| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include "xe_irq.h" |
| |
| #include <linux/sched/clock.h> |
| |
| #include <drm/drm_managed.h> |
| |
| #include "display/xe_display.h" |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_regs.h" |
| #include "xe_device.h" |
| #include "xe_drv.h" |
| #include "xe_gsc_proxy.h" |
| #include "xe_gt.h" |
| #include "xe_guc.h" |
| #include "xe_hw_engine.h" |
| #include "xe_memirq.h" |
| #include "xe_mmio.h" |
| #include "xe_sriov.h" |
| |
| /* |
| * Interrupt registers for a unit are always consecutive and ordered |
| * ISR, IMR, IIR, IER. |
| */ |
| #define IMR(offset) XE_REG(offset + 0x4) |
| #define IIR(offset) XE_REG(offset + 0x8) |
| #define IER(offset) XE_REG(offset + 0xc) |
| |
| static void assert_iir_is_zero(struct xe_gt *mmio, struct xe_reg reg) |
| { |
| u32 val = xe_mmio_read32(mmio, reg); |
| |
| if (val == 0) |
| return; |
| |
| drm_WARN(>_to_xe(mmio)->drm, 1, |
| "Interrupt register 0x%x is not zero: 0x%08x\n", |
| reg.addr, val); |
| xe_mmio_write32(mmio, reg, 0xffffffff); |
| xe_mmio_read32(mmio, reg); |
| xe_mmio_write32(mmio, reg, 0xffffffff); |
| xe_mmio_read32(mmio, reg); |
| } |
| |
| /* |
| * Unmask and enable the specified interrupts. Does not check current state, |
| * so any bits not specified here will become masked and disabled. |
| */ |
| static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits) |
| { |
| struct xe_gt *mmio = tile->primary_gt; |
| |
| /* |
| * If we're just enabling an interrupt now, it shouldn't already |
| * be raised in the IIR. |
| */ |
| assert_iir_is_zero(mmio, IIR(irqregs)); |
| |
| xe_mmio_write32(mmio, IER(irqregs), bits); |
| xe_mmio_write32(mmio, IMR(irqregs), ~bits); |
| |
| /* Posting read */ |
| xe_mmio_read32(mmio, IMR(irqregs)); |
| } |
| |
| /* Mask and disable all interrupts. */ |
| static void mask_and_disable(struct xe_tile *tile, u32 irqregs) |
| { |
| struct xe_gt *mmio = tile->primary_gt; |
| |
| xe_mmio_write32(mmio, IMR(irqregs), ~0); |
| /* Posting read */ |
| xe_mmio_read32(mmio, IMR(irqregs)); |
| |
| xe_mmio_write32(mmio, IER(irqregs), 0); |
| |
| /* IIR can theoretically queue up two events. Be paranoid. */ |
| xe_mmio_write32(mmio, IIR(irqregs), ~0); |
| xe_mmio_read32(mmio, IIR(irqregs)); |
| xe_mmio_write32(mmio, IIR(irqregs), ~0); |
| xe_mmio_read32(mmio, IIR(irqregs)); |
| } |
| |
| static u32 xelp_intr_disable(struct xe_device *xe) |
| { |
| struct xe_gt *mmio = xe_root_mmio_gt(xe); |
| |
| xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0); |
| |
| /* |
| * Now with master disabled, get a sample of level indications |
| * for this interrupt. Indications will be cleared on related acks. |
| * New indications can and will light up during processing, |
| * and will generate new interrupt after enabling master. |
| */ |
| return xe_mmio_read32(mmio, GFX_MSTR_IRQ); |
| } |
| |
| static u32 |
| gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl) |
| { |
| struct xe_gt *mmio = xe_root_mmio_gt(xe); |
| u32 iir; |
| |
| if (!(master_ctl & GU_MISC_IRQ)) |
| return 0; |
| |
| iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET)); |
| if (likely(iir)) |
| xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir); |
| |
| return iir; |
| } |
| |
| static inline void xelp_intr_enable(struct xe_device *xe, bool stall) |
| { |
| struct xe_gt *mmio = xe_root_mmio_gt(xe); |
| |
| xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ); |
| if (stall) |
| xe_mmio_read32(mmio, GFX_MSTR_IRQ); |
| } |
| |
| /* Enable/unmask the HWE interrupts for a specific GT's engines. */ |
