blob: 8999ac511555f25b570253b9547f08c544809de5 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/align.h>
#include <drm/drm_managed.h>
#include "regs/xe_gt_regs.h"
#include "xe_assert.h"
#include "xe_bo.h"
#include "xe_lmtt.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_res_cursor.h"
#include "xe_sriov.h"
#include "xe_sriov_printk.h"
/**
* DOC: Local Memory Translation Table
*
* The Local Memory Translation Table (LMTT) provides additional abstraction
* when Virtual Function (VF) is accessing device Local Memory (VRAM).
*
* The Root LMTT Page Directory contains one entry for each VF. Entries are
* indexed by the function number (1-based, index 0 is unused).
*
* See `Two-Level LMTT Structure`_ and `Multi-Level LMTT Structure`_.
*/
#define lmtt_assert(lmtt, condition) xe_tile_assert(lmtt_to_tile(lmtt), condition)
#define lmtt_debug(lmtt, msg...) xe_sriov_dbg_verbose(lmtt_to_xe(lmtt), "LMTT: " msg)
static bool xe_has_multi_level_lmtt(struct xe_device *xe)
{
return GRAPHICS_VERx100(xe) >= 1260;
}
static struct xe_tile *lmtt_to_tile(struct xe_lmtt *lmtt)
{
return container_of(lmtt, struct xe_tile, sriov.pf.lmtt);
}
static struct xe_device *lmtt_to_xe(struct xe_lmtt *lmtt)
{
return tile_to_xe(lmtt_to_tile(lmtt));
}
static u64 lmtt_page_size(struct xe_lmtt *lmtt)
{
return BIT_ULL(lmtt->ops->lmtt_pte_shift(0));
}
static struct xe_lmtt_pt *lmtt_pt_alloc(struct xe_lmtt *lmtt, unsigned int level)
{
unsigned int num_entries = level ? lmtt->ops->lmtt_pte_num(level) : 0;
struct xe_lmtt_pt *pt;
struct xe_bo *bo;
int err;
pt = kzalloc(struct_size(pt, entries, num_entries), GFP_KERNEL);
if (!pt) {
err = -ENOMEM;
goto out;
}
bo = xe_bo_create_pin_map(lmtt_to_xe(lmtt), lmtt_to_tile(lmtt), NULL,
PAGE_ALIGN(lmtt->ops->lmtt_pte_size(level) *
lmtt->ops->lmtt_pte_num(level)),
ttm_bo_type_kernel,
XE_BO_FLAG_VRAM_IF_DGFX(lmtt_to_tile(lmtt)) |
XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_PINNED);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
goto out_free_pt;
}
lmtt_assert(lmtt, xe_bo_is_vram(bo));
pt->level = level;
pt->bo = bo;
return pt;
out_free_pt:
kfree(pt);
out:
return ERR_PTR(err);
}
static void lmtt_pt_free(struct xe_lmtt_pt *pt)
{
xe_bo_unpin_map_no_vm(pt->bo);
kfree(pt);
}
static int lmtt_init_pd(struct xe_lmtt *lmtt)
{
struct xe_lmtt_pt *pd;
lmtt_assert(lmtt, !lmtt->pd);
lmtt_assert(lmtt, lmtt->ops->lmtt_root_pd_level());
pd = lmtt_pt_alloc(lmtt, lmtt->ops->lmtt_root_pd_level());
if (IS_ERR(pd))
return PTR_ERR(pd);
lmtt->pd = pd;
return 0;
}
static void lmtt_fini_pd(struct xe_lmtt *lmtt)
{
struct xe_lmtt_pt *pd = lmtt->pd;
unsigned int num_entries = lmtt->ops->lmtt_pte_num(pd->level);
unsigned int n = 0;
/* make sure we don't leak */
for (n = 0; n < num_entries; n++)
lmtt_assert(lmtt, !pd->entries[n]);
lmtt->pd = NULL;
lmtt_pt_free(pd);
}
static void fini_lmtt(struct drm_device *drm, void *arg)
{
struct xe_lmtt *lmtt = arg;
lmtt_assert(lmtt, !(!!lmtt->ops ^ !!lmtt->pd));
if (!lmtt->pd)
return;
lmtt_fini_pd(lmtt);
lmtt->ops = NULL;
}
/**
* xe_lmtt_init - LMTT software initialization.
