| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * 3-axis accelerometer driver supporting many Bosch-Sensortec chips |
| * Copyright (c) 2014, Intel Corporation. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/pm.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/events.h> |
| #include <linux/iio/trigger.h> |
| #include <linux/iio/trigger_consumer.h> |
| #include <linux/iio/triggered_buffer.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include "bmc150-accel.h" |
| |
| #define BMC150_ACCEL_DRV_NAME "bmc150_accel" |
| #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" |
| |
| #define BMC150_ACCEL_REG_CHIP_ID 0x00 |
| |
| #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B |
| #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 |
| #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) |
| #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) |
| #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) |
| #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) |
| |
| #define BMC150_ACCEL_REG_PMU_LPW 0x11 |
| #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 |
| #define BMC150_ACCEL_PMU_MODE_SHIFT 5 |
| #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 |
| #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 |
| |
| #define BMC150_ACCEL_REG_PMU_RANGE 0x0F |
| |
| #define BMC150_ACCEL_DEF_RANGE_2G 0x03 |
| #define BMC150_ACCEL_DEF_RANGE_4G 0x05 |
| #define BMC150_ACCEL_DEF_RANGE_8G 0x08 |
| #define BMC150_ACCEL_DEF_RANGE_16G 0x0C |
| |
| /* Default BW: 125Hz */ |
| #define BMC150_ACCEL_REG_PMU_BW 0x10 |
| #define BMC150_ACCEL_DEF_BW 125 |
| |
| #define BMC150_ACCEL_REG_RESET 0x14 |
| #define BMC150_ACCEL_RESET_VAL 0xB6 |
| |
| #define BMC150_ACCEL_REG_INT_MAP_0 0x19 |
| #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2) |
| |
| #define BMC150_ACCEL_REG_INT_MAP_1 0x1A |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0) |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1) |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2) |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5) |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6) |
| #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7) |
| |
| #define BMC150_ACCEL_REG_INT_MAP_2 0x1B |
| #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2) |
| |
| #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 |
| #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 |
| #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F |
| #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 |
| |
| #define BMC150_ACCEL_REG_INT_EN_0 0x16 |
| #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) |
| #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) |
| #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) |
| |
| #define BMC150_ACCEL_REG_INT_EN_1 0x17 |
| #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) |
| #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) |
| #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) |
| |
| #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 |
| #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) |
| #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2) |
| |
| #define BMC150_ACCEL_REG_INT_5 0x27 |
| #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 |
| |
| #define BMC150_ACCEL_REG_INT_6 0x28 |
| #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF |
| |
| /* Slope duration in terms of number of samples */ |
| #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 |
| /* in terms of multiples of g's/LSB, based on range */ |
| #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 |
| |
| #define BMC150_ACCEL_REG_XOUT_L 0x02 |
| |
| #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 |
| |
| /* Sleep Duration values */ |
| #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 |
| #define BMC150_ACCEL_SLEEP_1_MS 0x06 |
| #define BMC150_ACCEL_SLEEP_2_MS 0x07 |
| #define BMC150_ACCEL_SLEEP_4_MS 0x08 |
| #define BMC150_ACCEL_SLEEP_6_MS 0x09 |
| #define BMC150_ACCEL_SLEEP_10_MS 0x0A |
| #define BMC150_ACCEL_SLEEP_25_MS 0x0B |
| #define BMC150_ACCEL_SLEEP_50_MS 0x0C |
| #define BMC150_ACCEL_SLEEP_100_MS 0x0D |
| #define BMC150_ACCEL_SLEEP_500_MS 0x0E |
| #define BMC150_ACCEL_SLEEP_1_SEC 0x0F |
| |
| #define BMC150_ACCEL_REG_TEMP 0x08 |
| #define BMC150_ACCEL_TEMP_CENTER_VAL 23 |
| |
| #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) |
| #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 |
| |
| #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E |
| #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 |
| #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E |
| #define BMC150_ACCEL_REG_FIFO_DATA 0x3F |
| #define BMC150_ACCEL_FIFO_LENGTH 32 |
| |
| enum bmc150_accel_axis { |
| AXIS_X, |
| AXIS_Y, |
| AXIS_Z, |
| AXIS_MAX, |
| }; |
| |
| enum bmc150_power_modes { |
| BMC150_ACCEL_SLEEP_MODE_NORMAL, |
| BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, |
| BMC150_ACCEL_SLEEP_MODE_LPM, |
| BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, |
| }; |
| |
| struct bmc150_scale_info { |
| int scale; |
| u8 reg_range; |
| }; |
| |
| struct bmc150_accel_chip_info { |
