| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include "xe_ggtt.h" |
| |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/sizes.h> |
| |
| #include <drm/drm_drv.h> |
| #include <drm/drm_managed.h> |
| #include <drm/intel/i915_drm.h> |
| #include <generated/xe_wa_oob.h> |
| |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_gtt_defs.h" |
| #include "regs/xe_regs.h" |
| #include "xe_assert.h" |
| #include "xe_bo.h" |
| #include "xe_device.h" |
| #include "xe_gt.h" |
| #include "xe_gt_printk.h" |
| #include "xe_gt_sriov_vf.h" |
| #include "xe_gt_tlb_invalidation.h" |
| #include "xe_map.h" |
| #include "xe_mmio.h" |
| #include "xe_pm.h" |
| #include "xe_sriov.h" |
| #include "xe_wa.h" |
| #include "xe_wopcm.h" |
| |
| /** |
| * DOC: Global Graphics Translation Table (GGTT) |
| * |
| * Xe GGTT implements the support for a Global Virtual Address space that is used |
| * for resources that are accessible to privileged (i.e. kernel-mode) processes, |
| * and not tied to a specific user-level process. For example, the Graphics |
| * micro-Controller (GuC) and Display Engine (if present) utilize this Global |
| * address space. |
| * |
| * The Global GTT (GGTT) translates from the Global virtual address to a physical |
| * address that can be accessed by HW. The GGTT is a flat, single-level table. |
| * |
| * Xe implements a simplified version of the GGTT specifically managing only a |
| * certain range of it that goes from the Write Once Protected Content Memory (WOPCM) |
| * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to |
| * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space |
| * is limited on both ends of the GGTT, because the GuC shim HW redirects |
| * accesses to those addresses to other HW areas instead of going through the |
| * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size, |
| * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things |
| * simple, instead of checking each object to see if they are accessed by GuC or |
| * not, we just exclude those areas from the allocator. Additionally, to simplify |
| * the driver load, we use the maximum WOPCM size in this logic instead of the |
| * programmed one, so we don't need to wait until the actual size to be |
| * programmed is determined (which requires FW fetch) before initializing the |
| * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs |
| * depending on the platform) but we can live with this. Another benefit of this |
| * is the GuC bootrom can't access anything below the WOPCM max size so anything |
| * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT |
| * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max |
| * give us the correct placement for free. |
| */ |
| |
| static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, |
| u16 pat_index) |
| { |
| u64 pte; |
| |
| pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); |
| pte |= XE_PAGE_PRESENT; |
| |
| if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) |
| pte |= XE_GGTT_PTE_DM; |
| |
| return pte; |
| } |
| |
| static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, |
| u16 pat_index) |
| { |
| struct xe_device *xe = xe_bo_device(bo); |
| u64 pte; |
| |
| pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index); |
| |
| xe_assert(xe, pat_index <= 3); |
| |
| if (pat_index & BIT(0)) |
| pte |= XELPG_GGTT_PTE_PAT0; |
| |
| if (pat_index & BIT(1)) |
| pte |= XELPG_GGTT_PTE_PAT1; |
| |
| return pte; |
| } |
| |
| static unsigned int probe_gsm_size(struct pci_dev *pdev) |
| { |
| u16 gmch_ctl, ggms; |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); |
| ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; |
| return ggms ? SZ_1M << ggms : 0; |
| } |
| |
| static void ggtt_update_access_counter(struct xe_ggtt *ggtt) |
| { |
| struct xe_gt *gt = XE_WA(ggtt->tile->primary_gt, 22019338487) ? ggtt->tile->primary_gt : |
| ggtt->tile->media_gt; |
| u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; |
| /* |
| * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit |
| * to wait for completion of prior GTT writes before letting this through. |
| * This needs to be done for all GGTT writes originating from the CPU. |
| */ |
| lockdep_assert_held(&ggtt->lock); |
| |
| if ((++ggtt->access_count % max_gtt_writes) == 0) { |
| xe_mmio_write32(gt, GMD_ID, 0x0); |
| ggtt->access_count = 0; |
| } |
| } |
| |
| static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) |
| { |
| xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); |
| xe_tile_assert(ggtt->tile, addr < ggtt->size); |
| |
| writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); |
| } |
| |
| static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) |
| { |
| xe_ggtt_set_pte(ggtt, addr, pte); |
| ggtt_update_access_counter(ggtt); |
| } |
| |
| static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) |
| { |
| u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; |
| u64 end = start + size - 1; |
| u64 scratch_pte; |
| |
| xe_tile_assert(ggtt->tile, start < end); |
| |
| if (ggtt->scratch) |
| scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, |
| pat_index); |
| else |
| scratch_pte = 0; |
| |
| while (start < end) { |
| ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); |
| start += XE_PAGE_SIZE; |
| } |
| } |
| |
| static void ggtt_fini_early(struct drm_device *drm, void *arg) |
| { |
| struct xe_ggtt *ggtt = arg; |
| |
| destroy_workqueue(ggtt->wq); |
| mutex_destroy(&ggtt->lock); |
| drm_mm_takedown(&ggtt->mm); |
| } |
| |
| static void ggtt_fini(void *arg) |
| { |
| struct xe_ggtt *ggtt = arg; |
| |
| ggtt->scratch = NULL; |
| } |
| |
| static void primelockdep(struct xe_ggtt *ggtt) |
| { |
| if (!IS_ENABLED(CONFIG_LOCKDEP)) |
| return; |
| |
| fs_reclaim_acquire(GFP_KERNEL); |
| might_lock(&ggtt->lock); |
| fs_reclaim_release(GFP_KERNEL); |
| } |
| |
| static const struct xe_ggtt_pt_ops xelp_pt_ops = { |
| .pte_encode_bo = xelp_ggtt_pte_encode_bo, |
| .ggtt_set_pte = xe_ggtt_set_pte, |
| }; |
| |
| static const struct xe_ggtt_pt_ops xelpg_pt_ops = { |
| .pte_encode_bo = xelpg_ggtt_pte_encode_bo, |
| .ggtt_set_pte = xe_ggtt_set_pte, |
| }; |
| |
| static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { |
| .pte_encode_bo = xelpg_ggtt_pte_encode_bo, |
| .ggtt_set_pte = xe_ggtt_set_pte_and_flush, |
| }; |
| |
| /** |
| * xe_ggtt_init_early - Early GGTT initialization |
| * @ggtt: the &xe_ggtt to be initialized |
| * |
| * It allows to create new mappings usable by the GuC. |
| * Mappings are not usable by the HW engines, as it doesn't have scratch nor |
| * initial clear done to it yet. That will happen in the regular, non-early |
| * GGTT initialization. |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_init_early(struct xe_ggtt *ggtt) |
| { |
| struct xe_device *xe = tile_to_xe(ggtt->tile); |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| unsigned int gsm_size; |
| int err; |
| |
| if (IS_SRIOV_VF(xe)) |
| gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ |
| else |
| gsm_size = probe_gsm_size(pdev); |
| |
| if (gsm_size == 0) { |
| drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); |
| return -ENOMEM; |
| } |
| |
| ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; |
| ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; |
| |
| if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) |
| ggtt->flags |= XE_GGTT_FLAGS_64K; |
| |
| if (ggtt->size > GUC_GGTT_TOP) |
| ggtt->size = GUC_GGTT_TOP; |
| |
| if (GRAPHICS_VERx100(xe) >= 1270) |
| ggtt->pt_ops = (ggtt->tile->media_gt && |
| XE_WA(ggtt->tile->media_gt, 22019338487)) || |
| XE_WA(ggtt->tile->primary_gt, 22019338487) ? |
| &xelpg_pt_wa_ops : &xelpg_pt_ops; |
| else |
| ggtt->pt_ops = &xelp_pt_ops; |
| |
| ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, 0); |
| |
| drm_mm_init(&ggtt->mm, xe_wopcm_size(xe), |
| ggtt->size - xe_wopcm_size(xe)); |
| mutex_init(&ggtt->lock); |
| primelockdep(ggtt); |
| |
| err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); |
| if (err) |
| return err; |
| |
| if (IS_SRIOV_VF(xe)) { |
