blob: 6fbea70d3d36d778907098584cefbfe7d96827b3 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_gsc.h"
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include <generated/xe_wa_oob.h>
#include "abi/gsc_mkhi_commands_abi.h"
#include "xe_bb.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gsc_proxy.h"
#include "xe_gsc_submit.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_gt_printk.h"
#include "xe_guc_pc.h"
#include "xe_huc.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_pm.h"
#include "xe_sched_job.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#include "instructions/xe_gsc_commands.h"
#include "regs/xe_gsc_regs.h"
#include "regs/xe_gt_regs.h"
static struct xe_gt *
gsc_to_gt(struct xe_gsc *gsc)
{
return container_of(gsc, struct xe_gt, uc.gsc);
}
static int memcpy_fw(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_device *xe = gt_to_xe(gt);
u32 fw_size = gsc->fw.size;
void *storage;
/*
* FIXME: xe_migrate_copy does not work with stolen mem yet, so we use
* a memcpy for now.
*/
storage = kmalloc(fw_size, GFP_KERNEL);
if (!storage)
return -ENOMEM;
xe_map_memcpy_from(xe, storage, &gsc->fw.bo->vmap, 0, fw_size);
xe_map_memcpy_to(xe, &gsc->private->vmap, 0, storage, fw_size);
xe_map_memset(xe, &gsc->private->vmap, fw_size, 0, gsc->private->size - fw_size);
kfree(storage);
return 0;
}
static int emit_gsc_upload(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
u64 offset = xe_bo_ggtt_addr(gsc->private);
struct xe_bb *bb;
struct xe_sched_job *job;
struct dma_fence *fence;
long timeout;
bb = xe_bb_new(gt, 4, false);
if (IS_ERR(bb))
return PTR_ERR(bb);
bb->cs[bb->len++] = GSC_FW_LOAD;
bb->cs[bb->len++] = lower_32_bits(offset);
bb->cs[bb->len++] = upper_32_bits(offset);
bb->cs[bb->len++] = (gsc->private->size / SZ_4K) | GSC_FW_LOAD_LIMIT_VALID;
job = xe_bb_create_job(gsc->q, bb);
if (IS_ERR(job)) {
xe_bb_free(bb, NULL);
return PTR_ERR(job);
}
xe_sched_job_arm(job);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
timeout = dma_fence_wait_timeout(fence, false, HZ);
dma_fence_put(fence);
xe_bb_free(bb, NULL);
if (timeout < 0)
return timeout;
else if (!timeout)
return -ETIME;
return 0;
}
#define version_query_wr(xe_, map_, offset_, field_, val_) \
xe_map_wr_field(xe_, map_, offset_, struct gsc_get_compatibility_version_in, field_, val_)
#define version_query_rd(xe_, map_, offset_, field_) \
xe_map_rd_field(xe_, map_, offset_, struct gsc_get_compatibility_version_out, field_)
static u32 emit_version_query_msg(struct xe_device *xe, struct iosys_map *map, u32 wr_offset)
{
xe_map_memset(xe, map, wr_offset, 0, sizeof(struct gsc_get_compatibility_version_in));
version_query_wr(xe, map, wr_offset, header.group_id, MKHI_GROUP_ID_GFX_SRV);
version_query_wr(xe, map, wr_offset, header.command,
MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION);
return wr_offset + sizeof(struct gsc_get_compatibility_version_in);
}
#define GSC_VER_PKT_SZ SZ_4K /* 4K each for input and output */
static int query_compatibility_version(struct xe_gsc *gsc)
{
struct xe_uc_fw_version *compat = &gsc->fw.versions.found[XE_UC_FW_VER_COMPATIBILITY];
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = gt_to_xe(gt);
