| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * ADXL355 3-Axis Digital Accelerometer IIO core driver |
| * |
| * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com> |
| * |
| * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf |
| */ |
| |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/trigger.h> |
| #include <linux/iio/triggered_buffer.h> |
| #include <linux/iio/trigger_consumer.h> |
| #include <linux/limits.h> |
| #include <linux/math64.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/property.h> |
| #include <linux/regmap.h> |
| #include <linux/units.h> |
| |
| #include <linux/unaligned.h> |
| |
| #include "adxl355.h" |
| |
| /* ADXL355 Register Definitions */ |
| #define ADXL355_DEVID_AD_REG 0x00 |
| #define ADXL355_DEVID_MST_REG 0x01 |
| #define ADXL355_PARTID_REG 0x02 |
| #define ADXL355_STATUS_REG 0x04 |
| #define ADXL355_FIFO_ENTRIES_REG 0x05 |
| #define ADXL355_TEMP2_REG 0x06 |
| #define ADXL355_XDATA3_REG 0x08 |
| #define ADXL355_YDATA3_REG 0x0B |
| #define ADXL355_ZDATA3_REG 0x0E |
| #define ADXL355_FIFO_DATA_REG 0x11 |
| #define ADXL355_OFFSET_X_H_REG 0x1E |
| #define ADXL355_OFFSET_Y_H_REG 0x20 |
| #define ADXL355_OFFSET_Z_H_REG 0x22 |
| #define ADXL355_ACT_EN_REG 0x24 |
| #define ADXL355_ACT_THRESH_H_REG 0x25 |
| #define ADXL355_ACT_THRESH_L_REG 0x26 |
| #define ADXL355_ACT_COUNT_REG 0x27 |
| #define ADXL355_FILTER_REG 0x28 |
| #define ADXL355_FILTER_ODR_MSK GENMASK(3, 0) |
| #define ADXL355_FILTER_HPF_MSK GENMASK(6, 4) |
| #define ADXL355_FIFO_SAMPLES_REG 0x29 |
| #define ADXL355_INT_MAP_REG 0x2A |
| #define ADXL355_SYNC_REG 0x2B |
| #define ADXL355_RANGE_REG 0x2C |
| #define ADXL355_POWER_CTL_REG 0x2D |
| #define ADXL355_POWER_CTL_MODE_MSK GENMASK(1, 0) |
| #define ADXL355_POWER_CTL_DRDY_MSK BIT(2) |
| #define ADXL355_SELF_TEST_REG 0x2E |
| #define ADXL355_RESET_REG 0x2F |
| |
| #define ADXL355_DEVID_AD_VAL 0xAD |
| #define ADXL355_DEVID_MST_VAL 0x1D |
| #define ADXL355_PARTID_VAL 0xED |
| #define ADXL359_PARTID_VAL 0xE9 |
| #define ADXL355_RESET_CODE 0x52 |
| |
| static const struct regmap_range adxl355_read_reg_range[] = { |
| regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG), |
| regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG), |
| }; |
| |
| const struct regmap_access_table adxl355_readable_regs_tbl = { |
| .yes_ranges = adxl355_read_reg_range, |
| .n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range), |
| }; |
| EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355); |
| |
| static const struct regmap_range adxl355_write_reg_range[] = { |
| regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG), |
| }; |
| |
| const struct regmap_access_table adxl355_writeable_regs_tbl = { |
| .yes_ranges = adxl355_write_reg_range, |
| .n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range), |
| }; |
| EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355); |
| |
| const struct adxl355_chip_info adxl35x_chip_info[] = { |
| [ADXL355] = { |
| .name = "adxl355", |
| .part_id = ADXL355_PARTID_VAL, |
| /* |
| * At +/- 2g with 20-bit resolution, scale is given in datasheet |
| * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2. |
| */ |
| .accel_scale = { |
| .integer = 0, |
| .decimal = 38245, |
| }, |
| /* |
| * The datasheet defines an intercept of 1885 LSB at 25 degC |
| * and a slope of -9.05 LSB/C. The following formula can be used |
| * to find the temperature: |
| * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow |
| * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. |
| * Hence using some rearranging we get the scale as -110.497238 |
| * and offset as -2111.25. |
| */ |
| .temp_offset = { |
| .integer = -2111, |
| .decimal = 250000, |
| }, |
| }, |
| [ADXL359] = { |
| .name = "adxl359", |
| .part_id = ADXL359_PARTID_VAL, |
| /* |
| * At +/- 10g with 20-bit resolution, scale is given in datasheet |
| * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2. |
| */ |
| .accel_scale = { |
| .integer = 0, |
| .decimal = 191229, |
| }, |
| /* |
| * The datasheet defines an intercept of 1852 LSB at 25 degC |
| * and a slope of -9.05 LSB/C. The following formula can be used |
| * to find the temperature: |
| * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow |
| * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. |
| * Hence using some rearranging we get the scale as -110.497238 |
| * and offset as -2079.25. |
| */ |
| .temp_offset = { |
| .integer = -2079, |
| .decimal = 250000, |
| }, |
| }, |
| }; |
| EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, IIO_ADXL355); |
| |
| enum adxl355_op_mode { |
| ADXL355_MEASUREMENT, |
| ADXL355_STANDBY, |
| ADXL355_TEMP_OFF, |
| }; |
| |
| enum adxl355_odr { |
| ADXL355_ODR_4000HZ, |
| ADXL355_ODR_2000HZ, |
| ADXL355_ODR_1000HZ, |
| ADXL355_ODR_500HZ, |
| ADXL355_ODR_250HZ, |
| ADXL355_ODR_125HZ, |
| ADXL355_ODR_62_5HZ, |
| ADXL355_ODR_31_25HZ, |
| ADXL355_ODR_15_625HZ, |
| ADXL355_ODR_7_813HZ, |
| ADXL355_ODR_3_906HZ, |
| }; |
| |
| enum adxl355_hpf_3db { |
| ADXL355_HPF_OFF, |
| ADXL355_HPF_24_7, |
| ADXL355_HPF_6_2084, |
| ADXL355_HPF_1_5545, |
| ADXL355_HPF_0_3862, |
| ADXL355_HPF_0_0954, |
| ADXL355_HPF_0_0238, |
| }; |
| |
| static const int adxl355_odr_table[][2] = { |
| [0] = {4000, 0}, |
| [1] = {2000, 0}, |
| [2] = {1000, 0}, |
| [3] = {500, 0}, |
| [4] = {250, 0}, |
| [5] = {125, 0}, |
| [6] = {62, 500000}, |
| [7] = {31, 250000}, |
| [8] = {15, 625000}, |
| [9] = {7, 813000}, |
| [10] = {3, 906000}, |
| }; |
| |
| static const int adxl355_hpf_3db_multipliers[] = { |
| 0, |
| 247000, |
| 62084, |
| 15545, |
| 3862, |
| 954, |
| 238, |
| }; |
| |
| enum adxl355_chans { |
| chan_x, chan_y, chan_z, |
| }; |
| |
| struct adxl355_chan_info { |
| u8 data_reg; |
| u8 offset_reg; |
| }; |
| |
| static const struct adxl355_chan_info adxl355_chans[] = { |
| [chan_x] = { |
| .data_reg = ADXL355_XDATA3_REG, |
| .offset_reg = ADXL355_OFFSET_X_H_REG |
| }, |
| [chan_y] = { |
| .data_reg = ADXL355_YDATA3_REG, |
| .offset_reg = ADXL355_OFFSET_Y_H_REG |
| }, |
| [chan_z] = { |
| .data_reg = ADXL355_ZDATA3_REG, |
| .offset_reg = ADXL355_OFFSET_Z_H_REG |
| }, |
| }; |
| |
| struct adxl355_data { |
| const struct adxl355_chip_info *chip_info; |
| struct regmap *regmap; |
| struct device *dev; |
| struct mutex lock; /* lock to protect op_mode */ |
| enum adxl355_op_mode op_mode; |
| enum adxl355_odr odr; |
| enum adxl355_hpf_3db hpf_3db; |
| int calibbias[3]; |
| int adxl355_hpf_3db_table[7][2]; |
| struct iio_trigger *dready_trig; |
| union { |
| u8 transf_buf[3]; |
| struct { |
| u8 buf[14]; |
| s64 ts; |
| } buffer; |
| } __aligned(IIO_DMA_MINALIGN); |
| }; |
| |
| static int adxl355_set_op_mode(struct adxl355_data *data, |
| enum adxl355_op_mode op_mode) |
| { |
| int ret; |
| |
| if (data->op_mode == op_mode) |
| return 0; |
| |
| ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, |
| ADXL355_POWER_CTL_MODE_MSK, op_mode); |
| if (ret) |
| return ret; |
| |
| data->op_mode = op_mode; |
| |
| return ret; |
| } |
| |
| static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig, |
| bool state) |
| { |
| struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); |
| struct adxl355_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&data->lock); |
| ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, |
| ADXL355_POWER_CTL_DRDY_MSK, |
| FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, |
| state ? 0 : 1)); |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| static void adxl355_fill_3db_frequency_table(struct adxl355_data *data) |
| { |
| u32 multiplier; |
| u64 div, rem; |
| u64 odr; |
| int i; |
| |
| odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) + |
| adxl355_odr_table[data->odr][1]; |
| |
| for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) { |
| multiplier = adxl355_hpf_3db_multipliers[i]; |
| div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0), |
| TERA * 100, &rem); |
| |
| data->adxl355_hpf_3db_table[i][0] = div; |
| data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100); |
| } |
| } |
| |
| static int adxl355_setup(struct adxl355_data *data) |
| { |
| unsigned int regval; |
| int ret; |
| |
| ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, ®val); |
| if (ret) |
| return ret; |
| |
| if (regval != ADXL355_DEVID_AD_VAL) { |
| dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval); |
| return -ENODEV; |
| } |
| |
| ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, ®val); |
| if (ret) |
| return ret; |
| |
| if (regval != ADXL355_DEVID_MST_VAL) { |
| dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval); |
| return -ENODEV; |
| } |
| |
| ret = regmap_read(data->regmap, ADXL355_PARTID_REG, ®val); |
| if (ret) |
| return ret; |
| |
| if (regval != ADXL355_PARTID_VAL) |
| dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval); |
| |
| /* |
| * Perform a software reset to make sure the device is in a consistent |
| * state after start-up. |
| */ |
| ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE); |
| if (ret) |
| return ret; |
| |
| ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, |
| ADXL355_POWER_CTL_DRDY_MSK, |
| FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1)); |
| if (ret) |
| return ret; |
| |
| adxl355_fill_3db_frequency_table(data); |
| |
| return adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| } |
| |
| static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr) |
| { |
| return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2); |
| } |
| |
| static int adxl355_read_axis(struct adxl355_data *data, u8 addr) |
| { |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, addr, data->transf_buf, |
| ARRAY_SIZE(data->transf_buf)); |
| if (ret) |
| return ret; |
| |
| return get_unaligned_be24(data->transf_buf); |
| } |
| |
| static int adxl355_find_match(const int (*freq_tbl)[2], const int n, |
| const int val, const int val2) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int adxl355_set_odr(struct adxl355_data *data, |
| enum adxl355_odr odr) |
| { |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| if (data->odr == odr) { |
| mutex_unlock(&data->lock); |
| return 0; |
| } |
| |
| ret = adxl355_set_op_mode(data, ADXL355_STANDBY); |
| if (ret) |
| goto err_unlock; |
| |
| ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, |
| ADXL355_FILTER_ODR_MSK, |
| FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr)); |
| if (ret) |
| goto err_set_opmode; |
| |
| data->odr = odr; |
| adxl355_fill_3db_frequency_table(data); |
| |
| ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| if (ret) |
| goto err_set_opmode; |
| |
| mutex_unlock(&data->lock); |
| return 0; |
| |
| err_set_opmode: |
| adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| err_unlock: |
| mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| static int adxl355_set_hpf_3db(struct adxl355_data *data, |
| enum adxl355_hpf_3db hpf) |
| { |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| if (data->hpf_3db == hpf) { |
| mutex_unlock(&data->lock); |
| return 0; |
| } |
| |
| ret = adxl355_set_op_mode(data, ADXL355_STANDBY); |
| if (ret) |
| goto err_unlock; |
| |
| ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, |
| ADXL355_FILTER_HPF_MSK, |
| FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf)); |
| if (ret) |
| goto err_set_opmode; |
| |
| data->hpf_3db = hpf; |
| |
| ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| if (ret) |
| goto err_set_opmode; |
| |
| mutex_unlock(&data->lock); |
| return 0; |
| |
| err_set_opmode: |
| adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| err_unlock: |
| mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| static int adxl355_set_calibbias(struct adxl355_data *data, |
| enum adxl355_chans chan, int calibbias) |
| { |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| ret = adxl355_set_op_mode(data, ADXL355_STANDBY); |
| if (ret) |
| goto err_unlock; |
| |
| put_unaligned_be16(calibbias, data->transf_buf); |
| ret = regmap_bulk_write(data->regmap, |
| adxl355_chans[chan].offset_reg, |
| data->transf_buf, 2); |
| if (ret) |
| goto err_set_opmode; |
| |
| data->calibbias[chan] = calibbias; |
| |
| ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| if (ret) |
| goto err_set_opmode; |
| |
| mutex_unlock(&data->lock); |
| return 0; |
| |
| err_set_opmode: |
| adxl355_set_op_mode(data, ADXL355_MEASUREMENT); |
| err_unlock: |
| mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| static int adxl355_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct adxl355_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| switch (chan->type) { |
| case IIO_TEMP: |
| ret = adxl355_get_temp_data(data, chan->address); |
| if (ret < 0) |
| return ret; |
| *val = get_unaligned_be16(data->transf_buf); |
| |
| return IIO_VAL_INT; |