| const char *name; |
| u8 chip_id; |
| const struct iio_chan_spec *channels; |
| int num_channels; |
| const struct bmc150_scale_info scale_table[4]; |
| }; |
| |
| static const struct { |
| int val; |
| int val2; |
| u8 bw_bits; |
| } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, |
| {31, 260000, 0x09}, |
| {62, 500000, 0x0A}, |
| {125, 0, 0x0B}, |
| {250, 0, 0x0C}, |
| {500, 0, 0x0D}, |
| {1000, 0, 0x0E}, |
| {2000, 0, 0x0F} }; |
| |
| static __maybe_unused const struct { |
| int bw_bits; |
| int msec; |
| } bmc150_accel_sample_upd_time[] = { {0x08, 64}, |
| {0x09, 32}, |
| {0x0A, 16}, |
| {0x0B, 8}, |
| {0x0C, 4}, |
| {0x0D, 2}, |
| {0x0E, 1}, |
| {0x0F, 1} }; |
| |
| static const struct { |
| int sleep_dur; |
| u8 reg_value; |
| } bmc150_accel_sleep_value_table[] = { {0, 0}, |
| {500, BMC150_ACCEL_SLEEP_500_MICRO}, |
| {1000, BMC150_ACCEL_SLEEP_1_MS}, |
| {2000, BMC150_ACCEL_SLEEP_2_MS}, |
| {4000, BMC150_ACCEL_SLEEP_4_MS}, |
| {6000, BMC150_ACCEL_SLEEP_6_MS}, |
| {10000, BMC150_ACCEL_SLEEP_10_MS}, |
| {25000, BMC150_ACCEL_SLEEP_25_MS}, |
| {50000, BMC150_ACCEL_SLEEP_50_MS}, |
| {100000, BMC150_ACCEL_SLEEP_100_MS}, |
| {500000, BMC150_ACCEL_SLEEP_500_MS}, |
| {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; |
| |
| const struct regmap_config bmc150_regmap_conf = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = 0x3f, |
| }; |
| EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150); |
| |
| static int bmc150_accel_set_mode(struct bmc150_accel_data *data, |
| enum bmc150_power_modes mode, |
| int dur_us) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int i; |
| int ret; |
| u8 lpw_bits; |
| int dur_val = -1; |
| |
| if (dur_us > 0) { |
| for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); |
| ++i) { |
| if (bmc150_accel_sleep_value_table[i].sleep_dur == |
| dur_us) |
| dur_val = |
| bmc150_accel_sleep_value_table[i].reg_value; |
| } |
| } else { |
| dur_val = 0; |
| } |
| |
| if (dur_val < 0) |
| return -EINVAL; |
| |
| lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; |
| lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); |
| |
| dev_dbg(dev, "Set Mode bits %x\n", lpw_bits); |
| |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_pmu_lpw\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, |
| int val2) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { |
| if (bmc150_accel_samp_freq_table[i].val == val && |
| bmc150_accel_samp_freq_table[i].val2 == val2) { |
| ret = regmap_write(data->regmap, |
| BMC150_ACCEL_REG_PMU_BW, |
| bmc150_accel_samp_freq_table[i].bw_bits); |
| if (ret < 0) |
| return ret; |
| |
| data->bw_bits = |
| bmc150_accel_samp_freq_table[i].bw_bits; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int bmc150_accel_update_slope(struct bmc150_accel_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6, |
| data->slope_thres); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_int_6\n"); |
| return ret; |
| } |
| |
| ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5, |
| BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur); |
| if (ret < 0) { |
| dev_err(dev, "Error updating reg_int_5\n"); |
| return ret; |
| } |
| |
| dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur); |
| |
| return ret; |
| } |
| |
| static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, |
| bool state) |
| { |
| if (state) |
| return bmc150_accel_update_slope(t->data); |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, |
| int *val2) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { |
| if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { |
| *val = bmc150_accel_samp_freq_table[i].val; |
| *val2 = bmc150_accel_samp_freq_table[i].val2; |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_PM |
| static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { |
| if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) |
| return bmc150_accel_sample_upd_time[i].msec; |
| } |
| |
| return BMC150_ACCEL_MAX_STARTUP_TIME_MS; |
| } |
| |
| static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| |
| if (on) { |
| ret = pm_runtime_resume_and_get(dev); |
| } else { |
| pm_runtime_mark_last_busy(dev); |
| ret = pm_runtime_put_autosuspend(dev); |
| } |
| |
| if (ret < 0) { |
| dev_err(dev, |
| "Failed: %s for %d\n", __func__, on); |
| return ret; |
| } |
| |
| return 0; |
| } |
| #else |
| static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * Support for getting accelerometer information from BOSC0200 ACPI nodes. |
| * |
| * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree |
| * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display |
| * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object |
| * contains the mount-matrix for the sensor in the display and ROMK contains |
| * the mount-matrix for the sensor in the base. On devices using a single |
| * sensor there is a ROTM ACPI object which contains the mount-matrix. |
| * |
| * Here is an incomplete list of devices known to use 1 of these setups: |
| * |
| * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices: |
| * Lenovo Thinkpad Yoga 11e 3th gen |
| * Lenovo Thinkpad Yoga 11e 4th gen |
| * |