struct xe_bo *bo;
u32 wr_offset;
u32 rd_offset;
u64 ggtt_offset;
int err;
bo = xe_bo_create_pin_map(xe, tile, NULL, GSC_VER_PKT_SZ * 2,
ttm_bo_type_kernel,
XE_BO_FLAG_SYSTEM |
XE_BO_FLAG_GGTT);
if (IS_ERR(bo)) {
xe_gt_err(gt, "failed to allocate bo for GSC version query\n");
return PTR_ERR(bo);
}
ggtt_offset = xe_bo_ggtt_addr(bo);
wr_offset = xe_gsc_emit_header(xe, &bo->vmap, 0, HECI_MEADDRESS_MKHI, 0,
sizeof(struct gsc_get_compatibility_version_in));
wr_offset = emit_version_query_msg(xe, &bo->vmap, wr_offset);
err = xe_gsc_pkt_submit_kernel(gsc, ggtt_offset, wr_offset,
ggtt_offset + GSC_VER_PKT_SZ,
GSC_VER_PKT_SZ);
if (err) {
xe_gt_err(gt,
"failed to submit GSC request for compatibility version: %d\n",
err);
goto out_bo;
}
err = xe_gsc_read_out_header(xe, &bo->vmap, GSC_VER_PKT_SZ,
sizeof(struct gsc_get_compatibility_version_out),
&rd_offset);
if (err) {
xe_gt_err(gt, "HuC: invalid GSC reply for version query (err=%d)\n", err);
return err;
}
compat->major = version_query_rd(xe, &bo->vmap, rd_offset, proj_major);
compat->minor = version_query_rd(xe, &bo->vmap, rd_offset, compat_major);
compat->patch = version_query_rd(xe, &bo->vmap, rd_offset, compat_minor);
xe_gt_info(gt, "found GSC cv%u.%u.%u\n", compat->major, compat->minor, compat->patch);
out_bo:
xe_bo_unpin_map_no_vm(bo);
return err;
}
static int gsc_fw_is_loaded(struct xe_gt *gt)
{
return xe_mmio_read32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE)) &
HECI1_FWSTS1_INIT_COMPLETE;
}
static int gsc_fw_wait(struct xe_gt *gt)
{
/*
* GSC load can take up to 250ms from the moment the instruction is
* executed by the GSCCS. To account for possible submission delays or
* other issues, we use a 500ms timeout in the wait here.
*/
return xe_mmio_wait32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE),
HECI1_FWSTS1_INIT_COMPLETE,
HECI1_FWSTS1_INIT_COMPLETE,
500 * USEC_PER_MSEC, NULL, false);
}
static int gsc_upload(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_device *xe = gt_to_xe(gt);
int err;
/* we should only be here if the init step were successful */
xe_assert(xe, xe_uc_fw_is_loadable(&gsc->fw) && gsc->q);
if (gsc_fw_is_loaded(gt)) {
xe_gt_err(gt, "GSC already loaded at upload time\n");
return -EEXIST;
}
err = memcpy_fw(gsc);
if (err) {
xe_gt_err(gt, "Failed to memcpy GSC FW\n");
return err;
}
/*
* GSC is only killed by an FLR, so we need to trigger one on unload to
* make sure we stop it. This is because we assign a chunk of memory to
* the GSC as part of the FW load, so we need to make sure it stops
* using it when we release it to the system on driver unload. Note that
* this is not a problem of the unload per-se, because the GSC will not
* touch that memory unless there are requests for it coming from the
* driver; therefore, no accesses will happen while Xe is not loaded,
* but if we re-load the driver then the GSC might wake up and try to
* access that old memory location again.
* Given that an FLR is a very disruptive action (see the FLR function
* for details), we want to do it as the last action before releasing
* the access to the MMIO bar, which means we need to do it as part of
* mmio cleanup.
