| /* |
| * Copyright 2018 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| #include "nouveau_dmem.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_chan.h" |
| #include "nouveau_dma.h" |
| #include "nouveau_mem.h" |
| #include "nouveau_bo.h" |
| #include "nouveau_svm.h" |
| |
| #include <nvif/class.h> |
| #include <nvif/object.h> |
| #include <nvif/push906f.h> |
| #include <nvif/if000c.h> |
| #include <nvif/if500b.h> |
| #include <nvif/if900b.h> |
| |
| #include <nvhw/class/cla0b5.h> |
| |
| #include <linux/sched/mm.h> |
| #include <linux/hmm.h> |
| #include <linux/memremap.h> |
| #include <linux/migrate.h> |
| |
| /* |
| * FIXME: this is ugly right now we are using TTM to allocate vram and we pin |
| * it in vram while in use. We likely want to overhaul memory management for |
| * nouveau to be more page like (not necessarily with system page size but a |
| * bigger page size) at lowest level and have some shim layer on top that would |
| * provide the same functionality as TTM. |
| */ |
| #define DMEM_CHUNK_SIZE (2UL << 20) |
| #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) |
| |
| enum nouveau_aper { |
| NOUVEAU_APER_VIRT, |
| NOUVEAU_APER_VRAM, |
| NOUVEAU_APER_HOST, |
| }; |
| |
| typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, |
| enum nouveau_aper, u64 dst_addr, |
| enum nouveau_aper, u64 src_addr); |
| typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, |
| enum nouveau_aper, u64 dst_addr); |
| |
| struct nouveau_dmem_chunk { |
| struct list_head list; |
| struct nouveau_bo *bo; |
| struct nouveau_drm *drm; |
| unsigned long callocated; |
| struct dev_pagemap pagemap; |
| }; |
| |
| struct nouveau_dmem_migrate { |
| nouveau_migrate_copy_t copy_func; |
| nouveau_clear_page_t clear_func; |
| struct nouveau_channel *chan; |
| }; |
| |
| struct nouveau_dmem { |
| struct nouveau_drm *drm; |
| struct nouveau_dmem_migrate migrate; |
| struct list_head chunks; |
| struct mutex mutex; |
| struct page *free_pages; |
| spinlock_t lock; |
| }; |
| |
| static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) |
| { |
| return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); |
| } |
| |
| static struct nouveau_drm *page_to_drm(struct page *page) |
| { |
| struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); |
| |
| return chunk->drm; |
| } |
| |
| unsigned long nouveau_dmem_page_addr(struct page *page) |
| { |
| struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); |
| unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - |
| chunk->pagemap.range.start; |
| |
| return chunk->bo->offset + off; |
| } |
| |
| static void nouveau_dmem_page_free(struct page *page) |
| { |
| struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); |
| struct nouveau_dmem *dmem = chunk->drm->dmem; |
| |
| spin_lock(&dmem->lock); |
| page->zone_device_data = dmem->free_pages; |
| dmem->free_pages = page; |
| |
| WARN_ON(!chunk->callocated); |
| chunk->callocated--; |
| /* |
| * FIXME when chunk->callocated reach 0 we should add the chunk to |
| * a reclaim list so that it can be freed in case of memory pressure. |
| */ |
| spin_unlock(&dmem->lock); |
| } |
| |
| static void nouveau_dmem_fence_done(struct nouveau_fence **fence) |
| { |
| if (fence) { |
| nouveau_fence_wait(*fence, true, false); |
| nouveau_fence_unref(fence); |
| } else { |
| /* |
| * FIXME wait for channel to be IDLE before calling finalizing |
| * the hmem object. |
| */ |
| } |
| } |
| |
| static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage, |
| struct page *dpage, dma_addr_t *dma_addr) |
| { |
| struct device *dev = drm->dev->dev; |
| |
| lock_page(dpage); |
| |
| *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(dev, *dma_addr)) |
| return -EIO; |
| |
| if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, |
| NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) { |
| dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) |
| { |