* @lmtt: the &xe_lmtt to initialize
*
* The LMTT initialization requires two steps.
*
* The xe_lmtt_init() checks if LMTT is required on current device and selects
* and initialize proper variant of the LMTT Root Directory. Currently supported
* variants are `Two-Level LMTT Structure`_ and `Multi-Level LMTT Structure`_.
*
* In next step xe_lmtt_init_hw() will register this directory on the hardware.
*
* Notes:
* The LMTT allocations are managed and will be implicitly released on driver unload.
* This function shall be called only once and only when running as a PF driver.
* Any LMTT initialization failure should block VFs enabling.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_lmtt_init(struct xe_lmtt *lmtt)
{
struct xe_device *xe = lmtt_to_xe(lmtt);
int err;
lmtt_assert(lmtt, IS_SRIOV_PF(xe));
lmtt_assert(lmtt, !lmtt->ops);
if (!IS_DGFX(xe))
return 0;
if (xe_has_multi_level_lmtt(xe))
lmtt->ops = &lmtt_ml_ops;
else
lmtt->ops = &lmtt_2l_ops;
err = lmtt_init_pd(lmtt);
if (unlikely(err))
goto fail;
return drmm_add_action_or_reset(&xe->drm, fini_lmtt, lmtt);
fail:
lmtt->ops = NULL;
return err;
}
static void lmtt_setup_dir_ptr(struct xe_lmtt *lmtt)
{
struct xe_tile *tile = lmtt_to_tile(lmtt);
struct xe_device *xe = tile_to_xe(tile);
dma_addr_t offset = xe_bo_main_addr(lmtt->pd->bo, XE_PAGE_SIZE);
lmtt_debug(lmtt, "DIR offset %pad\n", &offset);
lmtt_assert(lmtt, xe_bo_is_vram(lmtt->pd->bo));
lmtt_assert(lmtt, IS_ALIGNED(offset, SZ_64K));
xe_mmio_write32(tile->primary_gt,
GRAPHICS_VER(xe) >= 20 ? XE2_LMEM_CFG : LMEM_CFG,
LMEM_EN | REG_FIELD_PREP(LMTT_DIR_PTR, offset / SZ_64K));
}
/**
* xe_lmtt_init_hw - Perform LMTT hardware initialization.
* @lmtt: the &xe_lmtt to initialize
*
* This function is a second step of the LMTT initialization.
* This function registers LMTT Root Directory prepared in xe_lmtt_init().
*
* This function shall be called after every hardware reset.
* This function shall be called only when running as a PF driver.
*/
void xe_lmtt_init_hw(struct xe_lmtt *lmtt)
{
if (!lmtt->pd)
return;
lmtt_setup_dir_ptr(lmtt);
}
static void lmtt_write_pte(struct xe_lmtt *lmtt, struct xe_lmtt_pt *pt,
u64 pte, unsigned int idx)
{
unsigned int level = pt->level;
lmtt_assert(lmtt, idx <= lmtt->ops->lmtt_pte_num(level));
lmtt_debug(lmtt, "WRITE level=%u index=%u pte=%#llx\n", level, idx, pte);
switch (lmtt->ops->lmtt_pte_size(level)) {
case sizeof(u32):
xe_map_wr(lmtt_to_xe(lmtt), &pt->bo->vmap, idx * sizeof(u32), u32, pte);
break;
case sizeof(u64):
xe_map_wr(lmtt_to_xe(lmtt), &pt->bo->vmap, idx * sizeof(u64), u64, pte);
break;
default:
lmtt_assert(lmtt, !!!"invalid pte size");
}
}
static void lmtt_destroy_pt(struct xe_lmtt *lmtt, struct xe_lmtt_pt *pd)
{
unsigned int num_entries = pd->level ? lmtt->ops->lmtt_pte_num(pd->level) : 0;
struct xe_lmtt_pt *pt;
unsigned int i;
for (i = 0; i < num_entries; i++) {
pt = pd->entries[i];
pd->entries[i] = NULL;
if (!pt)
continue;
lmtt_destroy_pt(lmtt, pt);
}
lmtt_pt_free(pd);
}
static void lmtt_drop_pages(struct xe_lmtt *lmtt, unsigned int vfid)
{
struct xe_lmtt_pt *pd = lmtt->pd;
struct xe_lmtt_pt *pt;
pt = pd->entries[vfid];
pd->entries[vfid] = NULL;
if (!pt)
return;
lmtt_write_pte(lmtt, pd, LMTT_PTE_INVALID, vfid);