| err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0)); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); |
| |
| static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) |
| { |
| struct drm_mm_node *hole; |
| u64 start, end; |
| |
| /* Display may have allocated inside ggtt, so be careful with clearing here */ |
| mutex_lock(&ggtt->lock); |
| drm_mm_for_each_hole(hole, &ggtt->mm, start, end) |
| xe_ggtt_clear(ggtt, start, end - start); |
| |
| xe_ggtt_invalidate(ggtt); |
| mutex_unlock(&ggtt->lock); |
| } |
| |
| static void ggtt_node_remove(struct xe_ggtt_node *node) |
| { |
| struct xe_ggtt *ggtt = node->ggtt; |
| struct xe_device *xe = tile_to_xe(ggtt->tile); |
| bool bound; |
| int idx; |
| |
| bound = drm_dev_enter(&xe->drm, &idx); |
| |
| mutex_lock(&ggtt->lock); |
| if (bound) |
| xe_ggtt_clear(ggtt, node->base.start, node->base.size); |
| drm_mm_remove_node(&node->base); |
| node->base.size = 0; |
| mutex_unlock(&ggtt->lock); |
| |
| if (!bound) |
| goto free_node; |
| |
| if (node->invalidate_on_remove) |
| xe_ggtt_invalidate(ggtt); |
| |
| drm_dev_exit(idx); |
| |
| free_node: |
| xe_ggtt_node_fini(node); |
| } |
| |
| static void ggtt_node_remove_work_func(struct work_struct *work) |
| { |
| struct xe_ggtt_node *node = container_of(work, typeof(*node), |
| delayed_removal_work); |
| struct xe_device *xe = tile_to_xe(node->ggtt->tile); |
| |
| xe_pm_runtime_get(xe); |
| ggtt_node_remove(node); |
| xe_pm_runtime_put(xe); |
| } |
| |
| /** |
| * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT |
| * @node: the &xe_ggtt_node to be removed |
| * @invalidate: if node needs invalidation upon removal |
| */ |
| void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate) |
| { |
| struct xe_ggtt *ggtt; |
| struct xe_device *xe; |
| |
| if (!node || !node->ggtt) |
| return; |
| |
| ggtt = node->ggtt; |
| xe = tile_to_xe(ggtt->tile); |
| |
| node->invalidate_on_remove = invalidate; |
| |
| if (xe_pm_runtime_get_if_active(xe)) { |
| ggtt_node_remove(node); |
| xe_pm_runtime_put(xe); |
| } else { |
| queue_work(ggtt->wq, &node->delayed_removal_work); |
| } |
| } |
| |
| /** |
| * xe_ggtt_init - Regular non-early GGTT initialization |
| * @ggtt: the &xe_ggtt to be initialized |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_init(struct xe_ggtt *ggtt) |
| { |
| struct xe_device *xe = tile_to_xe(ggtt->tile); |
| unsigned int flags; |
| int err; |
| |
| /* |
| * So we don't need to worry about 64K GGTT layout when dealing with |
| * scratch entires, rather keep the scratch page in system memory on |
| * platforms where 64K pages are needed for VRAM. |
| */ |
| flags = XE_BO_FLAG_PINNED; |
| if (ggtt->flags & XE_GGTT_FLAGS_64K) |
| flags |= XE_BO_FLAG_SYSTEM; |
| else |
| flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); |
| |
| ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); |
| if (IS_ERR(ggtt->scratch)) { |
| err = PTR_ERR(ggtt->scratch); |
| goto err; |
| } |
| |
| xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); |
| |
| xe_ggtt_initial_clear(ggtt); |
| |
| return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt); |
| err: |
| ggtt->scratch = NULL; |
| return err; |
| } |
| |
| static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) |
| { |
| int err; |
| |
| if (!gt) |
| return; |
| |
| err = xe_gt_tlb_invalidation_ggtt(gt); |
| if (err) |
| drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); |
| } |
| |
| static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) |
| { |
| struct xe_device *xe = tile_to_xe(ggtt->tile); |
| |
| /* |
| * XXX: Barrier for GGTT pages. Unsure exactly why this required but |
| * without this LNL is having issues with the GuC reading scratch page |
| * vs. correct GGTT page. Not particularly a hot code path so blindly |
| * do a mmio read here which results in GuC reading correct GGTT page. |
| */ |
| xe_mmio_read32(xe_root_mmio_gt(xe), VF_CAP_REG); |
| |
| /* Each GT in a tile has its own TLB to cache GGTT lookups */ |
| ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); |
| ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); |