| struct nouveau_drm *drm = page_to_drm(vmf->page); |
| struct nouveau_dmem *dmem = drm->dmem; |
| struct nouveau_fence *fence; |
| struct nouveau_svmm *svmm; |
| struct page *spage, *dpage; |
| unsigned long src = 0, dst = 0; |
| dma_addr_t dma_addr = 0; |
| vm_fault_t ret = 0; |
| struct migrate_vma args = { |
| .vma = vmf->vma, |
| .start = vmf->address, |
| .end = vmf->address + PAGE_SIZE, |
| .src = &src, |
| .dst = &dst, |
| .pgmap_owner = drm->dev, |
| .fault_page = vmf->page, |
| .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, |
| }; |
| |
| /* |
| * FIXME what we really want is to find some heuristic to migrate more |
| * than just one page on CPU fault. When such fault happens it is very |
| * likely that more surrounding page will CPU fault too. |
| */ |
| if (migrate_vma_setup(&args) < 0) |
| return VM_FAULT_SIGBUS; |
| if (!args.cpages) |
| return 0; |
| |
| spage = migrate_pfn_to_page(src); |
| if (!spage || !(src & MIGRATE_PFN_MIGRATE)) |
| goto done; |
| |
| dpage = alloc_page_vma(GFP_HIGHUSER | __GFP_ZERO, vmf->vma, vmf->address); |
| if (!dpage) |
| goto done; |
| |
| dst = migrate_pfn(page_to_pfn(dpage)); |
| |
| svmm = spage->zone_device_data; |
| mutex_lock(&svmm->mutex); |
| nouveau_svmm_invalidate(svmm, args.start, args.end); |
| ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr); |
| mutex_unlock(&svmm->mutex); |
| if (ret) { |
| ret = VM_FAULT_SIGBUS; |
| goto done; |
| } |
| |
| nouveau_fence_new(&fence, dmem->migrate.chan); |
| migrate_vma_pages(&args); |
| nouveau_dmem_fence_done(&fence); |
| dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); |
| done: |
| migrate_vma_finalize(&args); |
| return ret; |
| } |
| |
| static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { |
| .page_free = nouveau_dmem_page_free, |
| .migrate_to_ram = nouveau_dmem_migrate_to_ram, |
| }; |
| |
| static int |
| nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| struct resource *res; |
| struct page *page; |
| void *ptr; |
| unsigned long i, pfn_first; |
| int ret; |
| |
| chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); |
| if (chunk == NULL) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* Allocate unused physical address space for device private pages. */ |
| res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, |
| "nouveau_dmem"); |
| if (IS_ERR(res)) { |
| ret = PTR_ERR(res); |
| goto out_free; |
| } |
| |
| chunk->drm = drm; |
| chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; |
| chunk->pagemap.range.start = res->start; |
| chunk->pagemap.range.end = res->end; |
| chunk->pagemap.nr_range = 1; |
| chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; |
| chunk->pagemap.owner = drm->dev; |
| |
| ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, |
| NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL, |
| &chunk->bo); |
| if (ret) |
| goto out_release; |
| |
| ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); |
| if (ret) |
| goto out_bo_free; |
| |
| ptr = memremap_pages(&chunk->pagemap, numa_node_id()); |
| if (IS_ERR(ptr)) { |
| ret = PTR_ERR(ptr); |
| goto out_bo_unpin; |
| } |
| |
| mutex_lock(&drm->dmem->mutex); |
| list_add(&chunk->list, &drm->dmem->chunks); |
| mutex_unlock(&drm->dmem->mutex); |
| |
| pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; |
| page = pfn_to_page(pfn_first); |
| spin_lock(&drm->dmem->lock); |
| for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { |
| page->zone_device_data = drm->dmem->free_pages; |
| drm->dmem->free_pages = page; |
| } |
| *ppage = page; |
| chunk->callocated++; |
| spin_unlock(&drm->dmem->lock); |
| |
| NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", |
| DMEM_CHUNK_SIZE >> 20); |
| |
| return 0; |
| |
| out_bo_unpin: |
| nouveau_bo_unpin(chunk->bo); |
| out_bo_free: |
| nouveau_bo_fini(chunk->bo); |
| out_release: |
| release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); |
| out_free: |
| kfree(chunk); |
| out: |
