blob: 80ba2fc78837ac869fb58a7e1f890f9e6a0d2320 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2024 Intel Corporation
*/
#include <linux/pci.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include "regs/xe_bars.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_assert.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt_mcr.h"
#include "xe_gt_sriov_vf.h"
#include "xe_mmio.h"
#include "xe_module.h"
#include "xe_sriov.h"
#include "xe_vram.h"
#define BAR_SIZE_SHIFT 20
static void
_resize_bar(struct xe_device *xe, int resno, resource_size_t size)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
int bar_size = pci_rebar_bytes_to_size(size);
int ret;
if (pci_resource_len(pdev, resno))
pci_release_resource(pdev, resno);
ret = pci_resize_resource(pdev, resno, bar_size);
if (ret) {
drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
resno, 1 << bar_size, ERR_PTR(ret));
return;
}
drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
}
/*
* if force_vram_bar_size is set, attempt to set to the requested size
* else set to maximum possible size
*/
static void resize_vram_bar(struct xe_device *xe)
{
u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_bus *root = pdev->bus;
resource_size_t current_size;
resource_size_t rebar_size;
struct resource *root_res;
u32 bar_size_mask;
u32 pci_cmd;
int i;
/* gather some relevant info */
current_size = pci_resource_len(pdev, LMEM_BAR);
bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
if (!bar_size_mask)
return;
/* set to a specific size? */
if (force_vram_bar_size) {
u32 bar_size_bit;
rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
if (!bar_size_bit) {
drm_info(&xe->drm,
"Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
(u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
return;
}
rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
if (rebar_size == current_size)
return;
} else {
rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
/* only resize if larger than current */
if (rebar_size <= current_size)
return;
}
drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
(u64)current_size >> 20, (u64)rebar_size >> 20);
while (root->parent)
root = root->parent;
pci_bus_for_each_resource(root, root_res, i) {
if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
(u64)root_res->start > 0x100000000ul)
break;
}
if (!root_res) {
drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
return;
}
pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
_resize_bar(xe, LMEM_BAR, rebar_size);
pci_assign_unassigned_bus_resources(pdev->bus);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
}
static bool resource_is_valid(struct pci_dev *pdev, int bar)
{
if (!pci_resource_flags(pdev, bar))
return false;
if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
return false;
if (!pci_resource_len(pdev, bar))
return false;
return true;
}
static int determine_lmem_bar_size(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
if (!resource_is_valid(pdev, LMEM_BAR)) {
drm_err(&xe->drm, "pci resource is not valid\n");
return -ENXIO;
}
resize_vram_bar(xe);
xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
if (!xe->mem.vram.io_size)
return -EIO;
/* XXX: Need to change when xe link code is ready */
xe->mem.vram.dpa_base = 0;
/* set up a map to the total memory area. */
xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
return 0;
}
static inline u64 get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size)
{
struct xe_device *xe = gt_to_xe(gt);
u64 offset;
u32 reg;
if (GRAPHICS_VER(xe) >= 20) {
u64 ccs_size = tile_size / 512;
u64 offset_hi, offset_lo;
u32 nodes, num_enabled;
reg = xe_mmio_read32(gt, MIRROR_FUSE3);
nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg);
num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */
reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg);
reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER);
offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg);
offset = offset_hi << 32; /* HW view bits 39:32 */
offset |= offset_lo << 6; /* HW view bits 31:6 */
offset *= num_enabled; /* convert to SW view */
offset = round_up(offset, SZ_128K); /* SW must round up to nearest 128K */
/* We don't expect any holes */
xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(gt, GSMBASE) - ccs_size),
"Hole between CCS and GSM.\n");
} else {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K;
}
return offset;
}
/*
* tile_vram_size() - Collect vram size and offset information
* @tile: tile to get info for
* @vram_size: available vram (size - device reserved portions)
* @tile_size: actual vram size
* @tile_offset: physical start point in the vram address space
*
* There are 4 places for size information:
* - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
* - TILEx size (actual vram size)
* - GSMBASE offset (TILEx - "stolen")
* - CSSBASE offset (TILEx - CSS space necessary)
*
* CSSBASE is always a lower/smaller offset then GSMBASE.
*
* The actual available size of memory is to the CCS or GSM base.
* NOTE: multi-tile bases will include the tile offset.
*
*/
static int tile_vram_size(struct xe_tile *tile, u64 *vram_size,
u64 *tile_size, u64 *tile_offset)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_gt *gt = tile->primary_gt;
u64 offset;
int err;
u32 reg;
if (IS_SRIOV_VF(xe)) {
struct xe_tile *t;
int id;
offset = 0;
for_each_tile(t, xe, id)
for_each_if(t->id < tile->id)
offset += xe_gt_sriov_vf_lmem(t->primary_gt);
*tile_size = xe_gt_sriov_vf_lmem(gt);
*vram_size = *tile_size;
*tile_offset = offset;
return 0;
}
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
/* actual size */
if (unlikely(xe->info.platform == XE_DG1)) {
*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
*tile_offset = 0;
} else {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
}
/* minus device usage */
if (xe->info.has_flat_ccs) {
offset = get_flat_ccs_offset(gt, *tile_size);
} else {
offset = xe_mmio_read64_2x32(gt, GSMBASE);
}
/* remove the tile offset so we have just the available size */
*vram_size = offset - *tile_offset;
return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
static void vram_fini(void *arg)
{
struct xe_device *xe = arg;
struct xe_tile *tile;
int id;
if (xe->mem.vram.mapping)
iounmap(xe->mem.vram.mapping);
xe->mem.vram.mapping = NULL;
for_each_tile(tile, xe, id)
tile->mem.vram.mapping = NULL;
}
/**
* xe_vram_probe() - Probe VRAM configuration
* @xe: the &xe_device
*
* Collect VRAM size and offset information for all tiles.
*
* Return: 0 on success, error code on failure
*/
int xe_vram_probe(struct xe_device *xe)
{
struct xe_tile *tile;
resource_size_t io_size;
u64 available_size = 0;
u64 total_size = 0;
u64 tile_offset;
u64 tile_size;
u64 vram_size;
int err;
u8 id;
if (!IS_DGFX(xe))
return 0;
/* Get the size of the root tile's vram for later accessibility comparison */
tile = xe_device_get_root_tile(xe);
err = tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
err = determine_lmem_bar_size(xe);
if (err)
return err;
drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.io_size);
io_size = xe->mem.vram.io_size;
/* tile specific ranges */
for_each_tile(tile, xe, id) {
err = tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
tile->mem.vram.actual_physical_size = tile_size;
tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
if (!tile->mem.vram.io_size) {
drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
return -ENODEV;
}
tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
tile->mem.vram.usable_size = vram_size;
tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
drm_info(&xe->drm, "Small BAR device\n");
drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
&tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size,
&tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size);
/* calculate total size using tile size to get the correct HW sizing */
total_size += tile_size;
available_size += vram_size;
if (total_size > xe->mem.vram.io_size) {
drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
&total_size, &xe->mem.vram.io_size);
}
io_size -= min_t(u64, tile_size, io_size);
}
xe->mem.vram.actual_physical_size = total_size;
drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.actual_physical_size);
drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&available_size);
return devm_add_action_or_reset(xe->drm.dev, vram_fini, xe);
}