| void xe_irq_enable_hwe(struct xe_gt *gt) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| u32 ccs_mask, bcs_mask; |
| u32 irqs, dmask, smask; |
| u32 gsc_mask = 0; |
| u32 heci_mask = 0; |
| |
| if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) |
| return; |
| |
| if (xe_device_uc_enabled(xe)) { |
| irqs = GT_RENDER_USER_INTERRUPT | |
| GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; |
| } else { |
| irqs = GT_RENDER_USER_INTERRUPT | |
| GT_CS_MASTER_ERROR_INTERRUPT | |
| GT_CONTEXT_SWITCH_INTERRUPT | |
| GT_WAIT_SEMAPHORE_INTERRUPT; |
| } |
| |
| ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE); |
| bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY); |
| |
| dmask = irqs << 16 | irqs; |
| smask = irqs << 16; |
| |
| if (!xe_gt_is_media_type(gt)) { |
| /* Enable interrupts for each engine class */ |
| xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask); |
| if (ccs_mask) |
| xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask); |
| |
| /* Unmask interrupts for each engine instance */ |
| xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask); |
| xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask); |
| if (bcs_mask & (BIT(1)|BIT(2))) |
| xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); |
| if (bcs_mask & (BIT(3)|BIT(4))) |
| xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); |
| if (bcs_mask & (BIT(5)|BIT(6))) |
| xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); |
| if (bcs_mask & (BIT(7)|BIT(8))) |
| xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); |
| if (ccs_mask & (BIT(0)|BIT(1))) |
| xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask); |
| if (ccs_mask & (BIT(2)|BIT(3))) |
| xe_mmio_write32(gt, CCS2_CCS3_INTR_MASK, ~dmask); |
| } |
| |
| if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) { |
| /* Enable interrupts for each engine class */ |
| xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask); |
| |
| /* Unmask interrupts for each engine instance */ |
| xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask); |
| xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask); |
| xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask); |
| |
| /* |
| * the heci2 interrupt is enabled via the same register as the |
| * GSCCS interrupts, but it has its own mask register. |
| */ |
| if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) { |
| gsc_mask = irqs | GSC_ER_COMPLETE; |
| heci_mask = GSC_IRQ_INTF(1); |
| } else if (HAS_HECI_GSCFI(xe)) { |
| gsc_mask = GSC_IRQ_INTF(1); |
| } |
| |
| if (gsc_mask) { |
| xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask); |
| xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~gsc_mask); |
| } |
| if (heci_mask) |
| xe_mmio_write32(gt, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16)); |
| } |
| } |
| |
| static u32 |
| gt_engine_identity(struct xe_device *xe, |
| struct xe_gt *mmio, |
| const unsigned int bank, |
| const unsigned int bit) |
| { |
| u32 timeout_ts; |
| u32 ident; |
| |
| lockdep_assert_held(&xe->irq.lock); |
| |
| xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit)); |
| |
| /* |
| * NB: Specs do not specify how long to spin wait, |
| * so we do ~100us as an educated guess. |
| */ |
| timeout_ts = (local_clock() >> 10) + 100; |
| do { |
| ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank)); |
| } while (!(ident & INTR_DATA_VALID) && |
| !time_after32(local_clock() >> 10, timeout_ts)); |
| |
| if (unlikely(!(ident & INTR_DATA_VALID))) { |
| drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", |
| bank, bit, ident); |
| return 0; |
| } |
| |
| xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident); |
| |
| return ident; |
| } |
| |
| #define OTHER_MEDIA_GUC_INSTANCE 16 |
| |
| static void |
| gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir) |
| { |
| if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt)) |
| return xe_guc_irq_handler(>->uc.guc, iir); |
| if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt)) |
| return xe_guc_irq_handler(>->uc.guc, iir); |
| if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt)) |
| return xe_gsc_proxy_irq_handler(>->uc.gsc, iir); |
| |
| if (instance != OTHER_GUC_INSTANCE && |
| instance != OTHER_MEDIA_GUC_INSTANCE) { |
| WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", |
| instance, iir); |
| } |
| } |
| |
| static struct xe_gt *pick_engine_gt(struct xe_tile *tile, |
| enum xe_engine_class class, |
| unsigned int instance) |
| { |
| struct xe_device *xe = tile_to_xe(tile); |
| |
| if (MEDIA_VER(xe) < 13) |
| return tile->primary_gt; |
| |
| switch (class) { |
| case XE_ENGINE_CLASS_VIDEO_DECODE: |
| case XE_ENGINE_CLASS_VIDEO_ENHANCE: |
| return tile->media_gt; |
| case XE_ENGINE_CLASS_OTHER: |
| switch (instance) { |
| case OTHER_MEDIA_GUC_INSTANCE: |
| case OTHER_GSC_INSTANCE: |
| case OTHER_GSC_HECI2_INSTANCE: |
| return tile->media_gt; |
| default: |
| break; |
| }; |
| fallthrough; |
| default: |
| return tile->primary_gt; |
| } |
| } |
| |
| static void gt_irq_handler(struct xe_tile *tile, |
| u32 master_ctl, unsigned long *intr_dw, |
| u32 *identity) |
| { |
| struct xe_device *xe = tile_to_xe(tile); |
| struct xe_gt *mmio = tile->primary_gt; |
| unsigned int bank, bit; |
| u16 instance, intr_vec; |
| enum xe_engine_class class; |
| struct xe_hw_engine *hwe; |
| |
| spin_lock(&xe->irq.lock); |
| |
| for (bank = 0; bank < 2; bank++) { |
| if (!(master_ctl & GT_DW_IRQ(bank))) |
| continue; |
| |
| intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank)); |
| for_each_set_bit(bit, intr_dw + bank, 32) |
| identity[bit] = gt_engine_identity(xe, mmio, bank, bit); |
| xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]); |
| |
| for_each_set_bit(bit, intr_dw + bank, 32) { |
| struct xe_gt *engine_gt; |
| |
| class = INTR_ENGINE_CLASS(identity[bit]); |
| instance = INTR_ENGINE_INSTANCE(identity[bit]); |
| intr_vec = INTR_ENGINE_INTR(identity[bit]); |
| |
| engine_gt = pick_engine_gt(tile, class, instance); |
| |
| hwe = xe_gt_hw_engine(engine_gt, class, instance, false); |
| if (hwe) { |
| xe_hw_engine_handle_irq(hwe, intr_vec); |
| continue; |
| } |
| |
| if (class == XE_ENGINE_CLASS_OTHER) { |
| /* HECI GSCFI interrupts come from outside of GT */ |
| if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE) |
| xe_heci_gsc_irq_handler(xe, intr_vec); |
| else |
| gt_other_irq_handler(engine_gt, instance, intr_vec); |
| } |
| } |
| } |
| |
| spin_unlock(&xe->irq.lock); |
| } |
| |
| /* |
| * Top-level interrupt handler for Xe_LP platforms (which did not have |
| * a "master tile" interrupt register. |
| */ |
| static irqreturn_t xelp_irq_handler(int irq, void *arg) |
| { |
| struct xe_device *xe = arg; |
| struct xe_tile *tile = xe_device_get_root_tile(xe); |
| u32 master_ctl, gu_misc_iir; |
| unsigned long intr_dw[2]; |
| u32 identity[32]; |
| |
| spin_lock(&xe->irq.lock); |
| if (!xe->irq.enabled) { |
| spin_unlock(&xe->irq.lock); |
| return IRQ_NONE; |
| } |
| spin_unlock(&xe->irq.lock); |
| |
| master_ctl = xelp_intr_disable(xe); |
| if (!master_ctl) { |