| return ret; |
| } |
| |
| static struct page * |
| nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| struct page *page = NULL; |
| int ret; |
| |
| spin_lock(&drm->dmem->lock); |
| if (drm->dmem->free_pages) { |
| page = drm->dmem->free_pages; |
| drm->dmem->free_pages = page->zone_device_data; |
| chunk = nouveau_page_to_chunk(page); |
| chunk->callocated++; |
| spin_unlock(&drm->dmem->lock); |
| } else { |
| spin_unlock(&drm->dmem->lock); |
| ret = nouveau_dmem_chunk_alloc(drm, &page); |
| if (ret) |
| return NULL; |
| } |
| |
| zone_device_page_init(page); |
| return page; |
| } |
| |
| static void |
| nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) |
| { |
| unlock_page(page); |
| put_page(page); |
| } |
| |
| void |
| nouveau_dmem_resume(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| int ret; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| list_for_each_entry(chunk, &drm->dmem->chunks, list) { |
| ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); |
| /* FIXME handle pin failure */ |
| WARN_ON(ret); |
| } |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| void |
| nouveau_dmem_suspend(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| list_for_each_entry(chunk, &drm->dmem->chunks, list) |
| nouveau_bo_unpin(chunk->bo); |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| /* |
| * Evict all pages mapping a chunk. |
| */ |
| static void |
| nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk) |
| { |
| unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT; |
| unsigned long *src_pfns, *dst_pfns; |
| dma_addr_t *dma_addrs; |
| struct nouveau_fence *fence; |
| |
| src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL); |
| dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL); |
| dma_addrs = kvcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL | __GFP_NOFAIL); |
| |
| migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT, |
| npages); |
| |
| for (i = 0; i < npages; i++) { |
| if (src_pfns[i] & MIGRATE_PFN_MIGRATE) { |
| struct page *dpage; |
| |
| /* |
| * _GFP_NOFAIL because the GPU is going away and there |
| * is nothing sensible we can do if we can't copy the |
| * data back. |
| */ |
| dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL); |
| dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)); |
| nouveau_dmem_copy_one(chunk->drm, |
| migrate_pfn_to_page(src_pfns[i]), dpage, |
| &dma_addrs[i]); |
| } |
| } |
| |
| nouveau_fence_new(&fence, chunk->drm->dmem->migrate.chan); |
| migrate_device_pages(src_pfns, dst_pfns, npages); |
| nouveau_dmem_fence_done(&fence); |
| migrate_device_finalize(src_pfns, dst_pfns, npages); |
| kvfree(src_pfns); |
| kvfree(dst_pfns); |
| for (i = 0; i < npages; i++) |
| dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); |
| kvfree(dma_addrs); |
| } |
| |
| void |
| nouveau_dmem_fini(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk, *tmp; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| |
| list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { |
| nouveau_dmem_evict_chunk(chunk); |
| nouveau_bo_unpin(chunk->bo); |
| nouveau_bo_fini(chunk->bo); |
| WARN_ON(chunk->callocated); |
| list_del(&chunk->list); |
| memunmap_pages(&chunk->pagemap); |
| release_mem_region(chunk->pagemap.range.start, |
| range_len(&chunk->pagemap.range)); |
| kfree(chunk); |
| } |
| |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| static int |
| nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, |
| enum nouveau_aper dst_aper, u64 dst_addr, |
| enum nouveau_aper src_aper, u64 src_addr) |
| { |
| struct nvif_push *push = &drm->dmem->migrate.chan->chan.push; |
| u32 launch_dma = 0; |
| int ret; |
| |
| ret = PUSH_WAIT(push, 13); |
| if (ret) |
| return ret; |
| |
| if (src_aper != NOUVEAU_APER_VIRT) { |
| switch (src_aper) { |
| case NOUVEAU_APER_VRAM: |
| PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, |
| NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); |
