blob: 2c32dc46f7d48285eaa07e4733fdafca2bcfa32d [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <linux/scatterlist.h>
#include <linux/mmu_notifier.h>
#include <linux/dma-mapping.h>
#include <linux/memremap.h>
#include <linux/swap.h>
#include <linux/hmm.h>
#include <linux/mm.h>
#include "xe_hmm.h"
#include "xe_vm.h"
#include "xe_bo.h"
static u64 xe_npages_in_range(unsigned long start, unsigned long end)
{
return (end - start) >> PAGE_SHIFT;
}
/*
* xe_mark_range_accessed() - mark a range is accessed, so core mm
* have such information for memory eviction or write back to
* hard disk
*
* @range: the range to mark
* @write: if write to this range, we mark pages in this range
* as dirty
*/
static void xe_mark_range_accessed(struct hmm_range *range, bool write)
{
struct page *page;
u64 i, npages;
npages = xe_npages_in_range(range->start, range->end);
for (i = 0; i < npages; i++) {
page = hmm_pfn_to_page(range->hmm_pfns[i]);
if (write)
set_page_dirty_lock(page);
mark_page_accessed(page);
}
}
/*
* xe_build_sg() - build a scatter gather table for all the physical pages/pfn
* in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
* and will be used to program GPU page table later.
*
* @xe: the xe device who will access the dma-address in sg table
* @range: the hmm range that we build the sg table from. range->hmm_pfns[]
* has the pfn numbers of pages that back up this hmm address range.
* @st: pointer to the sg table.
* @write: whether we write to this range. This decides dma map direction
* for system pages. If write we map it bi-diretional; otherwise
* DMA_TO_DEVICE
*
* All the contiguous pfns will be collapsed into one entry in
* the scatter gather table. This is for the purpose of efficiently
* programming GPU page table.
*
* The dma_address in the sg table will later be used by GPU to
* access memory. So if the memory is system memory, we need to
* do a dma-mapping so it can be accessed by GPU/DMA.
*
* FIXME: This function currently only support pages in system
* memory. If the memory is GPU local memory (of the GPU who
* is going to access memory), we need gpu dpa (device physical
* address), and there is no need of dma-mapping. This is TBD.
*
* FIXME: dma-mapping for peer gpu device to access remote gpu's
* memory. Add this when you support p2p
*
* This function allocates the storage of the sg table. It is
* caller's responsibility to free it calling sg_free_table.
*
* Returns 0 if successful; -ENOMEM if fails to allocate memory
*/
static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
struct sg_table *st, bool write)
{
struct device *dev = xe->drm.dev;
struct page **pages;
u64 i, npages;
int ret;
npages = xe_npages_in_range(range->start, range->end);
pages = kvmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
for (i = 0; i < npages; i++) {
pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
xe_assert(xe, !is_device_private_page(pages[i]));
}
ret = sg_alloc_table_from_pages_segment(st, pages, npages, 0, npages << PAGE_SHIFT,
xe_sg_segment_size(dev), GFP_KERNEL);
if (ret)
goto free_pages;
ret = dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
if (ret) {
sg_free_table(st);
st = NULL;
}
free_pages:
kvfree(pages);
return ret;
}
/*
* xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
*
* @uvma: the userptr vma which hold the scatter gather table
*
* With function xe_userptr_populate_range, we allocate storage of
* the userptr sg table. This is a helper function to free this
* sg table, and dma unmap the address in the table.
*/
void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vma *vma = &uvma->vma;
bool write = !xe_vma_read_only(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_device *xe = vm->xe;
struct device *dev = xe->drm.dev;
xe_assert(xe, userptr->sg);
dma_unmap_sgtable(dev, userptr->sg,
write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
sg_free_table(userptr->sg);
userptr->sg = NULL;
}
/**
* xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
* address range
*
* @uvma: userptr vma which has information of the range to populate.
* @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
*
* This function populate the physical pages of a virtual
* address range. The populated physical pages is saved in
* userptr's sg table. It is similar to get_user_pages but call
* hmm_range_fault.
*
* This function also read mmu notifier sequence # (
* mmu_interval_read_begin), for the purpose of later
* comparison (through mmu_interval_read_retry).
*
* This must be called with mmap read or write lock held.
*
* This function allocates the storage of the userptr sg table.
* It is caller's responsibility to free it calling sg_free_table.
*
* returns: 0 for succuss; negative error no on failure
*/
int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
bool is_mm_mmap_locked)
{
unsigned long timeout =
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
unsigned long *pfns, flags = HMM_PFN_REQ_FAULT;
struct xe_userptr *userptr;
struct xe_vma *vma = &uvma->vma;
u64 userptr_start = xe_vma_userptr(vma);
u64 userptr_end = userptr_start + xe_vma_size(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct hmm_range hmm_range;
bool write = !xe_vma_read_only(vma);
unsigned long notifier_seq;
u64 npages;
int ret;
userptr = &uvma->userptr;
if (is_mm_mmap_locked)
mmap_assert_locked(userptr->notifier.mm);
if (vma->gpuva.flags & XE_VMA_DESTROYED)
return 0;
notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (notifier_seq == userptr->notifier_seq)
return 0;
if (userptr->sg)
xe_hmm_userptr_free_sg(uvma);
npages = xe_npages_in_range(userptr_start, userptr_end);
pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
if (unlikely(!pfns))
return -ENOMEM;
if (write)
flags |= HMM_PFN_REQ_WRITE;
if (!mmget_not_zero(userptr->notifier.mm)) {
ret = -EFAULT;
goto free_pfns;
}
hmm_range.default_flags = flags;
hmm_range.hmm_pfns = pfns;
hmm_range.notifier = &userptr->notifier;
hmm_range.start = userptr_start;
hmm_range.end = userptr_end;
hmm_range.dev_private_owner = vm->xe;
while (true) {
hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (!is_mm_mmap_locked)
mmap_read_lock(userptr->notifier.mm);
ret = hmm_range_fault(&hmm_range);
if (!is_mm_mmap_locked)
mmap_read_unlock(userptr->notifier.mm);
if (ret == -EBUSY) {
if (time_after(jiffies, timeout))
break;
continue;
}
break;
}
mmput(userptr->notifier.mm);
if (ret)
goto free_pfns;
ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt, write);
if (ret)
goto free_pfns;
xe_mark_range_accessed(&hmm_range, write);
userptr->sg = &userptr->sgt;
userptr->notifier_seq = hmm_range.notifier_seq;
free_pfns:
kvfree(pfns);
return ret;
}