blob: 70c1399f738defc91de1cb4ffb2b92dd4b134817 [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_modeset_helper.h>
#include <drm/drm_modeset_helper_vtables.h>
#include <drm/drm_vblank.h>
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_i2c.h"
#include "vid.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "atombios_crtc.h"
#include "atombios_encoders.h"
#include "amdgpu_pll.h"
#include "amdgpu_connectors.h"
#include "amdgpu_display.h"
#include "dce_v10_0.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "dce/dce_10_0_enum.h"
#include "oss/oss_3_0_d.h"
#include "oss/oss_3_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "ivsrcid/ivsrcid_vislands30.h"
static void dce_v10_0_set_display_funcs(struct amdgpu_device *adev);
static void dce_v10_0_set_irq_funcs(struct amdgpu_device *adev);
static void dce_v10_0_hpd_int_ack(struct amdgpu_device *adev, int hpd);
static const u32 crtc_offsets[] = {
CRTC0_REGISTER_OFFSET,
CRTC1_REGISTER_OFFSET,
CRTC2_REGISTER_OFFSET,
CRTC3_REGISTER_OFFSET,
CRTC4_REGISTER_OFFSET,
CRTC5_REGISTER_OFFSET,
CRTC6_REGISTER_OFFSET
};
static const u32 hpd_offsets[] = {
HPD0_REGISTER_OFFSET,
HPD1_REGISTER_OFFSET,
HPD2_REGISTER_OFFSET,
HPD3_REGISTER_OFFSET,
HPD4_REGISTER_OFFSET,
HPD5_REGISTER_OFFSET
};
static const uint32_t dig_offsets[] = {
DIG0_REGISTER_OFFSET,
DIG1_REGISTER_OFFSET,
DIG2_REGISTER_OFFSET,
DIG3_REGISTER_OFFSET,
DIG4_REGISTER_OFFSET,
DIG5_REGISTER_OFFSET,
DIG6_REGISTER_OFFSET
};
static const struct {
uint32_t reg;
uint32_t vblank;
uint32_t vline;
uint32_t hpd;
} interrupt_status_offsets[] = { {
.reg = mmDISP_INTERRUPT_STATUS,
.vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE2,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE3,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE4,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK
}, {
.reg = mmDISP_INTERRUPT_STATUS_CONTINUE5,
.vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK,
.vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK,
.hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK
} };
static const u32 golden_settings_tonga_a11[] = {
mmDCI_CLK_CNTL, 0x00000080, 0x00000000,
mmFBC_DEBUG_COMP, 0x000000f0, 0x00000070,
mmFBC_MISC, 0x1f311fff, 0x12300000,
mmHDMI_CONTROL, 0x31000111, 0x00000011,
};
static const u32 tonga_mgcg_cgcg_init[] = {
mmXDMA_CLOCK_GATING_CNTL, 0xffffffff, 0x00000100,
mmXDMA_MEM_POWER_CNTL, 0x00000101, 0x00000000,
};
static const u32 golden_settings_fiji_a10[] = {
mmDCI_CLK_CNTL, 0x00000080, 0x00000000,
mmFBC_DEBUG_COMP, 0x000000f0, 0x00000070,
mmFBC_MISC, 0x1f311fff, 0x12300000,
mmHDMI_CONTROL, 0x31000111, 0x00000011,
};
static const u32 fiji_mgcg_cgcg_init[] = {
mmXDMA_CLOCK_GATING_CNTL, 0xffffffff, 0x00000100,
mmXDMA_MEM_POWER_CNTL, 0x00000101, 0x00000000,
};
static void dce_v10_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_FIJI:
amdgpu_device_program_register_sequence(adev,
fiji_mgcg_cgcg_init,
ARRAY_SIZE(fiji_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
golden_settings_fiji_a10,
ARRAY_SIZE(golden_settings_fiji_a10));
break;
case CHIP_TONGA:
amdgpu_device_program_register_sequence(adev,
tonga_mgcg_cgcg_init,
ARRAY_SIZE(tonga_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
golden_settings_tonga_a11,
ARRAY_SIZE(golden_settings_tonga_a11));
break;
default:
break;
}
}
static u32 dce_v10_0_audio_endpt_rreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg)
{
unsigned long flags;
u32 r;
spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset);
spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
return r;
}
static void dce_v10_0_audio_endpt_wreg(struct amdgpu_device *adev,
u32 block_offset, u32 reg, u32 v)
{
unsigned long flags;
spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg);
WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v);
spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags);
}
static u32 dce_v10_0_vblank_get_counter(struct amdgpu_device *adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else
return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
}
static void dce_v10_0_pageflip_interrupt_init(struct amdgpu_device *adev)
{
unsigned i;
/* Enable pflip interrupts */
for (i = 0; i < adev->mode_info.num_crtc; i++)
amdgpu_irq_get(adev, &adev->pageflip_irq, i);
}
static void dce_v10_0_pageflip_interrupt_fini(struct amdgpu_device *adev)
{
unsigned i;
/* Disable pflip interrupts */
for (i = 0; i < adev->mode_info.num_crtc; i++)
amdgpu_irq_put(adev, &adev->pageflip_irq, i);
}
/**
* dce_v10_0_page_flip - pageflip callback.
*
* @adev: amdgpu_device pointer
* @crtc_id: crtc to cleanup pageflip on
* @crtc_base: new address of the crtc (GPU MC address)
* @async: asynchronous flip
*
* Triggers the actual pageflip by updating the primary
* surface base address.
*/
static void dce_v10_0_page_flip(struct amdgpu_device *adev,
int crtc_id, u64 crtc_base, bool async)
{
struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
struct drm_framebuffer *fb = amdgpu_crtc->base.primary->fb;
u32 tmp;
/* flip at hsync for async, default is vsync */
tmp = RREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, GRPH_FLIP_CONTROL,
GRPH_SURFACE_UPDATE_H_RETRACE_EN, async ? 1 : 0);
WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, tmp);
/* update pitch */
WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset,
fb->pitches[0] / fb->format->cpp[0]);
/* update the primary scanout address */
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(crtc_base));
/* writing to the low address triggers the update */
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
lower_32_bits(crtc_base));
/* post the write */
RREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset);
}
static int dce_v10_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
u32 *vbl, u32 *position)
{
if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
return -EINVAL;
*vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]);
*position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]);
return 0;
}
/**
* dce_v10_0_hpd_sense - hpd sense callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Checks if a digital monitor is connected (evergreen+).
* Returns true if connected, false if not connected.
*/
static bool dce_v10_0_hpd_sense(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
bool connected = false;
if (hpd >= adev->mode_info.num_hpd)
return connected;
if (RREG32(mmDC_HPD_INT_STATUS + hpd_offsets[hpd]) &
DC_HPD_INT_STATUS__DC_HPD_SENSE_MASK)
connected = true;
return connected;
}
/**
* dce_v10_0_hpd_set_polarity - hpd set polarity callback.
*
* @adev: amdgpu_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Set the polarity of the hpd pin (evergreen+).
*/
static void dce_v10_0_hpd_set_polarity(struct amdgpu_device *adev,
enum amdgpu_hpd_id hpd)
{
u32 tmp;
bool connected = dce_v10_0_hpd_sense(adev, hpd);
if (hpd >= adev->mode_info.num_hpd)
return;
tmp = RREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd]);
if (connected)
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_POLARITY, 0);
else
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_POLARITY, 1);
WREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd], tmp);
}
/**
* dce_v10_0_hpd_init - hpd setup callback.
*
* @adev: amdgpu_device pointer
*
* Setup the hpd pins used by the card (evergreen+).
* Enable the pin, set the polarity, and enable the hpd interrupts.
*/
static void dce_v10_0_hpd_init(struct amdgpu_device *adev)
{
struct drm_device *dev = adev_to_drm(adev);
struct drm_connector *connector;
struct drm_connector_list_iter iter;
u32 tmp;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd)
continue;
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP ||
connector->connector_type == DRM_MODE_CONNECTOR_LVDS) {
/* don't try to enable hpd on eDP or LVDS avoid breaking the
* aux dp channel on imac and help (but not completely fix)
* https://bugzilla.redhat.com/show_bug.cgi?id=726143
* also avoid interrupt storms during dpms.
*/
tmp = RREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_EN, 0);
WREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
continue;
}
tmp = RREG32(mmDC_HPD_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_CONTROL, DC_HPD_EN, 1);
WREG32(mmDC_HPD_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
tmp = RREG32(mmDC_HPD_TOGGLE_FILT_CNTL + hpd_offsets[amdgpu_connector->hpd.hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_TOGGLE_FILT_CNTL,
DC_HPD_CONNECT_INT_DELAY,
AMDGPU_HPD_CONNECT_INT_DELAY_IN_MS);
tmp = REG_SET_FIELD(tmp, DC_HPD_TOGGLE_FILT_CNTL,
DC_HPD_DISCONNECT_INT_DELAY,
AMDGPU_HPD_DISCONNECT_INT_DELAY_IN_MS);
WREG32(mmDC_HPD_TOGGLE_FILT_CNTL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
dce_v10_0_hpd_int_ack(adev, amdgpu_connector->hpd.hpd);
dce_v10_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd);
amdgpu_irq_get(adev, &adev->hpd_irq,
amdgpu_connector->hpd.hpd);
}
drm_connector_list_iter_end(&iter);
}
/**
* dce_v10_0_hpd_fini - hpd tear down callback.
*
* @adev: amdgpu_device pointer
*
* Tear down the hpd pins used by the card (evergreen+).
* Disable the hpd interrupts.