| * Tablets using a single accelerometer using ROTM for the mount-matrix: |
| * Chuwi Hi8 Pro (CWI513) |
| * Chuwi Vi8 Plus (CWI519) |
| * Chuwi Hi13 |
| * Irbis TW90 |
| * Jumper EZpad mini 3 |
| * Onda V80 plus |
| * Predia Basic Tablet |
| */ |
| static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev, |
| struct iio_mount_matrix *orientation) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| acpi_handle handle = ACPI_HANDLE(dev); |
| char *name, *alt_name, *label; |
| |
| if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) { |
| alt_name = "ROMK"; |
| label = "accel-base"; |
| } else { |
| alt_name = "ROMS"; |
| label = "accel-display"; |
| } |
| |
| if (acpi_has_method(handle, "ROTM")) { |
| name = "ROTM"; |
| } else if (acpi_has_method(handle, alt_name)) { |
| name = alt_name; |
| indio_dev->label = label; |
| } else { |
| return false; |
| } |
| |
| return iio_read_acpi_mount_matrix(dev, orientation, name); |
| } |
| |
| static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev, |
| struct iio_mount_matrix *orientation) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| |
| if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0) |
| indio_dev->label = "accel-base"; |
| else |
| indio_dev->label = "accel-display"; |
| |
| return false; /* DUAL250E fwnodes have no mount matrix info */ |
| } |
| |
| static bool bmc150_apply_acpi_orientation(struct device *dev, |
| struct iio_mount_matrix *orientation) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(dev); |
| |
| if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL)) |
| return bmc150_apply_bosc0200_acpi_orientation(dev, orientation); |
| |
| if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL)) |
| return bmc150_apply_dual250e_acpi_orientation(dev, orientation); |
| |
| return false; |
| } |
| #else |
| static bool bmc150_apply_acpi_orientation(struct device *dev, |
| struct iio_mount_matrix *orientation) |
| { |
| return false; |
| } |
| #endif |
| |
| struct bmc150_accel_interrupt_info { |
| u8 map_reg; |
| u8 map_bitmask; |
| u8 en_reg; |
| u8 en_bitmask; |
| }; |
| |
| static const struct bmc150_accel_interrupt_info |
| bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = { |
| { /* data ready interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_1, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_1, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, |
| }, |
| { /* motion interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_0, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_0, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | |
| BMC150_ACCEL_INT_EN_BIT_SLP_Y | |
| BMC150_ACCEL_INT_EN_BIT_SLP_Z |
| }, |
| { /* fifo watermark interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_1, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_1, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, |
| }, |
| }; |
| |
| static const struct bmc150_accel_interrupt_info |
| bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = { |
| { /* data ready interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_1, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_1, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, |
| }, |
| { /* motion interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_2, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_0, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | |
| BMC150_ACCEL_INT_EN_BIT_SLP_Y | |
| BMC150_ACCEL_INT_EN_BIT_SLP_Z |
| }, |
| { /* fifo watermark interrupt */ |
| .map_reg = BMC150_ACCEL_REG_INT_MAP_1, |
| .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM, |
| .en_reg = BMC150_ACCEL_REG_INT_EN_1, |
| .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, |
| }, |
| }; |
| |
| static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, |
| struct bmc150_accel_data *data, int irq) |
| { |
| const struct bmc150_accel_interrupt_info *irq_info = NULL; |
| struct device *dev = regmap_get_device(data->regmap); |
| int i; |
| |
| /* |
| * For now we map all interrupts to the same output pin. |
| * However, some boards may have just INT2 (and not INT1) connected, |
| * so we try to detect which IRQ it is based on the interrupt-names. |
| * Without interrupt-names, we assume the irq belongs to INT1. |
| */ |
| irq_info = bmc150_accel_interrupts_int1; |
| if (data->type == BOSCH_BMC156 || |
| irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2")) |
| irq_info = bmc150_accel_interrupts_int2; |
| |
| for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) |
| data->interrupts[i].info = &irq_info[i]; |
| } |
| |
| static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, |
| bool state) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| struct bmc150_accel_interrupt *intr = &data->interrupts[i]; |
| const struct bmc150_accel_interrupt_info *info = intr->info; |
| int ret; |
| |
| if (state) { |
| if (atomic_inc_return(&intr->users) > 1) |
| return 0; |
| } else { |
| if (atomic_dec_return(&intr->users) > 0) |
| return 0; |
| } |
| |
| /* |
| * We will expect the enable and disable to do operation in reverse |
| * order. This will happen here anyway, as our resume operation uses |