| } |
| |
| static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, |
| const struct drm_mm_node *node, const char *description) |
| { |
| char buf[10]; |
| |
| if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { |
| string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); |
| xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", |
| node->start, node->start + node->size, buf, description); |
| } |
| } |
| |
| /** |
| * xe_ggtt_node_insert_balloon - prevent allocation of specified GGTT addresses |
| * @node: the &xe_ggtt_node to hold reserved GGTT node |
| * @start: the starting GGTT address of the reserved region |
| * @end: then end GGTT address of the reserved region |
| * |
| * Use xe_ggtt_node_remove_balloon() to release a reserved GGTT node. |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_node_insert_balloon(struct xe_ggtt_node *node, u64 start, u64 end) |
| { |
| struct xe_ggtt *ggtt = node->ggtt; |
| int err; |
| |
| xe_tile_assert(ggtt->tile, start < end); |
| xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); |
| xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); |
| xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base)); |
| |
| node->base.color = 0; |
| node->base.start = start; |
| node->base.size = end - start; |
| |
| mutex_lock(&ggtt->lock); |
| err = drm_mm_reserve_node(&ggtt->mm, &node->base); |
| mutex_unlock(&ggtt->lock); |
| |
| if (xe_gt_WARN(ggtt->tile->primary_gt, err, |
| "Failed to balloon GGTT %#llx-%#llx (%pe)\n", |
| node->base.start, node->base.start + node->base.size, ERR_PTR(err))) |
| return err; |
| |
| xe_ggtt_dump_node(ggtt, &node->base, "balloon"); |
| return 0; |
| } |
| |
| /** |
| * xe_ggtt_node_remove_balloon - release a reserved GGTT region |
| * @node: the &xe_ggtt_node with reserved GGTT region |
| * |
| * See xe_ggtt_node_insert_balloon() for details. |
| */ |
| void xe_ggtt_node_remove_balloon(struct xe_ggtt_node *node) |
| { |
| if (!node || !node->ggtt) |
| return; |
| |
| if (!drm_mm_node_allocated(&node->base)) |
| goto free_node; |
| |
| xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon"); |
| |
| mutex_lock(&node->ggtt->lock); |
| drm_mm_remove_node(&node->base); |
| mutex_unlock(&node->ggtt->lock); |
| |
| free_node: |
| xe_ggtt_node_fini(node); |
| } |
| |
| /** |
| * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT |
| * @node: the &xe_ggtt_node to be inserted |
| * @size: size of the node |
| * @align: alignment constrain of the node |
| * @mm_flags: flags to control the node behavior |
| * |
| * It cannot be called without first having called xe_ggtt_init() once. |
| * To be used in cases where ggtt->lock is already taken. |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node, |
| u32 size, u32 align, u32 mm_flags) |
| { |
| return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0, |
| mm_flags); |
| } |
| |
| /** |
| * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT |
| * @node: the &xe_ggtt_node to be inserted |
| * @size: size of the node |
| * @align: alignment constrain of the node |
| * |
| * It cannot be called without first having called xe_ggtt_init() once. |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align) |
| { |
| int ret; |
| |
| if (!node || !node->ggtt) |
| return -ENOENT; |
| |
| mutex_lock(&node->ggtt->lock); |
| ret = xe_ggtt_node_insert_locked(node, size, align, |
| DRM_MM_INSERT_HIGH); |
| mutex_unlock(&node->ggtt->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * xe_ggtt_node_init - Initialize %xe_ggtt_node struct |
| * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved. |
| * |
| * This function will allocated the struct %xe_ggtt_node and return it's pointer. |
| * This struct will then be freed after the node removal upon xe_ggtt_node_remove() |
| * or xe_ggtt_node_remove_balloon(). |
| * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated |
| * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), |
| * xe_ggtt_node_insert_balloon() will ensure the node is inserted or reserved in GGTT. |
| * |
| * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise. |
| **/ |
| struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt) |
| { |
| struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS); |
| |
| if (!node) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func); |
| node->ggtt = ggtt; |
| |
| return node; |
| } |
| |
| /** |
| * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct |
| * @node: the &xe_ggtt_node to be freed |
| * |
| * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(), |
| * or xe_ggtt_node_insert_balloon(); and this @node is not going to be reused, then, |
| * this function needs to be called to free the %xe_ggtt_node struct |
| **/ |
| void xe_ggtt_node_fini(struct xe_ggtt_node *node) |
| { |
| kfree(node); |
| } |
| |
| /** |
| * xe_ggtt_node_allocated - Check if node is allocated in GGTT |
| * @node: the &xe_ggtt_node to be inspected |
| * |
| * Return: True if allocated, False otherwise. |
| */ |
| bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node) |
| { |
| if (!node || !node->ggtt) |
| return false; |
| |
| return drm_mm_node_allocated(&node->base); |
| } |
| |
| /** |
| * xe_ggtt_map_bo - Map the BO into GGTT |
| * @ggtt: the &xe_ggtt where node will be mapped |
| * @bo: the &xe_bo to be mapped |
| */ |
| void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) |
| { |
| u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; |
| u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; |
| u64 start; |
| u64 offset, pte; |
| |
| if (XE_WARN_ON(!bo->ggtt_node)) |
| return; |
| |
| start = bo->ggtt_node->base.start; |
| |
| for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) { |
| pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index); |
| ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte); |
| } |
| } |
| |
| static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, |
| u64 start, u64 end) |
| { |
| int err; |
| u64 alignment = XE_PAGE_SIZE; |
| |
| if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) |
| alignment = SZ_64K; |
| |
| if (XE_WARN_ON(bo->ggtt_node)) { |
| /* Someone's already inserted this BO in the GGTT */ |
| xe_tile_assert(ggtt->tile, bo->ggtt_node->base.size == bo->size); |
| return 0; |
| } |
| |
| err = xe_bo_validate(bo, NULL, false); |
| if (err) |
| return err; |
| |
| xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); |
| |
| bo->ggtt_node = xe_ggtt_node_init(ggtt); |
| if (IS_ERR(bo->ggtt_node)) { |
| err = PTR_ERR(bo->ggtt_node); |
| bo->ggtt_node = NULL; |
| goto out; |
| } |
| |
| mutex_lock(&ggtt->lock); |
| err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node->base, bo->size, |
| alignment, 0, start, end, 0); |
| if (err) { |
| xe_ggtt_node_fini(bo->ggtt_node); |
| bo->ggtt_node = NULL; |
| } else { |
| xe_ggtt_map_bo(ggtt, bo); |
| } |
| mutex_unlock(&ggtt->lock); |
| |
| if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) |
| xe_ggtt_invalidate(ggtt); |
| |
| out: |
| xe_pm_runtime_put(tile_to_xe(ggtt->tile)); |
| |
| return err; |
| } |
| |
| /** |
| * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space |
| * @ggtt: the &xe_ggtt where bo will be inserted |
| * @bo: the &xe_bo to be inserted |
| * @start: address where it will be inserted |
| * @end: end of the range where it will be inserted |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, |
| u64 start, u64 end) |
| { |
| return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); |
| } |
| |
| /** |
| * xe_ggtt_insert_bo - Insert BO into GGTT |
| * @ggtt: the &xe_ggtt where bo will be inserted |
| * @bo: the &xe_bo to be inserted |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) |
| { |
| return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); |
| } |
| |
| /** |
| * xe_ggtt_remove_bo - Remove a BO from the GGTT |
| * @ggtt: the &xe_ggtt where node will be removed |
| * @bo: the &xe_bo to be removed |
| */ |
| void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) |
| { |
| if (XE_WARN_ON(!bo->ggtt_node)) |
| return; |
| |
| /* This BO is not currently in the GGTT */ |