*/
static void dce_v10_0_hpd_fini(struct amdgpu_device *adev)
{
struct drm_device *dev = adev_to_drm(adev);
struct drm_connector *connector;
struct drm_connector_list_iter iter;
u32 tmp;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd)
continue;
tmp = RREG32(mmDC_HPD_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_CONTROL, DC_HPD_EN, 0);
WREG32(mmDC_HPD_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp);
amdgpu_irq_put(adev, &adev->hpd_irq,
amdgpu_connector->hpd.hpd);
}
drm_connector_list_iter_end(&iter);
}
static u32 dce_v10_0_hpd_get_gpio_reg(struct amdgpu_device *adev)
{
return mmDC_GPIO_HPD_A;
}
static bool dce_v10_0_is_display_hung(struct amdgpu_device *adev)
{
u32 crtc_hung = 0;
u32 crtc_status[6];
u32 i, j, tmp;
for (i = 0; i < adev->mode_info.num_crtc; i++) {
tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]);
if (REG_GET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN)) {
crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
crtc_hung |= (1 << i);
}
}
for (j = 0; j < 10; j++) {
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (crtc_hung & (1 << i)) {
tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]);
if (tmp != crtc_status[i])
crtc_hung &= ~(1 << i);
}
}
if (crtc_hung == 0)
return false;
udelay(100);
}
return true;
}
static void dce_v10_0_set_vga_render_state(struct amdgpu_device *adev,
bool render)
{
u32 tmp;
/* Lockout access through VGA aperture*/
tmp = RREG32(mmVGA_HDP_CONTROL);
if (render)
tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0);
else
tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
WREG32(mmVGA_HDP_CONTROL, tmp);
/* disable VGA render */
tmp = RREG32(mmVGA_RENDER_CONTROL);
if (render)
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1);
else
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
WREG32(mmVGA_RENDER_CONTROL, tmp);
}
static int dce_v10_0_get_num_crtc(struct amdgpu_device *adev)
{
int num_crtc = 0;
switch (adev->asic_type) {
case CHIP_FIJI:
case CHIP_TONGA:
num_crtc = 6;
break;
default:
num_crtc = 0;
}
return num_crtc;
}
void dce_v10_0_disable_dce(struct amdgpu_device *adev)
{
/*Disable VGA render and enabled crtc, if has DCE engine*/
if (amdgpu_atombios_has_dce_engine_info(adev)) {
u32 tmp;
int crtc_enabled, i;
dce_v10_0_set_vga_render_state(adev, false);
/*Disable crtc*/
for (i = 0; i < dce_v10_0_get_num_crtc(adev); i++) {
crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]),
CRTC_CONTROL, CRTC_MASTER_EN);
if (crtc_enabled) {
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]);
tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0);
WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
}
}
}
static void dce_v10_0_program_fmt(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
int bpc = 0;
u32 tmp = 0;
enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE;
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
bpc = amdgpu_connector_get_monitor_bpc(connector);
dither = amdgpu_connector->dither;
}
/* LVDS/eDP FMT is set up by atom */
if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT)
return;
/* not needed for analog */
if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) ||
(amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2))
return;
if (bpc == 0)
return;
switch (bpc) {
case 6:
if (dither == AMDGPU_FMT_DITHER_ENABLE) {
/* XXX sort out optimal dither settings */
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_FRAME_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_HIGHPASS_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_DEPTH, 0);
} else {
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_DEPTH, 0);
}
break;
case 8:
if (dither == AMDGPU_FMT_DITHER_ENABLE) {
/* XXX sort out optimal dither settings */
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_FRAME_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_HIGHPASS_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_RGB_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_DEPTH, 1);
} else {
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_DEPTH, 1);
}
break;
case 10:
if (dither == AMDGPU_FMT_DITHER_ENABLE) {
/* XXX sort out optimal dither settings */
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_FRAME_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_HIGHPASS_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_RGB_RANDOM_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_DEPTH, 2);
} else {
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_EN, 1);
tmp = REG_SET_FIELD(tmp, FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_DEPTH, 2);
}
break;
default:
/* not needed */
break;
}
WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
/* display watermark setup */
/**
* dce_v10_0_line_buffer_adjust - Set up the line buffer
*
* @adev: amdgpu_device pointer
* @amdgpu_crtc: the selected display controller
* @mode: the current display mode on the selected display
* controller
*
* Setup up the line buffer allocation for
* the selected display controller (CIK).
* Returns the line buffer size in pixels.
*/
static u32 dce_v10_0_line_buffer_adjust(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
struct drm_display_mode *mode)
{
u32 tmp, buffer_alloc, i, mem_cfg;
u32 pipe_offset = amdgpu_crtc->crtc_id;
/*
* Line Buffer Setup
* There are 6 line buffers, one for each display controllers.
* There are 3 partitions per LB. Select the number of partitions
* to enable based on the display width. For display widths larger
* than 4096, you need use to use 2 display controllers and combine
* them using the stereo blender.
*/
if (amdgpu_crtc->base.enabled && mode) {
if (mode->crtc_hdisplay < 1920) {
mem_cfg = 1;
buffer_alloc = 2;
} else if (mode->crtc_hdisplay < 2560) {
mem_cfg = 2;
buffer_alloc = 2;
} else if (mode->crtc_hdisplay < 4096) {
mem_cfg = 0;
buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4;
} else {
DRM_DEBUG_KMS("Mode too big for LB!\n");
mem_cfg = 0;
buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4;
}
} else {
mem_cfg = 1;
buffer_alloc = 0;
}
tmp = RREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, LB_MEMORY_CTRL, LB_MEMORY_CONFIG, mem_cfg);
WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset);
tmp = REG_SET_FIELD(tmp, PIPE0_DMIF_BUFFER_CONTROL, DMIF_BUFFERS_ALLOCATED, buffer_alloc);
WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset, tmp);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset);
if (REG_GET_FIELD(tmp, PIPE0_DMIF_BUFFER_CONTROL, DMIF_BUFFERS_ALLOCATION_COMPLETED))
break;
udelay(1);
}
if (amdgpu_crtc->base.enabled && mode) {
switch (mem_cfg) {
case 0:
default:
return 4096 * 2;
case 1:
return 1920 * 2;
case 2:
return 2560 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
/**
* cik_get_number_of_dram_channels - get the number of dram channels
*
* @adev: amdgpu_device pointer
*
* Look up the number of video ram channels (CIK).
* Used for display watermark bandwidth calculations
* Returns the number of dram channels
*/
static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev)
{
u32 tmp = RREG32(mmMC_SHARED_CHMAP);
switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
case 4:
return 3;
case 5:
return 6;
case 6:
return 10;
case 7:
return 12;
case 8:
return 16;
}
}
struct dce10_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
/**
* dce_v10_0_dram_bandwidth - get the dram bandwidth
*
* @wm: watermark calculation data
*
* Calculate the raw dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth in MBytes/s
*/
static u32 dce_v10_0_dram_bandwidth(struct dce10_wm_params *wm)
{
/* Calculate raw DRAM Bandwidth */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v10_0_dram_bandwidth_for_display - get the dram bandwidth for display
*
* @wm: watermark calculation data
*
* Calculate the dram bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dram bandwidth for display in MBytes/s
*/
static u32 dce_v10_0_dram_bandwidth_for_display(struct dce10_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
/**
* dce_v10_0_data_return_bandwidth - get the data return bandwidth
*
* @wm: watermark calculation data
*
* Calculate the data return bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the data return bandwidth in MBytes/s
*/
static u32 dce_v10_0_data_return_bandwidth(struct dce10_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v10_0_dmif_request_bandwidth - get the dmif bandwidth
*
* @wm: watermark calculation data
*
* Calculate the dmif bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the dmif bandwidth in MBytes/s
*/
static u32 dce_v10_0_dmif_request_bandwidth(struct dce10_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, bandwidth;
fixed20_12 a, b;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(32);
b.full = dfixed_mul(a, disp_clk);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
/**
* dce_v10_0_available_bandwidth - get the min available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the min available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the min available bandwidth in MBytes/s
*/
static u32 dce_v10_0_available_bandwidth(struct dce10_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = dce_v10_0_dram_bandwidth(wm);
u32 data_return_bandwidth = dce_v10_0_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = dce_v10_0_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
/**
* dce_v10_0_average_bandwidth - get the average available bandwidth
*
* @wm: watermark calculation data
*
* Calculate the average available bandwidth used for display (CIK).
* Used for display watermark bandwidth calculations
* Returns the average available bandwidth in MBytes/s
*/
static u32 dce_v10_0_average_bandwidth(struct dce10_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
/**
* dce_v10_0_latency_watermark - get the latency watermark
*
* @wm: watermark calculation data
*
* Calculate the latency watermark (CIK).
* Used for display watermark bandwidth calculations
* Returns the latency watermark in ns
*/
static u32 dce_v10_0_latency_watermark(struct dce10_wm_params *wm)
{
/* First calculate the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = dce_v10_0_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
u32 tmp, dmif_size = 12288;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512);
tmp = min(dfixed_trunc(a), tmp);
lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000);
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
/**
* dce_v10_0_average_bandwidth_vs_dram_bandwidth_for_display - check
* average and available dram bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* dram bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v10_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce10_wm_params *wm)
{
if (dce_v10_0_average_bandwidth(wm) <=
(dce_v10_0_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v10_0_average_bandwidth_vs_available_bandwidth - check
* average and available bandwidth
*
* @wm: watermark calculation data
*
* Check if the display average bandwidth fits in the display
* available bandwidth (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v10_0_average_bandwidth_vs_available_bandwidth(struct dce10_wm_params *wm)
{
if (dce_v10_0_average_bandwidth(wm) <=
(dce_v10_0_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
}
/**
* dce_v10_0_check_latency_hiding - check latency hiding
*
* @wm: watermark calculation data
*
* Check latency hiding (CIK).
* Used for display watermark bandwidth calculations
* Returns true if the display fits, false if not.
*/
static bool dce_v10_0_check_latency_hiding(struct dce10_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (dce_v10_0_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
/**
* dce_v10_0_program_watermarks - program display watermarks
*
* @adev: amdgpu_device pointer
* @amdgpu_crtc: the selected display controller
* @lb_size: line buffer size
* @num_heads: number of display controllers in use
*
* Calculate and program the display watermarks for the
* selected display controller (CIK).