lmtt_assert(lmtt, pd->level > 0);
lmtt_assert(lmtt, pt->level == pd->level - 1);
lmtt_destroy_pt(lmtt, pt);
}
static int __lmtt_alloc_range(struct xe_lmtt *lmtt, struct xe_lmtt_pt *pd,
u64 start, u64 end)
{
u64 pte_addr_shift = BIT_ULL(lmtt->ops->lmtt_pte_shift(pd->level));
u64 offset;
int err;
lmtt_assert(lmtt, pd->level > 0);
offset = start;
while (offset < end) {
struct xe_lmtt_pt *pt;
u64 next, pde, pt_addr;
unsigned int idx;
pt = lmtt_pt_alloc(lmtt, pd->level - 1);
if (IS_ERR(pt))
return PTR_ERR(pt);
pt_addr = xe_bo_main_addr(pt->bo, XE_PAGE_SIZE);
idx = lmtt->ops->lmtt_pte_index(offset, pd->level);
pde = lmtt->ops->lmtt_pte_encode(pt_addr, pd->level);
lmtt_write_pte(lmtt, pd, pde, idx);
pd->entries[idx] = pt;
next = min(end, round_up(offset + 1, pte_addr_shift));
if (pt->level != 0) {
err = __lmtt_alloc_range(lmtt, pt, offset, next);
if (err)
return err;
}
offset = next;
}
return 0;
}
static int lmtt_alloc_range(struct xe_lmtt *lmtt, unsigned int vfid, u64 start, u64 end)
{
struct xe_lmtt_pt *pd = lmtt->pd;
struct xe_lmtt_pt *pt;
u64 pt_addr;
u64 pde;
int err;
lmtt_assert(lmtt, pd->level > 0);
lmtt_assert(lmtt, vfid <= lmtt->ops->lmtt_pte_num(pd->level));
lmtt_assert(lmtt, IS_ALIGNED(start, lmtt_page_size(lmtt)));
lmtt_assert(lmtt, IS_ALIGNED(end, lmtt_page_size(lmtt)));
if (pd->entries[vfid])
return -ENOTEMPTY;
pt = lmtt_pt_alloc(lmtt, pd->level - 1);
if (IS_ERR(pt))
return PTR_ERR(pt);
pt_addr = xe_bo_main_addr(pt->bo, XE_PAGE_SIZE);
pde = lmtt->ops->lmtt_pte_encode(pt_addr, pd->level);
lmtt_write_pte(lmtt, pd, pde, vfid);
pd->entries[vfid] = pt;
if (pt->level != 0) {
err = __lmtt_alloc_range(lmtt, pt, start, end);
if (err)
goto out_free_pt;
}
return 0;
out_free_pt:
lmtt_pt_free(pt);
return err;
}
static struct xe_lmtt_pt *lmtt_leaf_pt(struct xe_lmtt *lmtt, unsigned int vfid, u64 addr)
{
struct xe_lmtt_pt *pd = lmtt->pd;
struct xe_lmtt_pt *pt;
lmtt_assert(lmtt, vfid <= lmtt->ops->lmtt_pte_num(pd->level));
pt = pd->entries[vfid];
while (pt->level) {
lmtt_assert(lmtt, lmtt->ops->lmtt_pte_index(addr, pt->level) <=
lmtt->ops->lmtt_pte_num(pt->level));
pt = pt->entries[lmtt->ops->lmtt_pte_index(addr, pt->level)];
addr >>= lmtt->ops->lmtt_pte_shift(pt->level);
}
lmtt_assert(lmtt, lmtt->ops->lmtt_pte_index(addr, pt->level) <=
lmtt->ops->lmtt_pte_num(pt->level));
lmtt_assert(lmtt, pt->level != pd->level);
lmtt_assert(lmtt, pt->level == 0);
return pt;
}
static void lmtt_insert_bo(struct xe_lmtt *lmtt, unsigned int vfid, struct xe_bo *bo, u64 start)
{
u64 page_size = lmtt_page_size(lmtt);
struct xe_res_cursor cur;
struct xe_lmtt_pt *pt;
u64 addr, vram_offset;
lmtt_assert(lmtt, IS_ALIGNED(start, page_size));
lmtt_assert(lmtt, IS_ALIGNED(bo->size, page_size));
lmtt_assert(lmtt, xe_bo_is_vram(bo));
vram_offset = vram_region_gpu_offset(bo->ttm.resource);
xe_res_first(bo->ttm.resource, 0, bo->size, &cur);
while (cur.remaining) {
addr = xe_res_dma(&cur);
addr += vram_offset; /* XXX */
pt = lmtt_leaf_pt(lmtt, vfid, start);
lmtt_write_pte(lmtt, pt, lmtt->ops->lmtt_pte_encode(addr, 0),
lmtt->ops->lmtt_pte_index(start, 0));
xe_res_next(&cur, page_size);
start += page_size;
}
}
/**
* xe_lmtt_prepare_pages - Create VF's LMTT Page Tables.
