdgpu_device *adev,
void *buf, size_t max_size,
int reg_state)
{
uint32_t start_addr, incrx, num_regs, szbuf, num_smn;
struct amdgpu_reg_state_usr_v1_0 *usr_reg_state;
struct amdgpu_regs_usr_v1_0 *usr_regs;
struct amdgpu_smn_reg_data *reg_data;
const int max_usr_instances = 4;
struct aqua_reg_list *reg_addrs;
int inst = 0, i, n, r, arr_size;
void *p;
if (!buf || !max_size)
return -EINVAL;
switch (reg_state) {
case AMDGPU_REG_STATE_TYPE_USR:
arr_size = ARRAY_SIZE(usr_reg_addrs);
reg_addrs = usr_reg_addrs;
num_smn = NUM_USR_SMN_REGS;
break;
case AMDGPU_REG_STATE_TYPE_USR_1:
arr_size = ARRAY_SIZE(usr1_reg_addrs);
reg_addrs = usr1_reg_addrs;
num_smn = NUM_USR1_SMN_REGS;
break;
default:
return -EINVAL;
}
usr_reg_state = (struct amdgpu_reg_state_usr_v1_0 *)buf;
szbuf = sizeof(*usr_reg_state) + amdgpu_reginst_size(max_usr_instances,
sizeof(*usr_regs),
num_smn);
if (max_size < szbuf)
return -EOVERFLOW;
p = &usr_reg_state->usr_state_regs[0];
for_each_inst(i, adev->aid_mask) {
usr_regs = (struct amdgpu_regs_usr_v1_0 *)p;
usr_regs->inst_header.instance = inst++;
usr_regs->inst_header.state = AMDGPU_INST_S_OK;
usr_regs->inst_header.num_smn_regs = num_smn;
reg_data = usr_regs->smn_reg_values;
for (r = 0; r < arr_size; r++) {
start_addr = reg_addrs[r].start_addr;
incrx = reg_addrs[r].incrx;
num_regs = reg_addrs[r].num_regs;
for (n = 0; n < num_regs; n++) {
aqua_read_smn_ext(adev, reg_data,
start_addr + n * incrx, i);
reg_data++;
}
}
p = reg_data;
}
usr_reg_state->common_header.structure_size = szbuf;
usr_reg_state->common_header.format_revision = 1;
usr_reg_state->common_header.content_revision = 0;
usr_reg_state->common_header.state_type = AMDGPU_REG_STATE_TYPE_USR;
usr_reg_state->common_header.num_instances = max_usr_instances;
return usr_reg_state->common_header.structure_size;
}
ssize_t aqua_vanjaram_get_reg_state(struct amdgpu_device *adev,
enum amdgpu_reg_state reg_state, void *buf,
size_t max_size)
{
ssize_t size;
switch (reg_state) {
case AMDGPU_REG_STATE_TYPE_PCIE:
size = aqua_vanjaram_read_pcie_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_XGMI:
size = aqua_vanjaram_read_xgmi_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_WAFL:
size = aqua_vanjaram_read_wafl_state(adev, buf, max_size);
break;
case AMDGPU_REG_STATE_TYPE_USR:
size = aqua_vanjaram_read_usr_state(adev, buf, max_size,
AMDGPU_REG_STATE_TYPE_USR);
break;
case AMDGPU_REG_STATE_TYPE_USR_1:
size = aqua_vanjaram_read_usr_state(
adev, buf, max_size, AMDGPU_REG_STATE_TYPE_USR_1);
break;
default:
return -EINVAL;
}
return size;
}