*/
static void dce_v10_0_program_watermarks(struct amdgpu_device *adev,
struct amdgpu_crtc *amdgpu_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &amdgpu_crtc->base.mode;
struct dce10_wm_params wm_low, wm_high;
u32 active_time;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 tmp, wm_mask, lb_vblank_lead_lines = 0;
if (amdgpu_crtc->base.enabled && num_heads && mode) {
active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000,
(u32)mode->clock);
line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000,
(u32)mode->clock);
line_time = min_t(u32, line_time, 65535);
/* watermark for high clocks */
if (adev->pm.dpm_enabled) {
wm_high.yclk =
amdgpu_dpm_get_mclk(adev, false) * 10;
wm_high.sclk =
amdgpu_dpm_get_sclk(adev, false) * 10;
} else {
wm_high.yclk = adev->pm.current_mclk * 10;
wm_high.sclk = adev->pm.current_sclk * 10;
}
wm_high.disp_clk = mode->clock;
wm_high.src_width = mode->crtc_hdisplay;
wm_high.active_time = active_time;
wm_high.blank_time = line_time - wm_high.active_time;
wm_high.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_high.interlaced = true;
wm_high.vsc = amdgpu_crtc->vsc;
wm_high.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_high.vtaps = 2;
wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_high.lb_size = lb_size;
wm_high.dram_channels = cik_get_number_of_dram_channels(adev);
wm_high.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min_t(u32, dce_v10_0_latency_watermark(&wm_high), 65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce_v10_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
!dce_v10_0_average_bandwidth_vs_available_bandwidth(&wm_high) ||
!dce_v10_0_check_latency_hiding(&wm_high) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
}
/* watermark for low clocks */
if (adev->pm.dpm_enabled) {
wm_low.yclk =
amdgpu_dpm_get_mclk(adev, true) * 10;
wm_low.sclk =
amdgpu_dpm_get_sclk(adev, true) * 10;
} else {
wm_low.yclk = adev->pm.current_mclk * 10;
wm_low.sclk = adev->pm.current_sclk * 10;
}
wm_low.disp_clk = mode->clock;
wm_low.src_width = mode->crtc_hdisplay;
wm_low.active_time = active_time;
wm_low.blank_time = line_time - wm_low.active_time;
wm_low.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_low.interlaced = true;
wm_low.vsc = amdgpu_crtc->vsc;
wm_low.vtaps = 1;
if (amdgpu_crtc->rmx_type != RMX_OFF)
wm_low.vtaps = 2;
wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_low.lb_size = lb_size;
wm_low.dram_channels = cik_get_number_of_dram_channels(adev);
wm_low.num_heads = num_heads;
/* set for low clocks */
latency_watermark_b = min_t(u32, dce_v10_0_latency_watermark(&wm_low), 65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce_v10_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
!dce_v10_0_average_bandwidth_vs_available_bandwidth(&wm_low) ||
!dce_v10_0_check_latency_hiding(&wm_low) ||
(adev->mode_info.disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
}
lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay);
}
/* select wm A */
wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(wm_mask, DPG_WATERMARK_MASK_CONTROL, URGENCY_WATERMARK_MASK, 1);
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, DPG_PIPE_URGENCY_CONTROL, URGENCY_LOW_WATERMARK, latency_watermark_a);
tmp = REG_SET_FIELD(tmp, DPG_PIPE_URGENCY_CONTROL, URGENCY_HIGH_WATERMARK, line_time);
WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, tmp);
/* select wm B */
tmp = REG_SET_FIELD(wm_mask, DPG_WATERMARK_MASK_CONTROL, URGENCY_WATERMARK_MASK, 2);
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, DPG_PIPE_URGENCY_CONTROL, URGENCY_LOW_WATERMARK, latency_watermark_b);
tmp = REG_SET_FIELD(tmp, DPG_PIPE_URGENCY_CONTROL, URGENCY_HIGH_WATERMARK, line_time);
WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, tmp);
/* restore original selection */
WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask);
/* save values for DPM */
amdgpu_crtc->line_time = line_time;
amdgpu_crtc->wm_high = latency_watermark_a;
amdgpu_crtc->wm_low = latency_watermark_b;
/* Save number of lines the linebuffer leads before the scanout */
amdgpu_crtc->lb_vblank_lead_lines = lb_vblank_lead_lines;
}
/**
* dce_v10_0_bandwidth_update - program display watermarks
*
* @adev: amdgpu_device pointer
*
* Calculate and program the display watermarks and line
* buffer allocation (CIK).
*/
static void dce_v10_0_bandwidth_update(struct amdgpu_device *adev)
{
struct drm_display_mode *mode = NULL;
u32 num_heads = 0, lb_size;
int i;
amdgpu_display_update_priority(adev);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < adev->mode_info.num_crtc; i++) {
mode = &adev->mode_info.crtcs[i]->base.mode;
lb_size = dce_v10_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode);
dce_v10_0_program_watermarks(adev, adev->mode_info.crtcs[i],
lb_size, num_heads);
}
}
static void dce_v10_0_audio_get_connected_pins(struct amdgpu_device *adev)
{
int i;
u32 offset, tmp;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
offset = adev->mode_info.audio.pin[i].offset;
tmp = RREG32_AUDIO_ENDPT(offset,
ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT);
if (((tmp &
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >>
AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1)
adev->mode_info.audio.pin[i].connected = false;
else
adev->mode_info.audio.pin[i].connected = true;
}
}
static struct amdgpu_audio_pin *dce_v10_0_audio_get_pin(struct amdgpu_device *adev)
{
int i;
dce_v10_0_audio_get_connected_pins(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
if (adev->mode_info.audio.pin[i].connected)
return &adev->mode_info.audio.pin[i];
}
DRM_ERROR("No connected audio pins found!\n");
return NULL;
}
static void dce_v10_0_afmt_audio_select_pin(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = drm_to_adev(encoder->dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
u32 tmp;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
tmp = RREG32(mmAFMT_AUDIO_SRC_CONTROL + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, AFMT_AUDIO_SRC_CONTROL, AFMT_AUDIO_SRC_SELECT, dig->afmt->pin->id);
WREG32(mmAFMT_AUDIO_SRC_CONTROL + dig->afmt->offset, tmp);
}
static void dce_v10_0_audio_write_latency_fields(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct amdgpu_connector *amdgpu_connector = NULL;
u32 tmp;
int interlace = 0;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
drm_connector_list_iter_end(&iter);
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
interlace = 1;
if (connector->latency_present[interlace]) {
tmp = REG_SET_FIELD(0, AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
VIDEO_LIPSYNC, connector->video_latency[interlace]);
tmp = REG_SET_FIELD(0, AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
AUDIO_LIPSYNC, connector->audio_latency[interlace]);
} else {
tmp = REG_SET_FIELD(0, AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
VIDEO_LIPSYNC, 0);
tmp = REG_SET_FIELD(0, AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
AUDIO_LIPSYNC, 0);
}
WREG32_AUDIO_ENDPT(dig->afmt->pin->offset,
ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp);
}
static void dce_v10_0_audio_write_speaker_allocation(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct amdgpu_connector *amdgpu_connector = NULL;
u32 tmp;
u8 *sadb = NULL;
int sad_count;
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
drm_connector_list_iter_end(&iter);
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_speaker_allocation(amdgpu_connector->edid, &sadb);
if (sad_count < 0) {
DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count);
sad_count = 0;
}
/* program the speaker allocation */
tmp = RREG32_AUDIO_ENDPT(dig->afmt->pin->offset,
ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER);
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER,
DP_CONNECTION, 0);
/* set HDMI mode */
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER,
HDMI_CONNECTION, 1);
if (sad_count)
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER,
SPEAKER_ALLOCATION, sadb[0]);
else
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER,
SPEAKER_ALLOCATION, 5); /* stereo */
WREG32_AUDIO_ENDPT(dig->afmt->pin->offset,
ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp);
kfree(sadb);
}
static void dce_v10_0_audio_write_sad_regs(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct amdgpu_connector *amdgpu_connector = NULL;
struct cea_sad *sads;
int i, sad_count;
static const u16 eld_reg_to_type[][2] = {
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP },
{ ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO },
};
if (!dig || !dig->afmt || !dig->afmt->pin)
return;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
if (connector->encoder == encoder) {
amdgpu_connector = to_amdgpu_connector(connector);
break;
}
}
drm_connector_list_iter_end(&iter);
if (!amdgpu_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_sad(amdgpu_connector->edid, &sads);
if (sad_count < 0)
DRM_ERROR("Couldn't read SADs: %d\n", sad_count);
if (sad_count <= 0)
return;
BUG_ON(!sads);
for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) {
u32 tmp = 0;
u8 stereo_freqs = 0;
int max_channels = -1;
int j;
for (j = 0; j < sad_count; j++) {
struct cea_sad *sad = &sads[j];
if (sad->format == eld_reg_to_type[i][1]) {
if (sad->channels > max_channels) {
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0,
MAX_CHANNELS, sad->channels);
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0,
DESCRIPTOR_BYTE_2, sad->byte2);
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0,
SUPPORTED_FREQUENCIES, sad->freq);
max_channels = sad->channels;
}
if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM)
stereo_freqs |= sad->freq;
else
break;
}
}
tmp = REG_SET_FIELD(tmp, AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0,
SUPPORTED_FREQUENCIES_STEREO, stereo_freqs);
WREG32_AUDIO_ENDPT(dig->afmt->pin->offset, eld_reg_to_type[i][0], tmp);
}
kfree(sads);
}
static void dce_v10_0_audio_enable(struct amdgpu_device *adev,
struct amdgpu_audio_pin *pin,
bool enable)
{
if (!pin)
return;
WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL,
enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0);
}
static const u32 pin_offsets[] = {
AUD0_REGISTER_OFFSET,
AUD1_REGISTER_OFFSET,
AUD2_REGISTER_OFFSET,
AUD3_REGISTER_OFFSET,
AUD4_REGISTER_OFFSET,
AUD5_REGISTER_OFFSET,
AUD6_REGISTER_OFFSET,
};
static int dce_v10_0_audio_init(struct amdgpu_device *adev)
{
int i;
if (!amdgpu_audio)
return 0;
adev->mode_info.audio.enabled = true;
adev->mode_info.audio.num_pins = 7;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
adev->mode_info.audio.pin[i].channels = -1;
adev->mode_info.audio.pin[i].rate = -1;
adev->mode_info.audio.pin[i].bits_per_sample = -1;
adev->mode_info.audio.pin[i].status_bits = 0;
adev->mode_info.audio.pin[i].category_code = 0;
adev->mode_info.audio.pin[i].connected = false;
adev->mode_info.audio.pin[i].offset = pin_offsets[i];
adev->mode_info.audio.pin[i].id = i;
/* disable audio. it will be set up later */
/* XXX remove once we switch to ip funcs */
dce_v10_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
return 0;
}