*/
xe->needs_flr_on_fini = true;
err = emit_gsc_upload(gsc);
if (err) {
xe_gt_err(gt, "Failed to emit GSC FW upload (%pe)\n", ERR_PTR(err));
return err;
}
err = gsc_fw_wait(gt);
if (err) {
xe_gt_err(gt, "Failed to wait for GSC load (%pe)\n", ERR_PTR(err));
return err;
}
err = query_compatibility_version(gsc);
if (err)
return err;
err = xe_uc_fw_check_version_requirements(&gsc->fw);
if (err)
return err;
return 0;
}
static int gsc_upload_and_init(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_tile *tile = gt_to_tile(gt);
int ret;
if (XE_WA(tile->primary_gt, 14018094691)) {
ret = xe_force_wake_get(gt_to_fw(tile->primary_gt), XE_FORCEWAKE_ALL);
/*
* If the forcewake fails we want to keep going, because the worst
* case outcome in failing to apply the WA is that PXP won't work,
* which is not fatal. We still throw a warning so the issue is
* seen if it happens.
*/
xe_gt_WARN_ON(tile->primary_gt, ret);
xe_gt_mcr_multicast_write(tile->primary_gt,
EU_SYSTOLIC_LIC_THROTTLE_CTL_WITH_LOCK,
EU_SYSTOLIC_LIC_THROTTLE_CTL_LOCK_BIT);
}
ret = gsc_upload(gsc);
if (XE_WA(tile->primary_gt, 14018094691))
xe_force_wake_put(gt_to_fw(tile->primary_gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED);
/* GSC load is done, restore expected GT frequencies */
xe_gt_sanitize_freq(gt);
xe_gt_dbg(gt, "GSC FW async load completed\n");
/* HuC auth failure is not fatal */
if (xe_huc_is_authenticated(&gt->uc.huc, XE_HUC_AUTH_VIA_GUC))
xe_huc_auth(&gt->uc.huc, XE_HUC_AUTH_VIA_GSC);
ret = xe_gsc_proxy_start(gsc);
if (ret)
return ret;
xe_gt_dbg(gt, "GSC proxy init completed\n");
return 0;
}
static int gsc_er_complete(struct xe_gt *gt)
{
u32 er_status;
if (!gsc_fw_is_loaded(gt))
return 0;
/*
* Starting on Xe2, the GSCCS engine reset is a 2-step process. When the
* driver or the GuC hit the GDRST register, the CS is immediately reset
* and a success is reported, but the GSC shim keeps resetting in the
* background. While the shim reset is ongoing, the CS is able to accept
* new context submission, but any commands that require the shim will
* be stalled until the reset is completed. This means that we can keep
* submitting to the GSCCS as long as we make sure that the preemption
* timeout is big enough to cover any delay introduced by the reset.
* When the shim reset completes, a specific CS interrupt is triggered,
* in response to which we need to check the GSCI_TIMER_STATUS register
* to see if the reset was successful or not.
* Note that the GSCI_TIMER_STATUS register is not power save/restored,
* so it gets reset on MC6 entry. However, a reset failure stops MC6,
* so in that scenario we're always guaranteed to find the correct
* value.
*/
er_status = xe_mmio_read32(gt, GSCI_TIMER_STATUS) & GSCI_TIMER_STATUS_VALUE;
if (er_status == GSCI_TIMER_STATUS_TIMER_EXPIRED) {
/*
* XXX: we should trigger an FLR here, but we don't have support
* for that yet. Since we can't recover from the error, we
* declare the device as wedged.