| break; |
| case NOUVEAU_APER_HOST: |
| PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, |
| NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); |
| } |
| |
| if (dst_aper != NOUVEAU_APER_VIRT) { |
| switch (dst_aper) { |
| case NOUVEAU_APER_VRAM: |
| PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, |
| NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); |
| break; |
| case NOUVEAU_APER_HOST: |
| PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, |
| NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); |
| } |
| |
| PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, |
| NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), |
| |
| OFFSET_IN_LOWER, lower_32_bits(src_addr), |
| |
| OFFSET_OUT_UPPER, |
| NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), |
| |
| OFFSET_OUT_LOWER, lower_32_bits(dst_addr), |
| PITCH_IN, PAGE_SIZE, |
| PITCH_OUT, PAGE_SIZE, |
| LINE_LENGTH_IN, PAGE_SIZE, |
| LINE_COUNT, npages); |
| |
| PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | |
| NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | |
| NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | |
| NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | |
| NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); |
| return 0; |
| } |
| |
| static int |
| nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, |
| enum nouveau_aper dst_aper, u64 dst_addr) |
| { |
| struct nvif_push *push = &drm->dmem->migrate.chan->chan.push; |
| u32 launch_dma = 0; |
| int ret; |
| |
| ret = PUSH_WAIT(push, 12); |
| if (ret) |
| return ret; |
| |
| switch (dst_aper) { |
| case NOUVEAU_APER_VRAM: |
| PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, |
| NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); |
| break; |
| case NOUVEAU_APER_HOST: |
| PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, |
| NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); |
| |
| PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, |
| SET_REMAP_CONST_B, 0, |
| |
| SET_REMAP_COMPONENTS, |
| NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | |
| NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | |
| NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | |
| NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); |
| |
| PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, |
| NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), |
| |
| OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); |
| |
| PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); |
| |
| PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | |
| NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | |
| NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | |
| NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | |
| NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | |
| NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); |
| return 0; |
| } |
| |
| static int |
| nouveau_dmem_migrate_init(struct nouveau_drm *drm) |
| { |
| switch (drm->ttm.copy.oclass) { |
| case PASCAL_DMA_COPY_A: |
| case PASCAL_DMA_COPY_B: |
| case VOLTA_DMA_COPY_A: |
| case TURING_DMA_COPY_A: |
| drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; |
| drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; |
| drm->dmem->migrate.chan = drm->ttm.chan; |
| return 0; |
| default: |
| break; |
| } |
| return -ENODEV; |
| } |
| |
| void |
| nouveau_dmem_init(struct nouveau_drm *drm) |
| { |
| int ret; |
| |
| /* This only make sense on PASCAL or newer */ |
| if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) |
| return; |
| |
| if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) |
| return; |
| |
| drm->dmem->drm = drm; |
| mutex_init(&drm->dmem->mutex); |
| INIT_LIST_HEAD(&drm->dmem->chunks); |
| mutex_init(&drm->dmem->mutex); |
| spin_lock_init(&drm->dmem->lock); |
| |
| /* Initialize migration dma helpers before registering memory */ |