| case IIO_ACCEL: |
| ret = adxl355_read_axis(data, adxl355_chans[ |
| chan->address].data_reg); |
| if (ret < 0) |
| return ret; |
| *val = sign_extend32(ret >> chan->scan_type.shift, |
| chan->scan_type.realbits - 1); |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| |
| case IIO_CHAN_INFO_SCALE: |
| switch (chan->type) { |
| case IIO_TEMP: |
| /* |
| * Temperature scale is -110.497238. |
| * See the detailed explanation in adxl35x_chip_info |
| * definition above. |
| */ |
| *val = -110; |
| *val2 = 497238; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_ACCEL: |
| *val = data->chip_info->accel_scale.integer; |
| *val2 = data->chip_info->accel_scale.decimal; |
| return IIO_VAL_INT_PLUS_NANO; |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_OFFSET: |
| *val = data->chip_info->temp_offset.integer; |
| *val2 = data->chip_info->temp_offset.decimal; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_CALIBBIAS: |
| *val = sign_extend32(data->calibbias[chan->address], 15); |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *val = adxl355_odr_table[data->odr][0]; |
| *val2 = adxl355_odr_table[data->odr][1]; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: |
| *val = data->adxl355_hpf_3db_table[data->hpf_3db][0]; |
| *val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1]; |
| return IIO_VAL_INT_PLUS_MICRO; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int adxl355_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct adxl355_data *data = iio_priv(indio_dev); |
| int odr_idx, hpf_idx, calibbias; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| odr_idx = adxl355_find_match(adxl355_odr_table, |
| ARRAY_SIZE(adxl355_odr_table), |
| val, val2); |
| if (odr_idx < 0) |
| return odr_idx; |
| |
| return adxl355_set_odr(data, odr_idx); |
| case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: |
| hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table, |
| ARRAY_SIZE(data->adxl355_hpf_3db_table), |
| val, val2); |
| if (hpf_idx < 0) |
| return hpf_idx; |
| |
| return adxl355_set_hpf_3db(data, hpf_idx); |
| case IIO_CHAN_INFO_CALIBBIAS: |
| calibbias = clamp_t(int, val, S16_MIN, S16_MAX); |
| |
| return adxl355_set_calibbias(data, chan->address, calibbias); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int adxl355_read_avail(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| const int **vals, int *type, int *length, |
| long mask) |
| { |
| struct adxl355_data *data = iio_priv(indio_dev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *vals = (const int *)adxl355_odr_table; |
| *type = IIO_VAL_INT_PLUS_MICRO; |
| /* Values are stored in a 2D matrix */ |
| *length = ARRAY_SIZE(adxl355_odr_table) * 2; |
| |
| return IIO_AVAIL_LIST; |
| case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: |
| *vals = (const int *)data->adxl355_hpf_3db_table; |
| *type = IIO_VAL_INT_PLUS_MICRO; |
| /* Values are stored in a 2D matrix */ |
| *length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2; |
| |
| return IIO_AVAIL_LIST; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const unsigned long adxl355_avail_scan_masks[] = { |
| GENMASK(3, 0), |
| 0 |
| }; |
| |
| static const struct iio_info adxl355_info = { |
| .read_raw = adxl355_read_raw, |
| .write_raw = adxl355_write_raw, |
| .read_avail = &adxl355_read_avail, |
| }; |
| |
| static const struct iio_trigger_ops adxl355_trigger_ops = { |
| .set_trigger_state = &adxl355_data_rdy_trigger_set_state, |
| .validate_device = &iio_trigger_validate_own_device, |
| }; |
| |
| static irqreturn_t adxl355_trigger_handler(int irq, void *p) |
| { |
| struct iio_poll_func *pf = p; |
| struct iio_dev *indio_dev = pf->indio_dev; |
| struct adxl355_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| /* |
| * data->buffer is used both for triggered buffer support |
| * and read/write_raw(), hence, it has to be zeroed here before usage. |
| */ |
| data->buffer.buf[0] = 0; |
| |
| /* |
| * The acceleration data is 24 bits and big endian. It has to be saved |
| * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer. |
| * The buf array is 14 bytes as it includes 3x4=12 bytes for |
| * accelaration data of x, y, and z axis. It also includes 2 bytes for |
| * temperature data. |
| */ |
| ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG, |
| &data->buffer.buf[1], 3); |
| if (ret) |
| goto out_unlock_notify; |
| |
| ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG, |
| &data->buffer.buf[5], 3); |
| if (ret) |
| goto out_unlock_notify; |
| |
| ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG, |
| &data->buffer.buf[9], 3); |
| if (ret) |
| goto out_unlock_notify; |
| |
| ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG, |
| &data->buffer.buf[12], 2); |
| if (ret) |
| goto out_unlock_notify; |
| |
| iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, |
| pf->timestamp); |
| |
| out_unlock_notify: |
| mutex_unlock(&data->lock); |
| iio_trigger_notify_done(indio_dev->trig); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #define ADXL355_ACCEL_CHANNEL(index, reg, axis) { \ |
| .type = IIO_ACCEL, \ |
| .address = reg, \ |
| .modified = 1, \ |
| .channel2 = IIO_MOD_##axis, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_CALIBBIAS), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ |
| BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ |
| .info_mask_shared_by_type_available = \ |
| BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ |
| BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ |
| .scan_index = index, \ |
| .scan_type = { \ |
| .sign = 's', \ |
| .realbits = 20, \ |
| .storagebits = 32, \ |
| .shift = 4, \ |
| .endianness = IIO_BE, \ |
| } \ |
| } |
| |
| static const struct iio_chan_spec adxl355_channels[] = { |
| ADXL355_ACCEL_CHANNEL(0, chan_x, X), |
| ADXL355_ACCEL_CHANNEL(1, chan_y, Y), |
| ADXL355_ACCEL_CHANNEL(2, chan_z, Z), |
| { |
| .type = IIO_TEMP, |
| .address = ADXL355_TEMP2_REG, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | |
| BIT(IIO_CHAN_INFO_SCALE) | |
| BIT(IIO_CHAN_INFO_OFFSET), |
| .scan_index = 3, |
| .scan_type = { |
| .sign = 's', |
| .realbits = 12, |
| .storagebits = 16, |
| .endianness = IIO_BE, |
| }, |
| }, |
| IIO_CHAN_SOFT_TIMESTAMP(4), |
| }; |
| |
| static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq) |
| { |
| struct adxl355_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d", |
| indio_dev->name, |
| iio_device_id(indio_dev)); |
| if (!data->dready_trig) |
| return -ENOMEM; |
| |
| data->dready_trig->ops = &adxl355_trigger_ops; |
| iio_trigger_set_drvdata(data->dready_trig, indio_dev); |
| |
| ret = devm_request_irq(data->dev, irq, |
| &iio_trigger_generic_data_rdy_poll, |
| IRQF_ONESHOT, "adxl355_irq", data->dready_trig); |
| if (ret) |
| return dev_err_probe(data->dev, ret, "request irq %d failed\n", |
| irq); |
| |
| ret = devm_iio_trigger_register(data->dev, data->dready_trig); |
| if (ret) { |
| dev_err(data->dev, "iio trigger register failed\n"); |
| return ret; |
| } |
| |
| indio_dev->trig = iio_trigger_get(data->dready_trig); |
| |
| return 0; |
| } |
| |
| int adxl355_core_probe(struct device *dev, struct regmap *regmap, |
| const struct adxl355_chip_info *chip_info) |
| { |
| struct adxl355_data *data; |
| struct iio_dev *indio_dev; |
| int ret; |
| int irq; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| data->regmap = regmap; |
| data->dev = dev; |
| data->op_mode = ADXL355_STANDBY; |
| data->chip_info = chip_info; |
| mutex_init(&data->lock); |
| |
| indio_dev->name = chip_info->name; |
| indio_dev->info = &adxl355_info; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->channels = adxl355_channels; |
| indio_dev->num_channels = ARRAY_SIZE(adxl355_channels); |
| indio_dev->available_scan_masks = adxl355_avail_scan_masks; |
| |
| ret = adxl355_setup(data); |
| if (ret) { |
| dev_err(dev, "ADXL355 setup failed\n"); |
| return ret; |
| } |
| |
| ret = devm_iio_triggered_buffer_setup(dev, indio_dev, |
| &iio_pollfunc_store_time, |
| &adxl355_trigger_handler, NULL); |
| if (ret) { |
| dev_err(dev, "iio triggered buffer setup failed\n"); |
| return ret; |
| } |
| |
| irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY"); |
| if (irq > 0) { |
| ret = adxl355_probe_trigger(indio_dev, irq); |
| if (ret) |
| return ret; |
| } |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355); |
| |
| MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>"); |
| MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver"); |
| MODULE_LICENSE("GPL v2"); |