| * sync mode runtime pm calls. The suspend operation will be delayed |
| * by autosuspend delay. |
| * So the disable operation will still happen in reverse order of |
| * enable operation. When runtime pm is disabled the mode is always on, |
| * so sequence doesn't matter. |
| */ |
| ret = bmc150_accel_set_power_state(data, state); |
| if (ret < 0) |
| return ret; |
| |
| /* map the interrupt to the appropriate pins */ |
| ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask, |
| (state ? info->map_bitmask : 0)); |
| if (ret < 0) { |
| dev_err(dev, "Error updating reg_int_map\n"); |
| goto out_fix_power_state; |
| } |
| |
| /* enable/disable the interrupt */ |
| ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask, |
| (state ? info->en_bitmask : 0)); |
| if (ret < 0) { |
| dev_err(dev, "Error updating reg_int_en\n"); |
| goto out_fix_power_state; |
| } |
| |
| return 0; |
| |
| out_fix_power_state: |
| bmc150_accel_set_power_state(data, false); |
| return ret; |
| } |
| |
| static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret, i; |
| |
| for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { |
| if (data->chip_info->scale_table[i].scale == val) { |
| ret = regmap_write(data->regmap, |
| BMC150_ACCEL_REG_PMU_RANGE, |
| data->chip_info->scale_table[i].reg_range); |
| if (ret < 0) { |
| dev_err(dev, "Error writing pmu_range\n"); |
| return ret; |
| } |
| |
| data->range = data->chip_info->scale_table[i].reg_range; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| unsigned int value; |
| |
| mutex_lock(&data->mutex); |
| |
| ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value); |
| if (ret < 0) { |
| dev_err(dev, "Error reading reg_temp\n"); |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| *val = sign_extend32(value, 7); |
| |
| mutex_unlock(&data->mutex); |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int bmc150_accel_get_axis(struct bmc150_accel_data *data, |
| struct iio_chan_spec const *chan, |
| int *val) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| int axis = chan->scan_index; |
| __le16 raw_val; |
| |
| mutex_lock(&data->mutex); |
| ret = bmc150_accel_set_power_state(data, true); |
| if (ret < 0) { |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| |
| ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis), |
| &raw_val, sizeof(raw_val)); |
| if (ret < 0) { |
| dev_err(dev, "Error reading axis %d\n", axis); |
| bmc150_accel_set_power_state(data, false); |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift, |
| chan->scan_type.realbits - 1); |
| ret = bmc150_accel_set_power_state(data, false); |
| mutex_unlock(&data->mutex); |
| if (ret < 0) |
| return ret; |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int bmc150_accel_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| switch (chan->type) { |
| case IIO_TEMP: |
| return bmc150_accel_get_temp(data, val); |
| case IIO_ACCEL: |
| if (iio_buffer_enabled(indio_dev)) |
| return -EBUSY; |
| else |
| return bmc150_accel_get_axis(data, chan, val); |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_OFFSET: |
| if (chan->type == IIO_TEMP) { |
| *val = BMC150_ACCEL_TEMP_CENTER_VAL; |
| return IIO_VAL_INT; |
| } else { |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_SCALE: |
| *val = 0; |
| switch (chan->type) { |
| case IIO_TEMP: |
| *val2 = 500000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_ACCEL: |
| { |
| int i; |
| const struct bmc150_scale_info *si; |
| int st_size = ARRAY_SIZE(data->chip_info->scale_table); |
| |
| for (i = 0; i < st_size; ++i) { |
| si = &data->chip_info->scale_table[i]; |
| if (si->reg_range == data->range) { |
| *val2 = si->scale; |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| } |
| return -EINVAL; |
| } |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| mutex_lock(&data->mutex); |
| ret = bmc150_accel_get_bw(data, val, val2); |
| mutex_unlock(&data->mutex); |
| return ret; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bmc150_accel_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| mutex_lock(&data->mutex); |
| ret = bmc150_accel_set_bw(data, val, val2); |
| mutex_unlock(&data->mutex); |
| break; |
| case IIO_CHAN_INFO_SCALE: |
| if (val) |
| return -EINVAL; |
| |
| mutex_lock(&data->mutex); |
| ret = bmc150_accel_set_scale(data, val2); |
| mutex_unlock(&data->mutex); |
| return ret; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int bmc150_accel_read_event(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| enum iio_event_info info, |
| int *val, int *val2) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| *val2 = 0; |
| switch (info) { |
| case IIO_EV_INFO_VALUE: |
| *val = data->slope_thres; |
| break; |
| case IIO_EV_INFO_PERIOD: |
| *val = data->slope_dur; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int bmc150_accel_write_event(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| enum iio_event_info info, |
| int val, int val2) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| if (data->ev_enable_state) |
| return -EBUSY; |
| |
| switch (info) { |
| case IIO_EV_INFO_VALUE: |
| data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK; |