*/
xe_gt_err(gt, "GSC ER timed out!\n");
xe_device_declare_wedged(gt_to_xe(gt));
return -EIO;
}
return 0;
}
static void gsc_work(struct work_struct *work)
{
struct xe_gsc *gsc = container_of(work, typeof(*gsc), work);
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_device *xe = gt_to_xe(gt);
u32 actions;
int ret;
spin_lock_irq(&gsc->lock);
actions = gsc->work_actions;
gsc->work_actions = 0;
spin_unlock_irq(&gsc->lock);
xe_pm_runtime_get(xe);
xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FW_GSC));
if (actions & GSC_ACTION_ER_COMPLETE) {
ret = gsc_er_complete(gt);
if (ret)
goto out;
}
if (actions & GSC_ACTION_FW_LOAD) {
ret = gsc_upload_and_init(gsc);
if (ret && ret != -EEXIST)
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
else
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_RUNNING);
}
if (actions & GSC_ACTION_SW_PROXY)
xe_gsc_proxy_request_handler(gsc);
out:
xe_force_wake_put(gt_to_fw(gt), XE_FW_GSC);
xe_pm_runtime_put(xe);
}
void xe_gsc_hwe_irq_handler(struct xe_hw_engine *hwe, u16 intr_vec)
{
struct xe_gt *gt = hwe->gt;
struct xe_gsc *gsc = &gt->uc.gsc;
if (unlikely(!intr_vec))
return;
if (intr_vec & GSC_ER_COMPLETE) {
spin_lock(&gsc->lock);
gsc->work_actions |= GSC_ACTION_ER_COMPLETE;
spin_unlock(&gsc->lock);
queue_work(gsc->wq, &gsc->work);
}
}
int xe_gsc_init(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_tile *tile = gt_to_tile(gt);
int ret;
gsc->fw.type = XE_UC_FW_TYPE_GSC;
INIT_WORK(&gsc->work, gsc_work);
spin_lock_init(&gsc->lock);
/* The GSC uC is only available on the media GT */
if (tile->media_gt && (gt != tile->media_gt)) {
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_NOT_SUPPORTED);
return 0;
}
/*
* Some platforms can have GuC but not GSC. That would cause
* xe_uc_fw_init(gsc) to return a "not supported" failure code and abort
* all firmware loading. So check for GSC being enabled before
* propagating the failure back up. That way the higher level will keep
* going and load GuC as appropriate.
*/
ret = xe_uc_fw_init(&gsc->fw);
if (!xe_uc_fw_is_enabled(&gsc->fw))
return 0;
else if (ret)
goto out;
ret = xe_gsc_proxy_init(gsc);
if (ret && ret != -ENODEV)
goto out;
return 0;
out:
xe_gt_err(gt, "GSC init failed with %d", ret);
return ret;
}
static void free_resources(void *arg)
{
struct xe_gsc *gsc = arg;
if (gsc->wq) {
destroy_workqueue(gsc->wq);
gsc->wq = NULL;
}
if (gsc->q) {
xe_exec_queue_put(gsc->q);
gsc->q = NULL;
}
}
int xe_gsc_init_post_hwconfig(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = gt_to_xe(gt);
struct xe_hw_engine *hwe = xe_gt_hw_engine(gt, XE_ENGINE_CLASS_OTHER, 0, true);
struct xe_exec_queue *q;
struct workqueue_struct *wq;
struct xe_bo *bo;
int err;
if (!xe_uc_fw_is_available(&gsc->fw))
return 0;
if (!hwe)
return -ENODEV;
bo = xe_managed_bo_create_pin_map(xe, tile, SZ_4M,
XE_BO_FLAG_STOLEN |
XE_BO_FLAG_GGTT);
if (IS_ERR(bo))
return PTR_ERR(bo);
q = xe_exec_queue_create(xe, NULL,
BIT(hwe->logical_instance), 1, hwe,
EXEC_QUEUE_FLAG_KERNEL |
EXEC_QUEUE_FLAG_PERMANENT, 0);
if (IS_ERR(q)) {
xe_gt_err(gt, "Failed to create queue for GSC submission\n");
err = PTR_ERR(q);
goto out_bo;
}
wq = alloc_ordered_workqueue("gsc-ordered-wq", 0);
if (!wq) {
err = -ENOMEM;
goto out_q;
}
gsc->private = bo;
gsc->q = q;
gsc->wq = wq;
err = devm_add_action_or_reset(xe->drm.dev, free_resources, gsc);
if (err)
return err;
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOADABLE);
return 0;
out_q:
xe_exec_queue_put(q);
out_bo:
xe_bo_unpin_map_no_vm(bo);
return err;
}
void xe_gsc_load_start(struct xe_gsc *gsc)
{
struct xe_gt *gt = gsc_to_gt(gsc);
struct xe_device *xe = gt_to_xe(gt);
if (!xe_uc_fw_is_loadable(&gsc->fw) || !gsc->q)
return;
/*
* The GSC HW is only reset by driver FLR or D3cold entry. We don't
* support the former at runtime, while the latter is only supported on
* DGFX, for which we don't support GSC. Therefore, if GSC failed to
* load previously there is no need to try again because the HW is
* stuck in the error state.