static void dce_v10_0_audio_fini(struct amdgpu_device *adev)
{
int i;
if (!amdgpu_audio)
return;
if (!adev->mode_info.audio.enabled)
return;
for (i = 0; i < adev->mode_info.audio.num_pins; i++)
dce_v10_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
adev->mode_info.audio.enabled = false;
}
/*
* update the N and CTS parameters for a given pixel clock rate
*/
static void dce_v10_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
u32 tmp;
tmp = RREG32(mmHDMI_ACR_32_0 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_32_0, HDMI_ACR_CTS_32, acr.cts_32khz);
WREG32(mmHDMI_ACR_32_0 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_32_1 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_32_1, HDMI_ACR_N_32, acr.n_32khz);
WREG32(mmHDMI_ACR_32_1 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_44_0 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_44_0, HDMI_ACR_CTS_44, acr.cts_44_1khz);
WREG32(mmHDMI_ACR_44_0 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_44_1 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_44_1, HDMI_ACR_N_44, acr.n_44_1khz);
WREG32(mmHDMI_ACR_44_1 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_48_0 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_48_0, HDMI_ACR_CTS_48, acr.cts_48khz);
WREG32(mmHDMI_ACR_48_0 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_48_1 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_ACR_48_1, HDMI_ACR_N_48, acr.n_48khz);
WREG32(mmHDMI_ACR_48_1 + dig->afmt->offset, tmp);
}
/*
* build a HDMI Video Info Frame
*/
static void dce_v10_0_afmt_update_avi_infoframe(struct drm_encoder *encoder,
void *buffer, size_t size)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
uint8_t *frame = buffer + 3;
uint8_t *header = buffer;
WREG32(mmAFMT_AVI_INFO0 + dig->afmt->offset,
frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24));
WREG32(mmAFMT_AVI_INFO1 + dig->afmt->offset,
frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24));
WREG32(mmAFMT_AVI_INFO2 + dig->afmt->offset,
frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24));
WREG32(mmAFMT_AVI_INFO3 + dig->afmt->offset,
frame[0xC] | (frame[0xD] << 8) | (header[1] << 24));
}
static void dce_v10_0_audio_set_dto(struct drm_encoder *encoder, u32 clock)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
u32 dto_phase = 24 * 1000;
u32 dto_modulo = clock;
u32 tmp;
if (!dig || !dig->afmt)
return;
/* XXX two dtos; generally use dto0 for hdmi */
/* Express [24MHz / target pixel clock] as an exact rational
* number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE
* is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator
*/
tmp = RREG32(mmDCCG_AUDIO_DTO_SOURCE);
tmp = REG_SET_FIELD(tmp, DCCG_AUDIO_DTO_SOURCE, DCCG_AUDIO_DTO0_SOURCE_SEL,
amdgpu_crtc->crtc_id);
WREG32(mmDCCG_AUDIO_DTO_SOURCE, tmp);
WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase);
WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo);
}
/*
* update the info frames with the data from the current display mode
*/
static void dce_v10_0_afmt_setmode(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
struct hdmi_avi_infoframe frame;
ssize_t err;
u32 tmp;
int bpc = 8;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (!dig->afmt->enabled)
return;
/* hdmi deep color mode general control packets setup, if bpc > 8 */
if (encoder->crtc) {
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc);
bpc = amdgpu_crtc->bpc;
}
/* disable audio prior to setting up hw */
dig->afmt->pin = dce_v10_0_audio_get_pin(adev);
dce_v10_0_audio_enable(adev, dig->afmt->pin, false);
dce_v10_0_audio_set_dto(encoder, mode->clock);
tmp = RREG32(mmHDMI_VBI_PACKET_CONTROL + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_VBI_PACKET_CONTROL, HDMI_NULL_SEND, 1);
WREG32(mmHDMI_VBI_PACKET_CONTROL + dig->afmt->offset, tmp); /* send null packets when required */
WREG32(mmAFMT_AUDIO_CRC_CONTROL + dig->afmt->offset, 0x1000);
tmp = RREG32(mmHDMI_CONTROL + dig->afmt->offset);
switch (bpc) {
case 0:
case 6:
case 8:
case 16:
default:
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_ENABLE, 0);
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 0);
DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n",
connector->name, bpc);
break;
case 10:
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 1);
DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n",
connector->name);
break;
case 12:
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 2);
DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n",
connector->name);
break;
}
WREG32(mmHDMI_CONTROL + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_VBI_PACKET_CONTROL + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_VBI_PACKET_CONTROL, HDMI_NULL_SEND, 1); /* send null packets when required */
tmp = REG_SET_FIELD(tmp, HDMI_VBI_PACKET_CONTROL, HDMI_GC_SEND, 1); /* send general control packets */
tmp = REG_SET_FIELD(tmp, HDMI_VBI_PACKET_CONTROL, HDMI_GC_CONT, 1); /* send general control packets every frame */
WREG32(mmHDMI_VBI_PACKET_CONTROL + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_INFOFRAME_CONTROL0 + dig->afmt->offset);
/* enable audio info frames (frames won't be set until audio is enabled) */
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL0, HDMI_AUDIO_INFO_SEND, 1);
/* required for audio info values to be updated */
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL0, HDMI_AUDIO_INFO_CONT, 1);
WREG32(mmHDMI_INFOFRAME_CONTROL0 + dig->afmt->offset, tmp);
tmp = RREG32(mmAFMT_INFOFRAME_CONTROL0 + dig->afmt->offset);
/* required for audio info values to be updated */
tmp = REG_SET_FIELD(tmp, AFMT_INFOFRAME_CONTROL0, AFMT_AUDIO_INFO_UPDATE, 1);
WREG32(mmAFMT_INFOFRAME_CONTROL0 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_INFOFRAME_CONTROL1 + dig->afmt->offset);
/* anything other than 0 */
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL1, HDMI_AUDIO_INFO_LINE, 2);
WREG32(mmHDMI_INFOFRAME_CONTROL1 + dig->afmt->offset, tmp);
WREG32(mmHDMI_GC + dig->afmt->offset, 0); /* unset HDMI_GC_AVMUTE */
tmp = RREG32(mmHDMI_AUDIO_PACKET_CONTROL + dig->afmt->offset);
/* set the default audio delay */
tmp = REG_SET_FIELD(tmp, HDMI_AUDIO_PACKET_CONTROL, HDMI_AUDIO_DELAY_EN, 1);
/* should be suffient for all audio modes and small enough for all hblanks */
tmp = REG_SET_FIELD(tmp, HDMI_AUDIO_PACKET_CONTROL, HDMI_AUDIO_PACKETS_PER_LINE, 3);
WREG32(mmHDMI_AUDIO_PACKET_CONTROL + dig->afmt->offset, tmp);
tmp = RREG32(mmAFMT_AUDIO_PACKET_CONTROL + dig->afmt->offset);
/* allow 60958 channel status fields to be updated */
tmp = REG_SET_FIELD(tmp, AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1);
WREG32(mmAFMT_AUDIO_PACKET_CONTROL + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_ACR_PACKET_CONTROL + dig->afmt->offset);
if (bpc > 8)
/* clear SW CTS value */
tmp = REG_SET_FIELD(tmp, HDMI_ACR_PACKET_CONTROL, HDMI_ACR_SOURCE, 0);
else
/* select SW CTS value */
tmp = REG_SET_FIELD(tmp, HDMI_ACR_PACKET_CONTROL, HDMI_ACR_SOURCE, 1);
/* allow hw to sent ACR packets when required */
tmp = REG_SET_FIELD(tmp, HDMI_ACR_PACKET_CONTROL, HDMI_ACR_AUTO_SEND, 1);
WREG32(mmHDMI_ACR_PACKET_CONTROL + dig->afmt->offset, tmp);
dce_v10_0_afmt_update_ACR(encoder, mode->clock);
tmp = RREG32(mmAFMT_60958_0 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, AFMT_60958_0, AFMT_60958_CS_CHANNEL_NUMBER_L, 1);
WREG32(mmAFMT_60958_0 + dig->afmt->offset, tmp);
tmp = RREG32(mmAFMT_60958_1 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, AFMT_60958_1, AFMT_60958_CS_CHANNEL_NUMBER_R, 2);
WREG32(mmAFMT_60958_1 + dig->afmt->offset, tmp);
tmp = RREG32(mmAFMT_60958_2 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_2, 3);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_3, 4);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_4, 5);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_5, 6);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_6, 7);
tmp = REG_SET_FIELD(tmp, AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_7, 8);
WREG32(mmAFMT_60958_2 + dig->afmt->offset, tmp);
dce_v10_0_audio_write_speaker_allocation(encoder);
WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + dig->afmt->offset,
(0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT));
dce_v10_0_afmt_audio_select_pin(encoder);
dce_v10_0_audio_write_sad_regs(encoder);
dce_v10_0_audio_write_latency_fields(encoder, mode);
err = drm_hdmi_avi_infoframe_from_display_mode(&frame, connector, mode);
if (err < 0) {
DRM_ERROR("failed to setup AVI infoframe: %zd\n", err);
return;
}
err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
DRM_ERROR("failed to pack AVI infoframe: %zd\n", err);
return;
}
dce_v10_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer));
tmp = RREG32(mmHDMI_INFOFRAME_CONTROL0 + dig->afmt->offset);
/* enable AVI info frames */
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL0, HDMI_AVI_INFO_SEND, 1);
/* required for audio info values to be updated */
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL0, HDMI_AVI_INFO_CONT, 1);
WREG32(mmHDMI_INFOFRAME_CONTROL0 + dig->afmt->offset, tmp);
tmp = RREG32(mmHDMI_INFOFRAME_CONTROL1 + dig->afmt->offset);
tmp = REG_SET_FIELD(tmp, HDMI_INFOFRAME_CONTROL1, HDMI_AVI_INFO_LINE, 2);
WREG32(mmHDMI_INFOFRAME_CONTROL1 + dig->afmt->offset, tmp);
tmp = RREG32(mmAFMT_AUDIO_PACKET_CONTROL + dig->afmt->offset);
/* send audio packets */
tmp = REG_SET_FIELD(tmp, AFMT_AUDIO_PACKET_CONTROL, AFMT_AUDIO_SAMPLE_SEND, 1);
WREG32(mmAFMT_AUDIO_PACKET_CONTROL + dig->afmt->offset, tmp);
WREG32(mmAFMT_RAMP_CONTROL0 + dig->afmt->offset, 0x00FFFFFF);
WREG32(mmAFMT_RAMP_CONTROL1 + dig->afmt->offset, 0x007FFFFF);
WREG32(mmAFMT_RAMP_CONTROL2 + dig->afmt->offset, 0x00000001);
WREG32(mmAFMT_RAMP_CONTROL3 + dig->afmt->offset, 0x00000001);
/* enable audio after to setting up hw */
dce_v10_0_audio_enable(adev, dig->afmt->pin, true);
}
static void dce_v10_0_afmt_enable(struct drm_encoder *encoder, bool enable)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (enable && dig->afmt->enabled)
return;
if (!enable && !dig->afmt->enabled)
return;
if (!enable && dig->afmt->pin) {
dce_v10_0_audio_enable(adev, dig->afmt->pin, false);
dig->afmt->pin = NULL;
}
dig->afmt->enabled = enable;
DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n",
enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id);
}
static int dce_v10_0_afmt_init(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++)
adev->mode_info.afmt[i] = NULL;
/* DCE10 has audio blocks tied to DIG encoders */
for (i = 0; i < adev->mode_info.num_dig; i++) {
adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL);
if (adev->mode_info.afmt[i]) {
adev->mode_info.afmt[i]->offset = dig_offsets[i];
adev->mode_info.afmt[i]->id = i;
} else {
int j;
for (j = 0; j < i; j++) {
kfree(adev->mode_info.afmt[j]);
adev->mode_info.afmt[j] = NULL;
}
return -ENOMEM;
}
}
return 0;
}
static void dce_v10_0_afmt_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->mode_info.num_dig; i++) {
kfree(adev->mode_info.afmt[i]);
adev->mode_info.afmt[i] = NULL;
}
}
static const u32 vga_control_regs[6] = {
mmD1VGA_CONTROL,
mmD2VGA_CONTROL,
mmD3VGA_CONTROL,