* @lmtt: the &xe_lmtt to update
* @vfid: the VF identifier (1-based)
* @range: top range of LMEM offset to be supported
*
* This function creates empty LMTT page tables for given VF to support
* up to maximum #range LMEM offset. The LMTT page tables created by this
* function must be released using xe_lmtt_drop_pages() function.
*
* Notes:
* This function shall be called only after successful LMTT initialization.
* See xe_lmtt_init().
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_lmtt_prepare_pages(struct xe_lmtt *lmtt, unsigned int vfid, u64 range)
{
lmtt_assert(lmtt, lmtt->pd);
lmtt_assert(lmtt, vfid);
return lmtt_alloc_range(lmtt, vfid, 0, range);
}
/**
* xe_lmtt_populate_pages - Update VF's LMTT Page Table Entries.
* @lmtt: the &xe_lmtt to update
* @vfid: the VF identifier (1-based)
* @bo: the buffer object with LMEM allocation to be mapped
* @offset: the offset at which #bo should be mapped
*
* This function updates VF's LMTT entries to use given buffer object as a backstore.
*
* Notes:
* This function shall be called only after successful preparation of the
* VF's LMTT Page Tables. See xe_lmtt_prepare().
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_lmtt_populate_pages(struct xe_lmtt *lmtt, unsigned int vfid, struct xe_bo *bo, u64 offset)
{
lmtt_assert(lmtt, lmtt->pd);
lmtt_assert(lmtt, vfid);
lmtt_insert_bo(lmtt, vfid, bo, offset);
return 0;
}
/**
* xe_lmtt_drop_pages - Remove VF's LMTT Pages.
* @lmtt: the &xe_lmtt to update
* @vfid: the VF identifier (1-based)
*
* This function removes all LMTT Page Tables prepared by xe_lmtt_prepare_pages().
*
* This function shall be called only after successful LMTT initialization.
* See xe_lmtt_init().
*/
void xe_lmtt_drop_pages(struct xe_lmtt *lmtt, unsigned int vfid)
{
lmtt_assert(lmtt, lmtt->pd);
lmtt_assert(lmtt, vfid);
lmtt_drop_pages(lmtt, vfid);
}
/**
* xe_lmtt_estimate_pt_size - Estimate size of LMTT PT allocations.
* @lmtt: the &xe_lmtt
* @size: the size of the LMEM to be mapped over LMTT (including any offset)
*
* This function shall be called only by PF.
*
* Return: size of the PT allocation(s) needed to support given LMEM size.
*/
u64 xe_lmtt_estimate_pt_size(struct xe_lmtt *lmtt, u64 size)
{
unsigned int level = 0;
u64 pt_size;
lmtt_assert(lmtt, IS_SRIOV_PF(lmtt_to_xe(lmtt)));
lmtt_assert(lmtt, IS_DGFX(lmtt_to_xe(lmtt)));
lmtt_assert(lmtt, lmtt->ops);
pt_size = PAGE_ALIGN(lmtt->ops->lmtt_pte_size(level) *
lmtt->ops->lmtt_pte_num(level));
while (++level < lmtt->ops->lmtt_root_pd_level()) {
pt_size *= lmtt->ops->lmtt_pte_index(size, level) + 1;
pt_size += PAGE_ALIGN(lmtt->ops->lmtt_pte_size(level) *
lmtt->ops->lmtt_pte_num(level));
}
return pt_size;
}
#if IS_BUILTIN(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_lmtt_test.c"
#endif