| break; |
| case IIO_EV_INFO_PERIOD: |
| data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| return data->ev_enable_state; |
| } |
| |
| static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| int state) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| if (state == data->ev_enable_state) |
| return 0; |
| |
| mutex_lock(&data->mutex); |
| |
| ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, |
| state); |
| if (ret < 0) { |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| |
| data->ev_enable_state = state; |
| mutex_unlock(&data->mutex); |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, |
| struct iio_trigger *trig) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int i; |
| |
| for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { |
| if (data->triggers[i].indio_trig == trig) |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct iio_dev *indio_dev = dev_to_iio_dev(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int wm; |
| |
| mutex_lock(&data->mutex); |
| wm = data->watermark; |
| mutex_unlock(&data->mutex); |
| |
| return sprintf(buf, "%d\n", wm); |
| } |
| |
| static ssize_t bmc150_accel_get_fifo_state(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct iio_dev *indio_dev = dev_to_iio_dev(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| bool state; |
| |
| mutex_lock(&data->mutex); |
| state = data->fifo_mode; |
| mutex_unlock(&data->mutex); |
| |
| return sprintf(buf, "%d\n", state); |
| } |
| |
| static const struct iio_mount_matrix * |
| bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| return &data->orientation; |
| } |
| |
| static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = { |
| IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix), |
| { } |
| }; |
| |
| IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); |
| IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, |
| __stringify(BMC150_ACCEL_FIFO_LENGTH)); |
| static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, |
| bmc150_accel_get_fifo_state, NULL, 0); |
| static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, |
| bmc150_accel_get_fifo_watermark, NULL, 0); |
| |
| static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = { |
| &iio_dev_attr_hwfifo_watermark_min, |
| &iio_dev_attr_hwfifo_watermark_max, |
| &iio_dev_attr_hwfifo_watermark, |
| &iio_dev_attr_hwfifo_enabled, |
| NULL, |
| }; |
| |
| static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| if (val > BMC150_ACCEL_FIFO_LENGTH) |
| val = BMC150_ACCEL_FIFO_LENGTH; |
| |
| mutex_lock(&data->mutex); |
| data->watermark = val; |
| mutex_unlock(&data->mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * We must read at least one full frame in one burst, otherwise the rest of the |
| * frame data is discarded. |
| */ |
| static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data, |
| char *buffer, int samples) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int sample_length = 3 * 2; |
| int ret; |
| int total_length = samples * sample_length; |
| |
| ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA, |
| buffer, total_length); |
| if (ret) |
| dev_err(dev, |
| "Error transferring data from fifo: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, |
| unsigned samples, bool irq) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret, i; |
| u8 count; |
| u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; |
| int64_t tstamp; |
| uint64_t sample_period; |
| unsigned int val; |
| |
| ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val); |
| if (ret < 0) { |
| dev_err(dev, "Error reading reg_fifo_status\n"); |
| return ret; |
| } |
| |
| count = val & 0x7F; |
| |
| if (!count) |
| return 0; |
| |
| /* |
| * If we getting called from IRQ handler we know the stored timestamp is |
| * fairly accurate for the last stored sample. Otherwise, if we are |
| * called as a result of a read operation from userspace and hence |
| * before the watermark interrupt was triggered, take a timestamp |
| * now. We can fall anywhere in between two samples so the error in this |
| * case is at most one sample period. |
| */ |
| if (!irq) { |
| data->old_timestamp = data->timestamp; |
| data->timestamp = iio_get_time_ns(indio_dev); |
| } |
| |
| /* |
| * Approximate timestamps for each of the sample based on the sampling |
| * frequency, timestamp for last sample and number of samples. |
| * |
| * Note that we can't use the current bandwidth settings to compute the |
| * sample period because the sample rate varies with the device |
| * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That |
| * small variation adds when we store a large number of samples and |
| * creates significant jitter between the last and first samples in |
| * different batches (e.g. 32ms vs 21ms). |
| * |
| * To avoid this issue we compute the actual sample period ourselves |
| * based on the timestamp delta between the last two flush operations. |
| */ |
| sample_period = (data->timestamp - data->old_timestamp); |
| do_div(sample_period, count); |
| tstamp = data->timestamp - (count - 1) * sample_period; |
| |
| if (samples && count > samples) |
| count = samples; |