mmD4VGA_CONTROL,
mmD5VGA_CONTROL,
mmD6VGA_CONTROL,
};
static void dce_v10_0_vga_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
u32 vga_control;
vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1;
if (enable)
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1);
else
WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control);
}
static void dce_v10_0_grph_enable(struct drm_crtc *crtc, bool enable)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
if (enable)
WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1);
else
WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0);
}
static int dce_v10_0_crtc_do_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, int atomic)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct drm_framebuffer *target_fb;
struct drm_gem_object *obj;
struct amdgpu_bo *abo;
uint64_t fb_location, tiling_flags;
uint32_t fb_format, fb_pitch_pixels;
u32 fb_swap = REG_SET_FIELD(0, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP, ENDIAN_NONE);
u32 pipe_config;
u32 tmp, viewport_w, viewport_h;
int r;
bool bypass_lut = false;
/* no fb bound */
if (!atomic && !crtc->primary->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
if (atomic)
target_fb = fb;
else
target_fb = crtc->primary->fb;
/* If atomic, assume fb object is pinned & idle & fenced and
* just update base pointers
*/
obj = target_fb->obj[0];
abo = gem_to_amdgpu_bo(obj);
r = amdgpu_bo_reserve(abo, false);
if (unlikely(r != 0))
return r;
if (!atomic) {
abo->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
r = amdgpu_bo_pin(abo, AMDGPU_GEM_DOMAIN_VRAM);
if (unlikely(r != 0)) {
amdgpu_bo_unreserve(abo);
return -EINVAL;
}
}
fb_location = amdgpu_bo_gpu_offset(abo);
amdgpu_bo_get_tiling_flags(abo, &tiling_flags);
amdgpu_bo_unreserve(abo);
pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
switch (target_fb->format->format) {
case DRM_FORMAT_C8:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 0);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 0);
break;
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB4444:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 1);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 2);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 1);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 0);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_BGRA5551:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 1);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 5);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_RGB565:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 1);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 1);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN16);
#endif
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 2);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 0);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN32);
#endif
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 2);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 1);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN32);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_BGRA1010102:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 2);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 4);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN32);
#endif
/* Greater 8 bpc fb needs to bypass hw-lut to retain precision */
bypass_lut = true;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
fb_format = REG_SET_FIELD(0, GRPH_CONTROL, GRPH_DEPTH, 2);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_FORMAT, 0);
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_RED_CROSSBAR, 2);
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_BLUE_CROSSBAR, 2);
#ifdef __BIG_ENDIAN
fb_swap = REG_SET_FIELD(fb_swap, GRPH_SWAP_CNTL, GRPH_ENDIAN_SWAP,
ENDIAN_8IN32);
#endif
break;
default:
DRM_ERROR("Unsupported screen format %p4cc\n",
&target_fb->format->format);
return -EINVAL;
}
if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) {
unsigned bankw, bankh, mtaspect, tile_split, num_banks;
bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT);
num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_NUM_BANKS, num_banks);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_ARRAY_MODE,
ARRAY_2D_TILED_THIN1);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_TILE_SPLIT,
tile_split);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_BANK_WIDTH, bankw);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_BANK_HEIGHT, bankh);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_MACRO_TILE_ASPECT,
mtaspect);
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_MICRO_TILE_MODE,
ADDR_SURF_MICRO_TILING_DISPLAY);
} else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1) {
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_ARRAY_MODE,
ARRAY_1D_TILED_THIN1);
}
fb_format = REG_SET_FIELD(fb_format, GRPH_CONTROL, GRPH_PIPE_CONFIG,
pipe_config);
dce_v10_0_vga_enable(crtc, false);
/* Make sure surface address is updated at vertical blank rather than
* horizontal blank
*/
tmp = RREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, GRPH_FLIP_CONTROL,
GRPH_SURFACE_UPDATE_H_RETRACE_EN, 0);
WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, tmp);
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK);
WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
(u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK);
WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format);
WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap);
/*
* The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT
* for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to
* retain the full precision throughout the pipeline.
*/
tmp = RREG32(mmGRPH_LUT_10BIT_BYPASS + amdgpu_crtc->crtc_offset);
if (bypass_lut)
tmp = REG_SET_FIELD(tmp, GRPH_LUT_10BIT_BYPASS, GRPH_LUT_10BIT_BYPASS_EN, 1);
else
tmp = REG_SET_FIELD(tmp, GRPH_LUT_10BIT_BYPASS, GRPH_LUT_10BIT_BYPASS_EN, 0);
WREG32(mmGRPH_LUT_10BIT_BYPASS + amdgpu_crtc->crtc_offset, tmp);
if (bypass_lut)
DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n");
WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0);
WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width);
WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height);
fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0];
WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels);
dce_v10_0_grph_enable(crtc, true);
WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset,
target_fb->height);
x &= ~3;
y &= ~1;
WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset,
(x << 16) | y);
viewport_w = crtc->mode.hdisplay;
viewport_h = (crtc->mode.vdisplay + 1) & ~1;
WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset,
(viewport_w << 16) | viewport_h);
/* set pageflip to happen anywhere in vblank interval */
WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0);
if (!atomic && fb && fb != crtc->primary->fb) {
abo = gem_to_amdgpu_bo(fb->obj[0]);
r = amdgpu_bo_reserve(abo, true);
if (unlikely(r != 0))
return r;
amdgpu_bo_unpin(abo);
amdgpu_bo_unreserve(abo);
}
/* Bytes per pixel may have changed */
dce_v10_0_bandwidth_update(adev);
return 0;
}
static void dce_v10_0_set_interleave(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
u32 tmp;
tmp = RREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
tmp = REG_SET_FIELD(tmp, LB_DATA_FORMAT, INTERLEAVE_EN, 1);
else
tmp = REG_SET_FIELD(tmp, LB_DATA_FORMAT, INTERLEAVE_EN, 0);
WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, tmp);
}
static void dce_v10_0_crtc_load_lut(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
u16 *r, *g, *b;
int i;
u32 tmp;
DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id);
tmp = RREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, INPUT_CSC_CONTROL, INPUT_CSC_GRPH_MODE, 0);
tmp = REG_SET_FIELD(tmp, INPUT_CSC_CONTROL, INPUT_CSC_OVL_MODE, 0);
WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, PRESCALE_GRPH_CONTROL, GRPH_PRESCALE_BYPASS, 1);
WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, PRESCALE_OVL_CONTROL, OVL_PRESCALE_BYPASS, 1);
WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, INPUT_GAMMA_CONTROL, GRPH_INPUT_GAMMA_MODE, 0);
tmp = REG_SET_FIELD(tmp, INPUT_GAMMA_CONTROL, OVL_INPUT_GAMMA_MODE, 0);
WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset, tmp);
WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff);
WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0);
WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007);
WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0);
r = crtc->gamma_store;
g = r + crtc->gamma_size;
b = g + crtc->gamma_size;
for (i = 0; i < 256; i++) {
WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset,
((*r++ & 0xffc0) << 14) |
((*g++ & 0xffc0) << 4) |
(*b++ >> 6));
}
tmp = RREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, DEGAMMA_CONTROL, GRPH_DEGAMMA_MODE, 0);
tmp = REG_SET_FIELD(tmp, DEGAMMA_CONTROL, OVL_DEGAMMA_MODE, 0);
tmp = REG_SET_FIELD(tmp, DEGAMMA_CONTROL, CURSOR_DEGAMMA_MODE, 0);
WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, GAMUT_REMAP_CONTROL, GRPH_GAMUT_REMAP_MODE, 0);
tmp = REG_SET_FIELD(tmp, GAMUT_REMAP_CONTROL, OVL_GAMUT_REMAP_MODE, 0);
WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, REGAMMA_CONTROL, GRPH_REGAMMA_MODE, 0);
tmp = REG_SET_FIELD(tmp, REGAMMA_CONTROL, OVL_REGAMMA_MODE, 0);
WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset, tmp);
tmp = RREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, OUTPUT_CSC_CONTROL, OUTPUT_CSC_GRPH_MODE, 0);
tmp = REG_SET_FIELD(tmp, OUTPUT_CSC_CONTROL, OUTPUT_CSC_OVL_MODE, 0);
WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, tmp);
/* XXX match this to the depth of the crtc fmt block, move to modeset? */
WREG32(mmDENORM_CONTROL + amdgpu_crtc->crtc_offset, 0);
/* XXX this only needs to be programmed once per crtc at startup,
* not sure where the best place for it is
*/
tmp = RREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, ALPHA_CONTROL, CURSOR_ALPHA_BLND_ENA, 1);
WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
static int dce_v10_0_pick_dig_encoder(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
if (dig->linkb)
return 1;
else
return 0;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
if (dig->linkb)
return 3;
else
return 2;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
if (dig->linkb)
return 5;
else
return 4;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
return 6;
default:
DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id);
return 0;
}
}
/**
* dce_v10_0_pick_pll - Allocate a PPLL for use by the crtc.
*
* @crtc: drm crtc
*
* Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors
* a single PPLL can be used for all DP crtcs/encoders. For non-DP
* monitors a dedicated PPLL must be used. If a particular board has
* an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming
* as there is no need to program the PLL itself. If we are not able to
* allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to
* avoid messing up an existing monitor.