| xelp_intr_enable(xe, false); |
| return IRQ_NONE; |
| } |
| |
| gt_irq_handler(tile, master_ctl, intr_dw, identity); |
| |
| xe_display_irq_handler(xe, master_ctl); |
| |
| gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); |
| |
| xelp_intr_enable(xe, false); |
| |
| xe_display_irq_enable(xe, gu_misc_iir); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static u32 dg1_intr_disable(struct xe_device *xe) |
| { |
| struct xe_gt *mmio = xe_root_mmio_gt(xe); |
| u32 val; |
| |
| /* First disable interrupts */ |
| xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0); |
| |
| /* Get the indication levels and ack the master unit */ |
| val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); |
| if (unlikely(!val)) |
| return 0; |
| |
| xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val); |
| |
| return val; |
| } |
| |
| static void dg1_intr_enable(struct xe_device *xe, bool stall) |
| { |
| struct xe_gt *mmio = xe_root_mmio_gt(xe); |
| |
| xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); |
| if (stall) |
| xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); |
| } |
| |
| /* |
| * Top-level interrupt handler for Xe_LP+ and beyond. These platforms have |
| * a "master tile" interrupt register which must be consulted before the |
| * "graphics master" interrupt register. |
| */ |
| static irqreturn_t dg1_irq_handler(int irq, void *arg) |
| { |
| struct xe_device *xe = arg; |
| struct xe_tile *tile; |
| u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0; |
| unsigned long intr_dw[2]; |
| u32 identity[32]; |
| u8 id; |
| |
| /* TODO: This really shouldn't be copied+pasted */ |
| |
| spin_lock(&xe->irq.lock); |
| if (!xe->irq.enabled) { |
| spin_unlock(&xe->irq.lock); |
| return IRQ_NONE; |
| } |
| spin_unlock(&xe->irq.lock); |
| |
| master_tile_ctl = dg1_intr_disable(xe); |
| if (!master_tile_ctl) { |
| dg1_intr_enable(xe, false); |
| return IRQ_NONE; |
| } |
| |
| for_each_tile(tile, xe, id) { |
| struct xe_gt *mmio = tile->primary_gt; |
| |
| if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0) |
| continue; |
| |
| master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ); |
| |
| /* |
| * We might be in irq handler just when PCIe DPC is initiated |
| * and all MMIO reads will be returned with all 1's. Ignore this |
| * irq as device is inaccessible. |
| */ |
| if (master_ctl == REG_GENMASK(31, 0)) { |
| drm_dbg(&tile_to_xe(tile)->drm, |
| "Ignore this IRQ as device might be in DPC containment.\n"); |
| return IRQ_HANDLED; |
| } |
| |
| xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl); |
| |
| gt_irq_handler(tile, master_ctl, intr_dw, identity); |
| |
| /* |
| * Display interrupts (including display backlight operations |
| * that get reported as Gunit GSE) would only be hooked up to |
| * the primary tile. |
| */ |
| if (id == 0) { |
| if (HAS_HECI_CSCFI(xe)) |
| xe_heci_csc_irq_handler(xe, master_ctl); |
| xe_display_irq_handler(xe, master_ctl); |
| gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); |
| } |
| } |
| |
| dg1_intr_enable(xe, false); |
| xe_display_irq_enable(xe, gu_misc_iir); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void gt_irq_reset(struct xe_tile *tile) |
| { |
| struct xe_gt *mmio = tile->primary_gt; |
| |
| u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, |
| XE_ENGINE_CLASS_COMPUTE); |
| u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, |
| XE_ENGINE_CLASS_COPY); |
| |
| /* Disable RCS, BCS, VCS and VECS class engines. */ |
| xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0); |
| xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0); |
| if (ccs_mask) |
| xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0); |
| |
| /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ |
| xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0); |
| if (bcs_mask & (BIT(1)|BIT(2))) |
| xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0); |
| if (bcs_mask & (BIT(3)|BIT(4))) |
| xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0); |
| if (bcs_mask & (BIT(5)|BIT(6))) |
| xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0); |
| if (bcs_mask & (BIT(7)|BIT(8))) |
| xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0); |
| if (ccs_mask & (BIT(0)|BIT(1))) |
| xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0); |
| if (ccs_mask & (BIT(2)|BIT(3))) |
| xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0); |
| |
| if ((tile->media_gt && |
| xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) || |
| HAS_HECI_GSCFI(tile_to_xe(tile))) { |
| xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0); |
| xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0); |
| } |
| |
| xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0); |
| xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0); |
| xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0); |
| xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0); |
| } |
| |
| static void xelp_irq_reset(struct xe_tile *tile) |
| { |
| xelp_intr_disable(tile_to_xe(tile)); |
| |
| gt_irq_reset(tile); |
| |
| if (IS_SRIOV_VF(tile_to_xe(tile))) |
| return; |
| |
| mask_and_disable(tile, PCU_IRQ_OFFSET); |
| } |
| |
| static void dg1_irq_reset(struct xe_tile *tile) |
| { |
| if (tile->id == 0) |
| dg1_intr_disable(tile_to_xe(tile)); |
| |
| gt_irq_reset(tile); |
| |
| if (IS_SRIOV_VF(tile_to_xe(tile))) |
| return; |
| |
| mask_and_disable(tile, PCU_IRQ_OFFSET); |
| } |
| |
| static void dg1_irq_reset_mstr(struct xe_tile *tile) |
| { |
| struct xe_gt *mmio = tile->primary_gt; |
| |
| xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0); |
| } |
| |
| static void vf_irq_reset(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| unsigned int id; |
| |
| xe_assert(xe, IS_SRIOV_VF(xe)); |
| |
| if (GRAPHICS_VERx100(xe) < 1210) |
| xelp_intr_disable(xe); |
| else |
| xe_assert(xe, xe_device_has_memirq(xe)); |
| |
| for_each_tile(tile, xe, id) { |
| if (xe_device_has_memirq(xe)) |
| xe_memirq_reset(&tile->sriov.vf.memirq); |
| else |
| gt_irq_reset(tile); |
| } |
| } |
| |
| static void xe_irq_reset(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| u8 id; |
| |
| if (IS_SRIOV_VF(xe)) |
| return vf_irq_reset(xe); |
| |
| for_each_tile(tile, xe, id) { |
| if (GRAPHICS_VERx100(xe) >= 1210) |
| dg1_irq_reset(tile); |
| else |
| xelp_irq_reset(tile); |
| } |
| |
| tile = xe_device_get_root_tile(xe); |
| mask_and_disable(tile, GU_MISC_IRQ_OFFSET); |
| xe_display_irq_reset(xe); |
| |
| /* |
| * The tile's top-level status register should be the last one |
| * to be reset to avoid possible bit re-latching from lower |
| * level interrupts. |
| */ |
| if (GRAPHICS_VERx100(xe) >= 1210) { |
| for_each_tile(tile, xe, id) |
| dg1_irq_reset_mstr(tile); |
| } |
| } |
| |
| static void vf_irq_postinstall(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| unsigned int id; |
| |
| for_each_tile(tile, xe, id) |
| if (xe_device_has_memirq(xe)) |
| xe_memirq_postinstall(&tile->sriov.vf.memirq); |
| |
| if (GRAPHICS_VERx100(xe) < 1210) |
| xelp_intr_enable(xe, true); |
| else |
| xe_assert(xe, xe_device_has_memirq(xe)); |
| } |
| |