| xe_tile_assert(ggtt->tile, bo->ggtt_node->base.size == bo->size); |
| |
| xe_ggtt_node_remove(bo->ggtt_node, |
| bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); |
| } |
| |
| /** |
| * xe_ggtt_largest_hole - Largest GGTT hole |
| * @ggtt: the &xe_ggtt that will be inspected |
| * @alignment: minimum alignment |
| * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare |
| * |
| * Return: size of the largest continuous GGTT region |
| */ |
| u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare) |
| { |
| const struct drm_mm *mm = &ggtt->mm; |
| const struct drm_mm_node *entry; |
| u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); |
| u64 hole_start, hole_end, hole_size; |
| u64 max_hole = 0; |
| |
| mutex_lock(&ggtt->lock); |
| |
| drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { |
| hole_start = max(hole_start, hole_min_start); |
| hole_start = ALIGN(hole_start, alignment); |
| hole_end = ALIGN_DOWN(hole_end, alignment); |
| if (hole_start >= hole_end) |
| continue; |
| hole_size = hole_end - hole_start; |
| if (spare) |
| *spare -= min3(*spare, hole_size, max_hole); |
| max_hole = max(max_hole, hole_size); |
| } |
| |
| mutex_unlock(&ggtt->lock); |
| |
| return max_hole; |
| } |
| |
| #ifdef CONFIG_PCI_IOV |
| static u64 xe_encode_vfid_pte(u16 vfid) |
| { |
| return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; |
| } |
| |
| static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) |
| { |
| u64 start = node->start; |
| u64 size = node->size; |
| u64 end = start + size - 1; |
| u64 pte = xe_encode_vfid_pte(vfid); |
| |
| lockdep_assert_held(&ggtt->lock); |
| |
| if (!drm_mm_node_allocated(node)) |
| return; |
| |
| while (start < end) { |
| ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); |
| start += XE_PAGE_SIZE; |
| } |
| |
| xe_ggtt_invalidate(ggtt); |
| } |
| |
| /** |
| * xe_ggtt_assign - assign a GGTT region to the VF |
| * @node: the &xe_ggtt_node to update |
| * @vfid: the VF identifier |
| * |
| * This function is used by the PF driver to assign a GGTT region to the VF. |
| * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some |
| * platforms VFs can't modify that either. |
| */ |
| void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid) |
| { |
| mutex_lock(&node->ggtt->lock); |
| xe_ggtt_assign_locked(node->ggtt, &node->base, vfid); |
| mutex_unlock(&node->ggtt->lock); |
| } |
| #endif |
| |
| /** |
| * xe_ggtt_dump - Dump GGTT for debug |
| * @ggtt: the &xe_ggtt to be dumped |
| * @p: the &drm_mm_printer helper handle to be used to dump the information |
| * |
| * Return: 0 on success or a negative error code on failure. |
| */ |
| int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) |
| { |
| int err; |
| |
| err = mutex_lock_interruptible(&ggtt->lock); |
| if (err) |
| return err; |
| |
| drm_mm_print(&ggtt->mm, p); |
| mutex_unlock(&ggtt->lock); |
| return err; |
| } |
| |
| /** |
| * xe_ggtt_print_holes - Print holes |
| * @ggtt: the &xe_ggtt to be inspected |
| * @alignment: min alignment |
| * @p: the &drm_printer |
| * |
| * Print GGTT ranges that are available and return total size available. |
| * |
| * Return: Total available size. |
| */ |
| u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p) |
| { |
| const struct drm_mm *mm = &ggtt->mm; |
| const struct drm_mm_node *entry; |
| u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile)); |
| u64 hole_start, hole_end, hole_size; |
| u64 total = 0; |
| char buf[10]; |
| |
| mutex_lock(&ggtt->lock); |
| |
| drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { |
| hole_start = max(hole_start, hole_min_start); |
| hole_start = ALIGN(hole_start, alignment); |
| hole_end = ALIGN_DOWN(hole_end, alignment); |
| if (hole_start >= hole_end) |
| continue; |
| hole_size = hole_end - hole_start; |
| total += hole_size; |
| |
| string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); |
| drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", |
| hole_start, hole_end - 1, buf); |
| } |
| |
| mutex_unlock(&ggtt->lock); |
| |
| return total; |
| } |