*/
xe_assert(xe, !IS_DGFX(xe));
if (xe_uc_fw_is_in_error_state(&gsc->fw))
return;
/* GSC FW survives GT reset and D3Hot */
if (gsc_fw_is_loaded(gt)) {
if (xe_gsc_proxy_init_done(gsc))
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_RUNNING);
else
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED);
return;
}
spin_lock_irq(&gsc->lock);
gsc->work_actions |= GSC_ACTION_FW_LOAD;
spin_unlock_irq(&gsc->lock);
queue_work(gsc->wq, &gsc->work);
}
void xe_gsc_wait_for_worker_completion(struct xe_gsc *gsc)
{
if (xe_uc_fw_is_loadable(&gsc->fw) && gsc->wq)
flush_work(&gsc->work);
}
/**
* xe_gsc_remove() - Clean up the GSC structures before driver removal
* @gsc: the GSC uC
*/
void xe_gsc_remove(struct xe_gsc *gsc)
{
xe_gsc_proxy_remove(gsc);
}
/*
* wa_14015076503: if the GSC FW is loaded, we need to alert it before doing a
* GSC engine reset by writing a notification bit in the GS1 register and then
* triggering an interrupt to GSC; from the interrupt it will take up to 200ms
* for the FW to get prepare for the reset, so we need to wait for that amount
* of time.
* After the reset is complete we need to then clear the GS1 register.
*/
void xe_gsc_wa_14015076503(struct xe_gt *gt, bool prep)
{
u32 gs1_set = prep ? HECI_H_GS1_ER_PREP : 0;
u32 gs1_clr = prep ? 0 : HECI_H_GS1_ER_PREP;
/* WA only applies if the GSC is loaded */
if (!XE_WA(gt, 14015076503) || !gsc_fw_is_loaded(gt))
return;
xe_mmio_rmw32(gt, HECI_H_GS1(MTL_GSC_HECI2_BASE), gs1_clr, gs1_set);
if (prep) {
/* make sure the reset bit is clear when writing the CSR reg */
xe_mmio_rmw32(gt, HECI_H_CSR(MTL_GSC_HECI2_BASE),
HECI_H_CSR_RST, HECI_H_CSR_IG);
msleep(200);
}
}
/**
* xe_gsc_print_info - print info about GSC FW status
* @gsc: the GSC structure
* @p: the printer to be used to print the info
*/
void xe_gsc_print_info(struct xe_gsc *gsc, struct drm_printer *p)
{
struct xe_gt *gt = gsc_to_gt(gsc);
int err;
xe_uc_fw_print(&gsc->fw, p);
drm_printf(p, "\tfound security version %u\n", gsc->security_version);
if (!xe_uc_fw_is_enabled(&gsc->fw))
return;
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GSC);
if (err)
return;
drm_printf(p, "\nHECI1 FWSTS: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
xe_mmio_read32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE)),
xe_mmio_read32(gt, HECI_FWSTS2(MTL_GSC_HECI1_BASE)),
xe_mmio_read32(gt, HECI_FWSTS3(MTL_GSC_HECI1_BASE)),
xe_mmio_read32(gt, HECI_FWSTS4(MTL_GSC_HECI1_BASE)),
xe_mmio_read32(gt, HECI_FWSTS5(MTL_GSC_HECI1_BASE)),
xe_mmio_read32(gt, HECI_FWSTS6(MTL_GSC_HECI1_BASE)));
xe_force_wake_put(gt_to_fw(gt), XE_FW_GSC);
}