| |
| ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count); |
| if (ret) |
| return ret; |
| |
| /* |
| * Ideally we want the IIO core to handle the demux when running in fifo |
| * mode but not when running in triggered buffer mode. Unfortunately |
| * this does not seem to be possible, so stick with driver demux for |
| * now. |
| */ |
| for (i = 0; i < count; i++) { |
| int j, bit; |
| |
| j = 0; |
| iio_for_each_active_channel(indio_dev, bit) |
| memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit], |
| sizeof(data->scan.channels[0])); |
| |
| iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, |
| tstamp); |
| |
| tstamp += sample_period; |
| } |
| |
| return count; |
| } |
| |
| static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( |
| "15.620000 31.260000 62.50000 125 250 500 1000 2000"); |
| |
| static struct attribute *bmc150_accel_attributes[] = { |
| &iio_const_attr_sampling_frequency_available.dev_attr.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group bmc150_accel_attrs_group = { |
| .attrs = bmc150_accel_attributes, |
| }; |
| |
| static const struct iio_event_spec bmc150_accel_event = { |
| .type = IIO_EV_TYPE_ROC, |
| .dir = IIO_EV_DIR_EITHER, |
| .mask_separate = BIT(IIO_EV_INFO_VALUE) | |
| BIT(IIO_EV_INFO_ENABLE) | |
| BIT(IIO_EV_INFO_PERIOD) |
| }; |
| |
| #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ |
| .type = IIO_ACCEL, \ |
| .modified = 1, \ |
| .channel2 = IIO_MOD_##_axis, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_SAMP_FREQ), \ |
| .scan_index = AXIS_##_axis, \ |
| .scan_type = { \ |
| .sign = 's', \ |
| .realbits = (bits), \ |
| .storagebits = 16, \ |
| .shift = 16 - (bits), \ |
| .endianness = IIO_LE, \ |
| }, \ |
| .ext_info = bmc150_accel_ext_info, \ |
| .event_spec = &bmc150_accel_event, \ |
| .num_event_specs = 1 \ |
| } |
| |
| #define BMC150_ACCEL_CHANNELS(bits) { \ |
| { \ |
| .type = IIO_TEMP, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_OFFSET), \ |
| .scan_index = -1, \ |
| }, \ |
| BMC150_ACCEL_CHANNEL(X, bits), \ |
| BMC150_ACCEL_CHANNEL(Y, bits), \ |
| BMC150_ACCEL_CHANNEL(Z, bits), \ |
| IIO_CHAN_SOFT_TIMESTAMP(3), \ |
| } |
| |
| static const struct iio_chan_spec bma222e_accel_channels[] = |
| BMC150_ACCEL_CHANNELS(8); |
| static const struct iio_chan_spec bma250e_accel_channels[] = |
| BMC150_ACCEL_CHANNELS(10); |
| static const struct iio_chan_spec bmc150_accel_channels[] = |
| BMC150_ACCEL_CHANNELS(12); |
| static const struct iio_chan_spec bma280_accel_channels[] = |
| BMC150_ACCEL_CHANNELS(14); |
| |
| /* |
| * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed |
| * over the amount of bits (see above). The scale table can be calculated using |
| * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 |
| * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2 |
| * Multiply 10^6 and round to get the values listed below. |
| */ |
| static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { |
| { |
| .name = "BMA222", |
| .chip_id = 0x03, |
| .channels = bma222e_accel_channels, |
| .num_channels = ARRAY_SIZE(bma222e_accel_channels), |
| .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, |
| {306458, BMC150_ACCEL_DEF_RANGE_4G}, |
| {612916, BMC150_ACCEL_DEF_RANGE_8G}, |
| {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, |
| }, |
| { |
| .name = "BMA222E", |
| .chip_id = 0xF8, |
| .channels = bma222e_accel_channels, |
| .num_channels = ARRAY_SIZE(bma222e_accel_channels), |
| .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, |
| {306458, BMC150_ACCEL_DEF_RANGE_4G}, |
| {612916, BMC150_ACCEL_DEF_RANGE_8G}, |
| {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, |
| }, |
| { |
| .name = "BMA250E", |
| .chip_id = 0xF9, |
| .channels = bma250e_accel_channels, |
| .num_channels = ARRAY_SIZE(bma250e_accel_channels), |
| .scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G}, |
| {76614, BMC150_ACCEL_DEF_RANGE_4G}, |
| {153229, BMC150_ACCEL_DEF_RANGE_8G}, |
| {306458, BMC150_ACCEL_DEF_RANGE_16G} }, |
| }, |
| { |
| .name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055", |
| .chip_id = 0xFA, |
| .channels = bmc150_accel_channels, |
| .num_channels = ARRAY_SIZE(bmc150_accel_channels), |
| .scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G}, |
| {19154, BMC150_ACCEL_DEF_RANGE_4G}, |
| {38307, BMC150_ACCEL_DEF_RANGE_8G}, |
| {76614, BMC150_ACCEL_DEF_RANGE_16G} }, |
| }, |
| { |
| .name = "BMA280", |
| .chip_id = 0xFB, |
| .channels = bma280_accel_channels, |
| .num_channels = ARRAY_SIZE(bma280_accel_channels), |
| .scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G}, |
| {4788, BMC150_ACCEL_DEF_RANGE_4G}, |
| {9577, BMC150_ACCEL_DEF_RANGE_8G}, |
| {19154, BMC150_ACCEL_DEF_RANGE_16G} }, |
| }, |
| }; |
| |
| static const struct iio_info bmc150_accel_info = { |
| .attrs = &bmc150_accel_attrs_group, |
| .read_raw = bmc150_accel_read_raw, |
| .write_raw = bmc150_accel_write_raw, |
| .read_event_value = bmc150_accel_read_event, |
| .write_event_value = bmc150_accel_write_event, |
| .write_event_config = bmc150_accel_write_event_config, |
| .read_event_config = bmc150_accel_read_event_config, |
| }; |
| |