| ret = nouveau_dmem_migrate_init(drm); |
| if (ret) { |
| kfree(drm->dmem); |
| drm->dmem = NULL; |
| } |
| } |
| |
| static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, |
| struct nouveau_svmm *svmm, unsigned long src, |
| dma_addr_t *dma_addr, u64 *pfn) |
| { |
| struct device *dev = drm->dev->dev; |
| struct page *dpage, *spage; |
| unsigned long paddr; |
| |
| spage = migrate_pfn_to_page(src); |
| if (!(src & MIGRATE_PFN_MIGRATE)) |
| goto out; |
| |
| dpage = nouveau_dmem_page_alloc_locked(drm); |
| if (!dpage) |
| goto out; |
| |
| paddr = nouveau_dmem_page_addr(dpage); |
| if (spage) { |
| *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), |
| DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(dev, *dma_addr)) |
| goto out_free_page; |
| if (drm->dmem->migrate.copy_func(drm, 1, |
| NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) |
| goto out_dma_unmap; |
| } else { |
| *dma_addr = DMA_MAPPING_ERROR; |
| if (drm->dmem->migrate.clear_func(drm, page_size(dpage), |
| NOUVEAU_APER_VRAM, paddr)) |
| goto out_free_page; |
| } |
| |
| dpage->zone_device_data = svmm; |
| *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | |
| ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); |
| if (src & MIGRATE_PFN_WRITE) |
| *pfn |= NVIF_VMM_PFNMAP_V0_W; |
| return migrate_pfn(page_to_pfn(dpage)); |
| |
| out_dma_unmap: |
| dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); |
| out_free_page: |
| nouveau_dmem_page_free_locked(drm, dpage); |
| out: |
| *pfn = NVIF_VMM_PFNMAP_V0_NONE; |
| return 0; |
| } |
| |
| static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, |
| struct nouveau_svmm *svmm, struct migrate_vma *args, |
| dma_addr_t *dma_addrs, u64 *pfns) |
| { |
| struct nouveau_fence *fence; |
| unsigned long addr = args->start, nr_dma = 0, i; |
| |
| for (i = 0; addr < args->end; i++) { |
| args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, |
| args->src[i], dma_addrs + nr_dma, pfns + i); |
| if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) |
| nr_dma++; |
| addr += PAGE_SIZE; |
| } |
| |
| nouveau_fence_new(&fence, drm->dmem->migrate.chan); |
| migrate_vma_pages(args); |
| nouveau_dmem_fence_done(&fence); |
| nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); |
| |
| while (nr_dma--) { |
| dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| } |
| migrate_vma_finalize(args); |
| } |
| |
| int |
| nouveau_dmem_migrate_vma(struct nouveau_drm *drm, |
| struct nouveau_svmm *svmm, |
| struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long npages = (end - start) >> PAGE_SHIFT; |
| unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); |
| dma_addr_t *dma_addrs; |
| struct migrate_vma args = { |
| .vma = vma, |
| .start = start, |
| .pgmap_owner = drm->dev, |
| .flags = MIGRATE_VMA_SELECT_SYSTEM, |
| }; |
| unsigned long i; |
| u64 *pfns; |
| int ret = -ENOMEM; |
| |
| if (drm->dmem == NULL) |
| return -ENODEV; |
| |
| args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); |
| if (!args.src) |
| goto out; |
| args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); |
| if (!args.dst) |
| goto out_free_src; |
| |
| dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); |
| if (!dma_addrs) |
| goto out_free_dst; |
| |
| pfns = nouveau_pfns_alloc(max); |
| if (!pfns) |
| goto out_free_dma; |
| |
| for (i = 0; i < npages; i += max) { |
| if (args.start + (max << PAGE_SHIFT) > end) |
| args.end = end; |
| else |
| args.end = args.start + (max << PAGE_SHIFT); |
| |
| ret = migrate_vma_setup(&args); |
| if (ret) |
| goto out_free_pfns; |
| |
| if (args.cpages) |
| nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, |
| pfns); |
| args.start = args.end; |
| } |
| |
| ret = 0; |
| out_free_pfns: |
| nouveau_pfns_free(pfns); |
| out_free_dma: |
| kfree(dma_addrs); |
| out_free_dst: |
| kfree(args.dst); |
| out_free_src: |
| kfree(args.src); |
| out: |
| return ret; |
| } |