*
* Asic specific PLL information
*
* DCE 10.x
* Tonga
* - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP)
* CI
* - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC
*
*/
static u32 dce_v10_0_pick_pll(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
u32 pll_in_use;
int pll;
if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) {
if (adev->clock.dp_extclk)
/* skip PPLL programming if using ext clock */
return ATOM_PPLL_INVALID;
else {
/* use the same PPLL for all DP monitors */
pll = amdgpu_pll_get_shared_dp_ppll(crtc);
if (pll != ATOM_PPLL_INVALID)
return pll;
}
} else {
/* use the same PPLL for all monitors with the same clock */
pll = amdgpu_pll_get_shared_nondp_ppll(crtc);
if (pll != ATOM_PPLL_INVALID)
return pll;
}
/* DCE10 has PPLL0, PPLL1, and PPLL2 */
pll_in_use = amdgpu_pll_get_use_mask(crtc);
if (!(pll_in_use & (1 << ATOM_PPLL2)))
return ATOM_PPLL2;
if (!(pll_in_use & (1 << ATOM_PPLL1)))
return ATOM_PPLL1;
if (!(pll_in_use & (1 << ATOM_PPLL0)))
return ATOM_PPLL0;
DRM_ERROR("unable to allocate a PPLL\n");
return ATOM_PPLL_INVALID;
}
static void dce_v10_0_lock_cursor(struct drm_crtc *crtc, bool lock)
{
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
uint32_t cur_lock;
cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset);
if (lock)
cur_lock = REG_SET_FIELD(cur_lock, CUR_UPDATE, CURSOR_UPDATE_LOCK, 1);
else
cur_lock = REG_SET_FIELD(cur_lock, CUR_UPDATE, CURSOR_UPDATE_LOCK, 0);
WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock);
}
static void dce_v10_0_hide_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
u32 tmp;
tmp = RREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, CUR_CONTROL, CURSOR_EN, 0);
WREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
static void dce_v10_0_show_cursor(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
u32 tmp;
WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset,
upper_32_bits(amdgpu_crtc->cursor_addr));
WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset,
lower_32_bits(amdgpu_crtc->cursor_addr));
tmp = RREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset);
tmp = REG_SET_FIELD(tmp, CUR_CONTROL, CURSOR_EN, 1);
tmp = REG_SET_FIELD(tmp, CUR_CONTROL, CURSOR_MODE, 2);
WREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, tmp);
}
static int dce_v10_0_cursor_move_locked(struct drm_crtc *crtc,
int x, int y)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
int xorigin = 0, yorigin = 0;
amdgpu_crtc->cursor_x = x;
amdgpu_crtc->cursor_y = y;
/* avivo cursor are offset into the total surface */
x += crtc->x;
y += crtc->y;
DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y);
if (x < 0) {
xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
x = 0;
}
if (y < 0) {
yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
y = 0;
}
WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y);
WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin);
WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset,
((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1));
return 0;
}
static int dce_v10_0_crtc_cursor_move(struct drm_crtc *crtc,
int x, int y)
{
int ret;
dce_v10_0_lock_cursor(crtc, true);
ret = dce_v10_0_cursor_move_locked(crtc, x, y);
dce_v10_0_lock_cursor(crtc, false);
return ret;
}
static int dce_v10_0_crtc_cursor_set2(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width,
uint32_t height,
int32_t hot_x,
int32_t hot_y)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_gem_object *obj;
struct amdgpu_bo *aobj;
int ret;
if (!handle) {
/* turn off cursor */
dce_v10_0_hide_cursor(crtc);
obj = NULL;
goto unpin;
}
if ((width > amdgpu_crtc->max_cursor_width) ||
(height > amdgpu_crtc->max_cursor_height)) {
DRM_ERROR("bad cursor width or height %d x %d\n", width, height);
return -EINVAL;
}
obj = drm_gem_object_lookup(file_priv, handle);
if (!obj) {
DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id);
return -ENOENT;
}
aobj = gem_to_amdgpu_bo(obj);
ret = amdgpu_bo_reserve(aobj, false);
if (ret != 0) {
drm_gem_object_put(obj);
return ret;
}
aobj->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM);
amdgpu_bo_unreserve(aobj);
if (ret) {
DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret);
drm_gem_object_put(obj);
return ret;
}
amdgpu_crtc->cursor_addr = amdgpu_bo_gpu_offset(aobj);
dce_v10_0_lock_cursor(crtc, true);
if (width != amdgpu_crtc->cursor_width ||
height != amdgpu_crtc->cursor_height ||
hot_x != amdgpu_crtc->cursor_hot_x ||
hot_y != amdgpu_crtc->cursor_hot_y) {
int x, y;
x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x;
y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y;
dce_v10_0_cursor_move_locked(crtc, x, y);
amdgpu_crtc->cursor_width = width;
amdgpu_crtc->cursor_height = height;
amdgpu_crtc->cursor_hot_x = hot_x;
amdgpu_crtc->cursor_hot_y = hot_y;
}
dce_v10_0_show_cursor(crtc);
dce_v10_0_lock_cursor(crtc, false);
unpin:
if (amdgpu_crtc->cursor_bo) {
struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
ret = amdgpu_bo_reserve(aobj, true);
if (likely(ret == 0)) {
amdgpu_bo_unpin(aobj);
amdgpu_bo_unreserve(aobj);
}
drm_gem_object_put(amdgpu_crtc->cursor_bo);
}
amdgpu_crtc->cursor_bo = obj;
return 0;
}
static void dce_v10_0_cursor_reset(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->cursor_bo) {
dce_v10_0_lock_cursor(crtc, true);
dce_v10_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x,
amdgpu_crtc->cursor_y);
dce_v10_0_show_cursor(crtc);
dce_v10_0_lock_cursor(crtc, false);
}
}
static int dce_v10_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size,
struct drm_modeset_acquire_ctx *ctx)
{
dce_v10_0_crtc_load_lut(crtc);
return 0;
}
static void dce_v10_0_crtc_destroy(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(amdgpu_crtc);
}
static const struct drm_crtc_funcs dce_v10_0_crtc_funcs = {
.cursor_set2 = dce_v10_0_crtc_cursor_set2,
.cursor_move = dce_v10_0_crtc_cursor_move,
.gamma_set = dce_v10_0_crtc_gamma_set,
.set_config = amdgpu_display_crtc_set_config,
.destroy = dce_v10_0_crtc_destroy,
.page_flip_target = amdgpu_display_crtc_page_flip_target,
.get_vblank_counter = amdgpu_get_vblank_counter_kms,
.enable_vblank = amdgpu_enable_vblank_kms,
.disable_vblank = amdgpu_disable_vblank_kms,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
};
static void dce_v10_0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
unsigned type;
switch (mode) {
case DRM_MODE_DPMS_ON:
amdgpu_crtc->enabled = true;
amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE);
dce_v10_0_vga_enable(crtc, true);
amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE);
dce_v10_0_vga_enable(crtc, false);
/* Make sure VBLANK and PFLIP interrupts are still enabled */
type = amdgpu_display_crtc_idx_to_irq_type(adev,
amdgpu_crtc->crtc_id);
amdgpu_irq_update(adev, &adev->crtc_irq, type);
amdgpu_irq_update(adev, &adev->pageflip_irq, type);
drm_crtc_vblank_on(crtc);
dce_v10_0_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
drm_crtc_vblank_off(crtc);
if (amdgpu_crtc->enabled) {
dce_v10_0_vga_enable(crtc, true);
amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE);
dce_v10_0_vga_enable(crtc, false);
}
amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE);
amdgpu_crtc->enabled = false;
break;
}
/* adjust pm to dpms */
amdgpu_dpm_compute_clocks(adev);
}
static void dce_v10_0_crtc_prepare(struct drm_crtc *crtc)
{
/* disable crtc pair power gating before programming */
amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE);
amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE);
dce_v10_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void dce_v10_0_crtc_commit(struct drm_crtc *crtc)
{
dce_v10_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE);
}
static void dce_v10_0_crtc_disable(struct drm_crtc *crtc)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_atom_ss ss;
int i;
dce_v10_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->primary->fb) {
int r;
struct amdgpu_bo *abo;
abo = gem_to_amdgpu_bo(crtc->primary->fb->obj[0]);
r = amdgpu_bo_reserve(abo, true);
if (unlikely(r))
DRM_ERROR("failed to reserve abo before unpin\n");
else {
amdgpu_bo_unpin(abo);
amdgpu_bo_unreserve(abo);
}
}
/* disable the GRPH */
dce_v10_0_grph_enable(crtc, false);
amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE);
for (i = 0; i < adev->mode_info.num_crtc; i++) {
if (adev->mode_info.crtcs[i] &&
adev->mode_info.crtcs[i]->enabled &&
i != amdgpu_crtc->crtc_id &&
amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) {
/* one other crtc is using this pll don't turn
* off the pll
*/
goto done;
}
}
switch (amdgpu_crtc->pll_id) {
case ATOM_PPLL0:
case ATOM_PPLL1:
case ATOM_PPLL2:
/* disable the ppll */
amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id,
0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss);
break;
default:
break;
}
done:
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
}
static int dce_v10_0_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (!amdgpu_crtc->adjusted_clock)
return -EINVAL;
amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode);
amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode);
dce_v10_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode);
amdgpu_atombios_crtc_scaler_setup(crtc);
dce_v10_0_cursor_reset(crtc);
/* update the hw version fpr dpm */
amdgpu_crtc->hw_mode = *adjusted_mode;
return 0;
}
static bool dce_v10_0_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
/* assign the encoder to the amdgpu crtc to avoid repeated lookups later */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
amdgpu_crtc->encoder = encoder;
amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder);
break;
}
}
if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) {
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
return false;
}
if (!amdgpu_display_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode))
return false;
/* pick pll */
amdgpu_crtc->pll_id = dce_v10_0_pick_pll(crtc);
/* if we can't get a PPLL for a non-DP encoder, fail */
if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) &&
!ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder)))
return false;
return true;
}
static int dce_v10_0_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return dce_v10_0_crtc_do_set_base(crtc, old_fb, x, y, 0);
}
static int dce_v10_0_crtc_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
return dce_v10_0_crtc_do_set_base(crtc, fb, x, y, 1);
}
static const struct drm_crtc_helper_funcs dce_v10_0_crtc_helper_funcs = {
.dpms = dce_v10_0_crtc_dpms,
.mode_fixup = dce_v10_0_crtc_mode_fixup,
.mode_set = dce_v10_0_crtc_mode_set,
.mode_set_base = dce_v10_0_crtc_set_base,
.mode_set_base_atomic = dce_v10_0_crtc_set_base_atomic,
.prepare = dce_v10_0_crtc_prepare,
.commit = dce_v10_0_crtc_commit,
.disable = dce_v10_0_crtc_disable,
.get_scanout_position = amdgpu_crtc_get_scanout_position,
};
static int dce_v10_0_crtc_init(struct amdgpu_device *adev, int index)
{
struct amdgpu_crtc *amdgpu_crtc;
amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) +
(AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (amdgpu_crtc == NULL)
return -ENOMEM;
drm_crtc_init(adev_to_drm(adev), &amdgpu_crtc->base, &dce_v10_0_crtc_funcs);
drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256);