| static const struct iio_info bmc150_accel_info_fifo = { |
| .attrs = &bmc150_accel_attrs_group, |
| .read_raw = bmc150_accel_read_raw, |
| .write_raw = bmc150_accel_write_raw, |
| .read_event_value = bmc150_accel_read_event, |
| .write_event_value = bmc150_accel_write_event, |
| .write_event_config = bmc150_accel_write_event_config, |
| .read_event_config = bmc150_accel_read_event_config, |
| .validate_trigger = bmc150_accel_validate_trigger, |
| .hwfifo_set_watermark = bmc150_accel_set_watermark, |
| .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, |
| }; |
| |
| static const unsigned long bmc150_accel_scan_masks[] = { |
| BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), |
| 0}; |
| |
| static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) |
| { |
| struct iio_poll_func *pf = p; |
| struct iio_dev *indio_dev = pf->indio_dev; |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L, |
| data->buffer, AXIS_MAX * 2); |
| mutex_unlock(&data->mutex); |
| if (ret < 0) |
| goto err_read; |
| |
| iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, |
| pf->timestamp); |
| err_read: |
| iio_trigger_notify_done(indio_dev->trig); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void bmc150_accel_trig_reen(struct iio_trigger *trig) |
| { |
| struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); |
| struct bmc150_accel_data *data = t->data; |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret; |
| |
| /* new data interrupts don't need ack */ |
| if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) |
| return; |
| |
| mutex_lock(&data->mutex); |
| /* clear any latched interrupt */ |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, |
| BMC150_ACCEL_INT_MODE_LATCH_INT | |
| BMC150_ACCEL_INT_MODE_LATCH_RESET); |
| mutex_unlock(&data->mutex); |
| if (ret < 0) |
| dev_err(dev, "Error writing reg_int_rst_latch\n"); |
| } |
| |
| static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, |
| bool state) |
| { |
| struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); |
| struct bmc150_accel_data *data = t->data; |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| |
| if (t->enabled == state) { |
| mutex_unlock(&data->mutex); |
| return 0; |
| } |
| |
| if (t->setup) { |
| ret = t->setup(t, state); |
| if (ret < 0) { |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| } |
| |
| ret = bmc150_accel_set_interrupt(data, t->intr, state); |
| if (ret < 0) { |
| mutex_unlock(&data->mutex); |
| return ret; |
| } |
| |
| t->enabled = state; |
| |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static const struct iio_trigger_ops bmc150_accel_trigger_ops = { |
| .set_trigger_state = bmc150_accel_trigger_set_state, |
| .reenable = bmc150_accel_trig_reen, |
| }; |
| |
| static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| struct device *dev = regmap_get_device(data->regmap); |
| int dir; |
| int ret; |
| unsigned int val; |
| |
| ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val); |
| if (ret < 0) { |
| dev_err(dev, "Error reading reg_int_status_2\n"); |
| return ret; |
| } |
| |
| if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) |
| dir = IIO_EV_DIR_FALLING; |
| else |
| dir = IIO_EV_DIR_RISING; |
| |
| if (val & BMC150_ACCEL_ANY_MOTION_BIT_X) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_X, |
| IIO_EV_TYPE_ROC, |
| dir), |
| data->timestamp); |
| |
| if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_Y, |
| IIO_EV_TYPE_ROC, |
| dir), |
| data->timestamp); |
| |
| if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_Z, |
| IIO_EV_TYPE_ROC, |
| dir), |
| data->timestamp); |
| |
| return ret; |
| } |
| |
| static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) |
| { |
| struct iio_dev *indio_dev = private; |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| struct device *dev = regmap_get_device(data->regmap); |
| bool ack = false; |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| |
| if (data->fifo_mode) { |
| ret = __bmc150_accel_fifo_flush(indio_dev, |
| BMC150_ACCEL_FIFO_LENGTH, true); |
| if (ret > 0) |
| ack = true; |
| } |
| |
| if (data->ev_enable_state) { |
| ret = bmc150_accel_handle_roc_event(indio_dev); |
| if (ret > 0) |
| ack = true; |
| } |
| |
| if (ack) { |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, |
| BMC150_ACCEL_INT_MODE_LATCH_INT | |
| BMC150_ACCEL_INT_MODE_LATCH_RESET); |
| if (ret) |
| dev_err(dev, "Error writing reg_int_rst_latch\n"); |
| |
| ret = IRQ_HANDLED; |
| } else { |
| ret = IRQ_NONE; |
| } |
| |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) |
| { |
| struct iio_dev *indio_dev = private; |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| bool ack = false; |
| int i; |
| |
| data->old_timestamp = data->timestamp; |
| data->timestamp = iio_get_time_ns(indio_dev); |
| |
| for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { |
| if (data->triggers[i].enabled) { |
| iio_trigger_poll(data->triggers[i].indio_trig); |
| ack = true; |
| break; |
| } |
| } |
| |
| if (data->ev_enable_state || data->fifo_mode) |
| return IRQ_WAKE_THREAD; |
| |
| if (ack) |
| return IRQ_HANDLED; |
| |
| return IRQ_NONE; |
| } |
| |
| static const struct { |