| static void xe_irq_postinstall(struct xe_device *xe) |
| { |
| if (IS_SRIOV_VF(xe)) |
| return vf_irq_postinstall(xe); |
| |
| xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe)); |
| |
| /* |
| * ASLE backlight operations are reported via GUnit GSE interrupts |
| * on the root tile. |
| */ |
| unmask_and_enable(xe_device_get_root_tile(xe), |
| GU_MISC_IRQ_OFFSET, GU_MISC_GSE); |
| |
| /* Enable top-level interrupts */ |
| if (GRAPHICS_VERx100(xe) >= 1210) |
| dg1_intr_enable(xe, true); |
| else |
| xelp_intr_enable(xe, true); |
| } |
| |
| static irqreturn_t vf_mem_irq_handler(int irq, void *arg) |
| { |
| struct xe_device *xe = arg; |
| struct xe_tile *tile; |
| unsigned int id; |
| |
| spin_lock(&xe->irq.lock); |
| if (!xe->irq.enabled) { |
| spin_unlock(&xe->irq.lock); |
| return IRQ_NONE; |
| } |
| spin_unlock(&xe->irq.lock); |
| |
| for_each_tile(tile, xe, id) |
| xe_memirq_handler(&tile->sriov.vf.memirq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irq_handler_t xe_irq_handler(struct xe_device *xe) |
| { |
| if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) |
| return vf_mem_irq_handler; |
| |
| if (GRAPHICS_VERx100(xe) >= 1210) |
| return dg1_irq_handler; |
| else |
| return xelp_irq_handler; |
| } |
| |
| static void irq_uninstall(void *arg) |
| { |
| struct xe_device *xe = arg; |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| int irq; |
| |
| if (!xe->irq.enabled) |
| return; |
| |
| xe->irq.enabled = false; |
| xe_irq_reset(xe); |
| |
| irq = pci_irq_vector(pdev, 0); |
| free_irq(irq, xe); |
| } |
| |
| int xe_irq_install(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| unsigned int irq_flags = PCI_IRQ_MSIX; |
| irq_handler_t irq_handler; |
| int err, irq, nvec; |
| |
| irq_handler = xe_irq_handler(xe); |
| if (!irq_handler) { |
| drm_err(&xe->drm, "No supported interrupt handler"); |
| return -EINVAL; |
| } |
| |
| xe_irq_reset(xe); |
| |
| nvec = pci_msix_vec_count(pdev); |
| if (nvec <= 0) { |
| if (nvec == -EINVAL) { |
| /* MSIX capability is not supported in the device, using MSI */ |
| irq_flags = PCI_IRQ_MSI; |
| nvec = 1; |
| } else { |
| drm_err(&xe->drm, "MSIX: Failed getting count\n"); |
| return nvec; |
| } |
| } |
| |
| err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags); |
| if (err < 0) { |
| drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err); |
| return err; |
| } |
| |
| irq = pci_irq_vector(pdev, 0); |
| err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe); |
| if (err < 0) { |
| drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err); |
| return err; |
| } |
| |
| xe->irq.enabled = true; |
| |
| xe_irq_postinstall(xe); |
| |
| err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe); |
| if (err) |
| goto free_irq_handler; |
| |
| return 0; |
| |
| free_irq_handler: |
| free_irq(irq, xe); |
| |
| return err; |
| } |
| |
| void xe_irq_suspend(struct xe_device *xe) |
| { |
| int irq = to_pci_dev(xe->drm.dev)->irq; |
| |
| spin_lock_irq(&xe->irq.lock); |
| xe->irq.enabled = false; /* no new irqs */ |
| spin_unlock_irq(&xe->irq.lock); |
| |
| synchronize_irq(irq); /* flush irqs */ |
| xe_irq_reset(xe); /* turn irqs off */ |
| } |
| |
| void xe_irq_resume(struct xe_device *xe) |
| { |
| struct xe_gt *gt; |
| int id; |
| |
| /* |
| * lock not needed: |
| * 1. no irq will arrive before the postinstall |
| * 2. display is not yet resumed |
| */ |
| xe->irq.enabled = true; |
| xe_irq_reset(xe); |
| xe_irq_postinstall(xe); /* turn irqs on */ |
| |
| for_each_gt(gt, xe, id) |
| xe_irq_enable_hwe(gt); |
| } |