amdgpu_crtc->crtc_id = index;
adev->mode_info.crtcs[index] = amdgpu_crtc;
amdgpu_crtc->max_cursor_width = 128;
amdgpu_crtc->max_cursor_height = 128;
adev_to_drm(adev)->mode_config.cursor_width = amdgpu_crtc->max_cursor_width;
adev_to_drm(adev)->mode_config.cursor_height = amdgpu_crtc->max_cursor_height;
switch (amdgpu_crtc->crtc_id) {
case 0:
default:
amdgpu_crtc->crtc_offset = CRTC0_REGISTER_OFFSET;
break;
case 1:
amdgpu_crtc->crtc_offset = CRTC1_REGISTER_OFFSET;
break;
case 2:
amdgpu_crtc->crtc_offset = CRTC2_REGISTER_OFFSET;
break;
case 3:
amdgpu_crtc->crtc_offset = CRTC3_REGISTER_OFFSET;
break;
case 4:
amdgpu_crtc->crtc_offset = CRTC4_REGISTER_OFFSET;
break;
case 5:
amdgpu_crtc->crtc_offset = CRTC5_REGISTER_OFFSET;
break;
}
amdgpu_crtc->pll_id = ATOM_PPLL_INVALID;
amdgpu_crtc->adjusted_clock = 0;
amdgpu_crtc->encoder = NULL;
amdgpu_crtc->connector = NULL;
drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v10_0_crtc_helper_funcs);
return 0;
}
static int dce_v10_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->audio_endpt_rreg = &dce_v10_0_audio_endpt_rreg;
adev->audio_endpt_wreg = &dce_v10_0_audio_endpt_wreg;
dce_v10_0_set_display_funcs(adev);
adev->mode_info.num_crtc = dce_v10_0_get_num_crtc(adev);
switch (adev->asic_type) {
case CHIP_FIJI:
case CHIP_TONGA:
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
break;
default:
/* FIXME: not supported yet */
return -EINVAL;
}
dce_v10_0_set_irq_funcs(adev);
return 0;
}
static int dce_v10_0_sw_init(void *handle)
{
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i + 1, &adev->crtc_irq);
if (r)
return r;
}
for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP; i < 20; i += 2) {
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i, &adev->pageflip_irq);
if (r)
return r;
}
/* HPD hotplug */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq);
if (r)
return r;
adev_to_drm(adev)->mode_config.funcs = &amdgpu_mode_funcs;
adev_to_drm(adev)->mode_config.async_page_flip = true;
adev_to_drm(adev)->mode_config.max_width = 16384;
adev_to_drm(adev)->mode_config.max_height = 16384;
adev_to_drm(adev)->mode_config.preferred_depth = 24;
adev_to_drm(adev)->mode_config.prefer_shadow = 1;
adev_to_drm(adev)->mode_config.fb_modifiers_not_supported = true;
r = amdgpu_display_modeset_create_props(adev);
if (r)
return r;
adev_to_drm(adev)->mode_config.max_width = 16384;
adev_to_drm(adev)->mode_config.max_height = 16384;
/* allocate crtcs */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = dce_v10_0_crtc_init(adev, i);
if (r)
return r;
}
if (amdgpu_atombios_get_connector_info_from_object_table(adev))
amdgpu_display_print_display_setup(adev_to_drm(adev));
else
return -EINVAL;
/* setup afmt */
r = dce_v10_0_afmt_init(adev);
if (r)
return r;
r = dce_v10_0_audio_init(adev);
if (r)
return r;
/* Disable vblank IRQs aggressively for power-saving */
/* XXX: can this be enabled for DC? */
adev_to_drm(adev)->vblank_disable_immediate = true;
r = drm_vblank_init(adev_to_drm(adev), adev->mode_info.num_crtc);
if (r)
return r;
INIT_DELAYED_WORK(&adev->hotplug_work,
amdgpu_display_hotplug_work_func);
drm_kms_helper_poll_init(adev_to_drm(adev));
adev->mode_info.mode_config_initialized = true;
return 0;
}
static int dce_v10_0_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
drm_edid_free(adev->mode_info.bios_hardcoded_edid);
drm_kms_helper_poll_fini(adev_to_drm(adev));
dce_v10_0_audio_fini(adev);
dce_v10_0_afmt_fini(adev);
drm_mode_config_cleanup(adev_to_drm(adev));
adev->mode_info.mode_config_initialized = false;
return 0;
}
static int dce_v10_0_hw_init(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dce_v10_0_init_golden_registers(adev);
/* disable vga render */
dce_v10_0_set_vga_render_state(adev, false);
/* init dig PHYs, disp eng pll */
amdgpu_atombios_encoder_init_dig(adev);
amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk);
/* initialize hpd */
dce_v10_0_hpd_init(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v10_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
dce_v10_0_pageflip_interrupt_init(adev);
return 0;
}
static int dce_v10_0_hw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dce_v10_0_hpd_fini(adev);
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
dce_v10_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false);
}
dce_v10_0_pageflip_interrupt_fini(adev);
flush_delayed_work(&adev->hotplug_work);
return 0;
}
static int dce_v10_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = amdgpu_display_suspend_helper(adev);
if (r)
return r;
adev->mode_info.bl_level =
amdgpu_atombios_encoder_get_backlight_level_from_reg(adev);
return dce_v10_0_hw_fini(handle);
}
static int dce_v10_0_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret;
amdgpu_atombios_encoder_set_backlight_level_to_reg(adev,
adev->mode_info.bl_level);
ret = dce_v10_0_hw_init(handle);
/* turn on the BL */
if (adev->mode_info.bl_encoder) {
u8 bl_level = amdgpu_display_backlight_get_level(adev,
adev->mode_info.bl_encoder);
amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder,
bl_level);
}
if (ret)
return ret;
return amdgpu_display_resume_helper(adev);
}
static bool dce_v10_0_is_idle(void *handle)
{
return true;
}
static int dce_v10_0_wait_for_idle(void *handle)
{
return 0;
}
static bool dce_v10_0_check_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return dce_v10_0_is_display_hung(adev);
}
static int dce_v10_0_soft_reset(void *handle)
{
u32 srbm_soft_reset = 0, tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (dce_v10_0_is_display_hung(adev))
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK;
if (srbm_soft_reset) {
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
}
return 0;
}
static void dce_v10_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
u32 lb_interrupt_mask;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc]);
lb_interrupt_mask = REG_SET_FIELD(lb_interrupt_mask, LB_INTERRUPT_MASK,
VBLANK_INTERRUPT_MASK, 0);
WREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc], lb_interrupt_mask);
break;
case AMDGPU_IRQ_STATE_ENABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc]);
lb_interrupt_mask = REG_SET_FIELD(lb_interrupt_mask, LB_INTERRUPT_MASK,
VBLANK_INTERRUPT_MASK, 1);
WREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc], lb_interrupt_mask);
break;
default:
break;
}
}
static void dce_v10_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev,
int crtc,
enum amdgpu_interrupt_state state)
{
u32 lb_interrupt_mask;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc]);
lb_interrupt_mask = REG_SET_FIELD(lb_interrupt_mask, LB_INTERRUPT_MASK,
VLINE_INTERRUPT_MASK, 0);
WREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc], lb_interrupt_mask);
break;
case AMDGPU_IRQ_STATE_ENABLE:
lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc]);
lb_interrupt_mask = REG_SET_FIELD(lb_interrupt_mask, LB_INTERRUPT_MASK,
VLINE_INTERRUPT_MASK, 1);
WREG32(mmLB_INTERRUPT_MASK + crtc_offsets[crtc], lb_interrupt_mask);
break;
default:
break;
}
}
static int dce_v10_0_set_hpd_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned hpd,
enum amdgpu_interrupt_state state)
{
u32 tmp;
if (hpd >= adev->mode_info.num_hpd) {
DRM_DEBUG("invalid hdp %d\n", hpd);
return 0;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
tmp = RREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_EN, 0);
WREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd], tmp);
break;
case AMDGPU_IRQ_STATE_ENABLE:
tmp = RREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_EN, 1);
WREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd], tmp);
break;
default:
break;
}
return 0;
}
static int dce_v10_0_set_crtc_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CRTC_IRQ_VBLANK1:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK2:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK3:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK4:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK5:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VBLANK6:
dce_v10_0_set_crtc_vblank_interrupt_state(adev, 5, state);
break;
case AMDGPU_CRTC_IRQ_VLINE1:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 0, state);
break;
case AMDGPU_CRTC_IRQ_VLINE2:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 1, state);
break;
case AMDGPU_CRTC_IRQ_VLINE3:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 2, state);
break;
case AMDGPU_CRTC_IRQ_VLINE4:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 3, state);
break;
case AMDGPU_CRTC_IRQ_VLINE5:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 4, state);
break;
case AMDGPU_CRTC_IRQ_VLINE6:
dce_v10_0_set_crtc_vline_interrupt_state(adev, 5, state);
break;
default:
break;
}
return 0;
}
static int dce_v10_0_set_pageflip_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 reg;
if (type >= adev->mode_info.num_crtc) {
DRM_ERROR("invalid pageflip crtc %d\n", type);
return -EINVAL;
}
reg = RREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type]);
if (state == AMDGPU_IRQ_STATE_DISABLE)
WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type],
reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
else
WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type],
reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK);
return 0;
}
static int dce_v10_0_pageflip_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned long flags;
unsigned crtc_id;
struct amdgpu_crtc *amdgpu_crtc;
struct amdgpu_flip_work *works;
crtc_id = (entry->src_id - 8) >> 1;
amdgpu_crtc = adev->mode_info.crtcs[crtc_id];
if (crtc_id >= adev->mode_info.num_crtc) {
DRM_ERROR("invalid pageflip crtc %d\n", crtc_id);
return -EINVAL;
}
if (RREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id]) &
GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK)
WREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id],
GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK);
/* IRQ could occur when in initial stage */
if (amdgpu_crtc == NULL)
return 0;
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
works = amdgpu_crtc->pflip_works;
if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED) {
DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != "
"AMDGPU_FLIP_SUBMITTED(%d)\n",
amdgpu_crtc->pflip_status,
AMDGPU_FLIP_SUBMITTED);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
return 0;
}
/* page flip completed. clean up */
amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
amdgpu_crtc->pflip_works = NULL;
/* wakeup usersapce */
if (works->event)
drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
drm_crtc_vblank_put(&amdgpu_crtc->base);
schedule_work(&works->unpin_work);
return 0;
}
static void dce_v10_0_hpd_int_ack(struct amdgpu_device *adev,
int hpd)
{
u32 tmp;
if (hpd >= adev->mode_info.num_hpd) {
DRM_DEBUG("invalid hdp %d\n", hpd);
return;
}
tmp = RREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd]);
tmp = REG_SET_FIELD(tmp, DC_HPD_INT_CONTROL, DC_HPD_INT_ACK, 1);
WREG32(mmDC_HPD_INT_CONTROL + hpd_offsets[hpd], tmp);
}
static void dce_v10_0_crtc_vblank_int_ack(struct amdgpu_device *adev,
int crtc)
{
u32 tmp;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
tmp = RREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc]);
tmp = REG_SET_FIELD(tmp, LB_VBLANK_STATUS, VBLANK_ACK, 1);
WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], tmp);
}
static void dce_v10_0_crtc_vline_int_ack(struct amdgpu_device *adev,
int crtc)
{
u32 tmp;
if (crtc >= adev->mode_info.num_crtc) {
DRM_DEBUG("invalid crtc %d\n", crtc);
return;
}
tmp = RREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc]);
tmp = REG_SET_FIELD(tmp, LB_VLINE_STATUS, VLINE_ACK, 1);
WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], tmp);
}
static int dce_v10_0_crtc_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned crtc = entry->src_id - 1;
uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg);
unsigned int irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, crtc);
switch (entry->src_data[0]) {
case 0: /* vblank */
if (disp_int & interrupt_status_offsets[crtc].vblank)
dce_v10_0_crtc_vblank_int_ack(adev, crtc);
else
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
if (amdgpu_irq_enabled(adev, source, irq_type)) {
drm_handle_vblank(adev_to_drm(adev), crtc);
}
DRM_DEBUG("IH: D%d vblank\n", crtc + 1);
break;
case 1: /* vline */
if (disp_int & interrupt_status_offsets[crtc].vline)
dce_v10_0_crtc_vline_int_ack(adev, crtc);
else
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
DRM_DEBUG("IH: D%d vline\n", crtc + 1);
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]);
break;
}
return 0;
}
static int dce_v10_0_hpd_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t disp_int, mask;
unsigned hpd;
if (entry->src_data[0] >= adev->mode_info.num_hpd) {
DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]);
return 0;
}
hpd = entry->src_data[0];
disp_int = RREG32(interrupt_status_offsets[hpd].reg);
mask = interrupt_status_offsets[hpd].hpd;
if (disp_int & mask) {
dce_v10_0_hpd_int_ack(adev, hpd);
schedule_delayed_work(&adev->hotplug_work, 0);
DRM_DEBUG("IH: HPD%d\n", hpd + 1);
}
return 0;
}
static int dce_v10_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int dce_v10_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static const struct amd_ip_funcs dce_v10_0_ip_funcs = {
.name = "dce_v10_0",
.early_init = dce_v10_0_early_init,
.late_init = NULL,
.sw_init = dce_v10_0_sw_init,
.sw_fini = dce_v10_0_sw_fini,
.hw_init = dce_v10_0_hw_init,
.hw_fini = dce_v10_0_hw_fini,
.suspend = dce_v10_0_suspend,
.resume = dce_v10_0_resume,
.is_idle = dce_v10_0_is_idle,
.wait_for_idle = dce_v10_0_wait_for_idle,
.check_soft_reset = dce_v10_0_check_soft_reset,
.soft_reset = dce_v10_0_soft_reset,
.set_clockgating_state = dce_v10_0_set_clockgating_state,
.set_powergating_state = dce_v10_0_set_powergating_state,
.dump_ip_state = NULL,
.print_ip_state = NULL,
};
static void
dce_v10_0_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
amdgpu_encoder->pixel_clock = adjusted_mode->clock;
/* need to call this here rather than in prepare() since we need some crtc info */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
/* set scaler clears this on some chips */
dce_v10_0_set_interleave(encoder->crtc, mode);
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) {
dce_v10_0_afmt_enable(encoder, true);
dce_v10_0_afmt_setmode(encoder, adjusted_mode);
}
}
static void dce_v10_0_encoder_prepare(struct drm_encoder *encoder)
{
struct amdgpu_device *adev = drm_to_adev(encoder->dev);
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder);
if ((amdgpu_encoder->active_device &
(ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) ||
(amdgpu_encoder_get_dp_bridge_encoder_id(encoder) !=
ENCODER_OBJECT_ID_NONE)) {
struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv;
if (dig) {
dig->dig_encoder = dce_v10_0_pick_dig_encoder(encoder);
if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT)
dig->afmt = adev->mode_info.afmt[dig->dig_encoder];
}
}
amdgpu_atombios_scratch_regs_lock(adev, true);
if (connector) {
struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector);
/* select the clock/data port if it uses a router */
if (amdgpu_connector->router.cd_valid)
amdgpu_i2c_router_select_cd_port(amdgpu_connector);
/* turn eDP panel on for mode set */
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
amdgpu_atombios_encoder_set_edp_panel_power(connector,
ATOM_TRANSMITTER_ACTION_POWER_ON);
}
/* this is needed for the pll/ss setup to work correctly in some cases */
amdgpu_atombios_encoder_set_crtc_source(encoder);
/* set up the FMT blocks */
dce_v10_0_program_fmt(encoder);
}
static void dce_v10_0_encoder_commit(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
/* need to call this here as we need the crtc set up */
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
amdgpu_atombios_scratch_regs_lock(adev, false);
}
static void dce_v10_0_encoder_disable(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct amdgpu_encoder_atom_dig *dig;
amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
if (amdgpu_atombios_encoder_is_digital(encoder)) {
if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI)
dce_v10_0_afmt_enable(encoder, false);
dig = amdgpu_encoder->enc_priv;
dig->dig_encoder = -1;
}
amdgpu_encoder->active_device = 0;
}
/* these are handled by the primary encoders */
static void dce_v10_0_ext_prepare(struct drm_encoder *encoder)
{
}
static void dce_v10_0_ext_commit(struct drm_encoder *encoder)
{
}
static void
dce_v10_0_ext_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
}
static void dce_v10_0_ext_disable(struct drm_encoder *encoder)
{
}
static void
dce_v10_0_ext_dpms(struct drm_encoder *encoder, int mode)
{
}
static const struct drm_encoder_helper_funcs dce_v10_0_ext_helper_funcs = {
.dpms = dce_v10_0_ext_dpms,
.prepare = dce_v10_0_ext_prepare,
.mode_set = dce_v10_0_ext_mode_set,
.commit = dce_v10_0_ext_commit,
.disable = dce_v10_0_ext_disable,
/* no detect for TMDS/LVDS yet */
};
static const struct drm_encoder_helper_funcs dce_v10_0_dig_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v10_0_encoder_prepare,
.mode_set = dce_v10_0_encoder_mode_set,
.commit = dce_v10_0_encoder_commit,
.disable = dce_v10_0_encoder_disable,
.detect = amdgpu_atombios_encoder_dig_detect,
};
static const struct drm_encoder_helper_funcs dce_v10_0_dac_helper_funcs = {
.dpms = amdgpu_atombios_encoder_dpms,
.mode_fixup = amdgpu_atombios_encoder_mode_fixup,
.prepare = dce_v10_0_encoder_prepare,
.mode_set = dce_v10_0_encoder_mode_set,
.commit = dce_v10_0_encoder_commit,
.detect = amdgpu_atombios_encoder_dac_detect,
};
static void dce_v10_0_encoder_destroy(struct drm_encoder *encoder)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder);
kfree(amdgpu_encoder->enc_priv);
drm_encoder_cleanup(encoder);
kfree(amdgpu_encoder);
}
static const struct drm_encoder_funcs dce_v10_0_encoder_funcs = {
.destroy = dce_v10_0_encoder_destroy,
};
static void dce_v10_0_encoder_add(struct amdgpu_device *adev,
uint32_t encoder_enum,
uint32_t supported_device,
u16 caps)
{
struct drm_device *dev = adev_to_drm(adev);
struct drm_encoder *encoder;
struct amdgpu_encoder *amdgpu_encoder;
/* see if we already added it */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
amdgpu_encoder = to_amdgpu_encoder(encoder);
if (amdgpu_encoder->encoder_enum == encoder_enum) {
amdgpu_encoder->devices |= supported_device;
return;
}
}
/* add a new one */
amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL);
if (!amdgpu_encoder)
return;
encoder = &amdgpu_encoder->base;
switch (adev->mode_info.num_crtc) {
case 1:
encoder->possible_crtcs = 0x1;
break;
case 2:
default:
encoder->possible_crtcs = 0x3;
break;
case 4:
encoder->possible_crtcs = 0xf;
break;
case 6:
encoder->possible_crtcs = 0x3f;
break;
}
amdgpu_encoder->enc_priv = NULL;
amdgpu_encoder->encoder_enum = encoder_enum;
amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
amdgpu_encoder->devices = supported_device;
amdgpu_encoder->rmx_type = RMX_OFF;
amdgpu_encoder->underscan_type = UNDERSCAN_OFF;
amdgpu_encoder->is_ext_encoder = false;
amdgpu_encoder->caps = caps;
switch (amdgpu_encoder->encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1:
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2:
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
drm_encoder_helper_add(encoder, &dce_v10_0_dac_helper_funcs);
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
amdgpu_encoder->rmx_type = RMX_FULL;
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder);
} else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) {
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
} else {
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder);
}
drm_encoder_helper_add(encoder, &dce_v10_0_dig_helper_funcs);
break;
case ENCODER_OBJECT_ID_SI170B:
case ENCODER_OBJECT_ID_CH7303:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOA:
case ENCODER_OBJECT_ID_EXTERNAL_SDVOB:
case ENCODER_OBJECT_ID_TITFP513:
case ENCODER_OBJECT_ID_VT1623:
case ENCODER_OBJECT_ID_HDMI_SI1930:
case ENCODER_OBJECT_ID_TRAVIS:
case ENCODER_OBJECT_ID_NUTMEG:
/* these are handled by the primary encoders */
amdgpu_encoder->is_ext_encoder = true;
if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_LVDS, NULL);
else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT))
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
else
drm_encoder_init(dev, encoder, &dce_v10_0_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
drm_encoder_helper_add(encoder, &dce_v10_0_ext_helper_funcs);
break;
}
}
static const struct amdgpu_display_funcs dce_v10_0_display_funcs = {
.bandwidth_update = &dce_v10_0_bandwidth_update,
.vblank_get_counter = &dce_v10_0_vblank_get_counter,
.backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level,
.backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level,
.hpd_sense = &dce_v10_0_hpd_sense,
.hpd_set_polarity = &dce_v10_0_hpd_set_polarity,
.hpd_get_gpio_reg = &dce_v10_0_hpd_get_gpio_reg,
.page_flip = &dce_v10_0_page_flip,
.page_flip_get_scanoutpos = &dce_v10_0_crtc_get_scanoutpos,
.add_encoder = &dce_v10_0_encoder_add,
.add_connector = &amdgpu_connector_add,
};
static void dce_v10_0_set_display_funcs(struct amdgpu_device *adev)
{
adev->mode_info.funcs = &dce_v10_0_display_funcs;
}
static const struct amdgpu_irq_src_funcs dce_v10_0_crtc_irq_funcs = {
.set = dce_v10_0_set_crtc_irq_state,
.process = dce_v10_0_crtc_irq,
};
static const struct amdgpu_irq_src_funcs dce_v10_0_pageflip_irq_funcs = {
.set = dce_v10_0_set_pageflip_irq_state,
.process = dce_v10_0_pageflip_irq,
};
static const struct amdgpu_irq_src_funcs dce_v10_0_hpd_irq_funcs = {
.set = dce_v10_0_set_hpd_irq_state,
.process = dce_v10_0_hpd_irq,
};
static void dce_v10_0_set_irq_funcs(struct amdgpu_device *adev)
{
if (adev->mode_info.num_crtc > 0)
adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_VLINE1 + adev->mode_info.num_crtc;
else
adev->crtc_irq.num_types = 0;
adev->crtc_irq.funcs = &dce_v10_0_crtc_irq_funcs;
adev->pageflip_irq.num_types = adev->mode_info.num_crtc;
adev->pageflip_irq.funcs = &dce_v10_0_pageflip_irq_funcs;
adev->hpd_irq.num_types = adev->mode_info.num_hpd;
adev->hpd_irq.funcs = &dce_v10_0_hpd_irq_funcs;
}
const struct amdgpu_ip_block_version dce_v10_0_ip_block = {
.type = AMD_IP_BLOCK_TYPE_DCE,
.major = 10,
.minor = 0,
.rev = 0,
.funcs = &dce_v10_0_ip_funcs,
};
const struct amdgpu_ip_block_version dce_v10_1_ip_block = {
.type = AMD_IP_BLOCK_TYPE_DCE,
.major = 10,
.minor = 1,
.rev = 0,
.funcs = &dce_v10_0_ip_funcs,
};