| int intr; |
| const char *name; |
| int (*setup)(struct bmc150_accel_trigger *t, bool state); |
| } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { |
| { |
| .intr = 0, |
| .name = "%s-dev%d", |
| }, |
| { |
| .intr = 1, |
| .name = "%s-any-motion-dev%d", |
| .setup = bmc150_accel_any_motion_setup, |
| }, |
| }; |
| |
| static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, |
| int from) |
| { |
| int i; |
| |
| for (i = from; i >= 0; i--) { |
| if (data->triggers[i].indio_trig) { |
| iio_trigger_unregister(data->triggers[i].indio_trig); |
| data->triggers[i].indio_trig = NULL; |
| } |
| } |
| } |
| |
| static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, |
| struct bmc150_accel_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int i, ret; |
| |
| for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { |
| struct bmc150_accel_trigger *t = &data->triggers[i]; |
| |
| t->indio_trig = devm_iio_trigger_alloc(dev, |
| bmc150_accel_triggers[i].name, |
| indio_dev->name, |
| iio_device_id(indio_dev)); |
| if (!t->indio_trig) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| t->indio_trig->ops = &bmc150_accel_trigger_ops; |
| t->intr = bmc150_accel_triggers[i].intr; |
| t->data = data; |
| t->setup = bmc150_accel_triggers[i].setup; |
| iio_trigger_set_drvdata(t->indio_trig, t); |
| |
| ret = iio_trigger_register(t->indio_trig); |
| if (ret) |
| break; |
| } |
| |
| if (ret) |
| bmc150_accel_unregister_triggers(data, i - 1); |
| |
| return ret; |
| } |
| |
| #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 |
| #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 |
| #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 |
| |
| static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; |
| int ret; |
| |
| ret = regmap_write(data->regmap, reg, data->fifo_mode); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_fifo_config1\n"); |
| return ret; |
| } |
| |
| if (!data->fifo_mode) |
| return 0; |
| |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0, |
| data->watermark); |
| if (ret < 0) |
| dev_err(dev, "Error writing reg_fifo_config0\n"); |
| |
| return ret; |
| } |
| |
| static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| return bmc150_accel_set_power_state(data, true); |
| } |
| |
| static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret = 0; |
| |
| if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) |
| return 0; |
| |
| mutex_lock(&data->mutex); |
| |
| if (!data->watermark) |
| goto out; |
| |
| ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, |
| true); |
| if (ret) |
| goto out; |
| |
| data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; |
| |
| ret = bmc150_accel_fifo_set_mode(data); |
| if (ret) { |
| data->fifo_mode = 0; |
| bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, |
| false); |
| } |
| |
| out: |
| mutex_unlock(&data->mutex); |
| |
| return ret; |
| } |
| |
| static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) |
| return 0; |
| |
| mutex_lock(&data->mutex); |
| |
| if (!data->fifo_mode) |
| goto out; |
| |
| bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); |
| __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); |
| data->fifo_mode = 0; |
| bmc150_accel_fifo_set_mode(data); |
| |
| out: |
| mutex_unlock(&data->mutex); |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev) |
| { |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| return bmc150_accel_set_power_state(data, false); |
| } |
| |
| static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { |
| .preenable = bmc150_accel_buffer_preenable, |
| .postenable = bmc150_accel_buffer_postenable, |
| .predisable = bmc150_accel_buffer_predisable, |
| .postdisable = bmc150_accel_buffer_postdisable, |
| }; |
| |
| static int bmc150_accel_chip_init(struct bmc150_accel_data *data) |
| { |
| struct device *dev = regmap_get_device(data->regmap); |
| int ret, i; |
| unsigned int val; |
| |
| /* |
| * Reset chip to get it in a known good state. A delay of 1.8ms after |
| * reset is required according to the data sheets of supported chips. |
| */ |
| regmap_write(data->regmap, BMC150_ACCEL_REG_RESET, |
| BMC150_ACCEL_RESET_VAL); |
| usleep_range(1800, 2500); |
| |
| ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val); |
| if (ret < 0) { |
| dev_err(dev, "Error: Reading chip id\n"); |
| return ret; |
| } |
| |
| dev_dbg(dev, "Chip Id %x\n", val); |
| for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) { |
| if (bmc150_accel_chip_info_tbl[i].chip_id == val) { |
| data->chip_info = &bmc150_accel_chip_info_tbl[i]; |
| break; |
| } |
| } |
| |
| if (!data->chip_info) { |
| dev_err(dev, "Invalid chip %x\n", val); |
| return -ENODEV; |
| } |
| |
| ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); |
| if (ret < 0) |
| return ret; |
| |
| /* Set Bandwidth */ |
| ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); |
| if (ret < 0) |
| return ret; |
| |
| /* Set Default Range */ |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, |
| BMC150_ACCEL_DEF_RANGE_4G); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_pmu_range\n"); |
| return ret; |
| } |
| |
| data->range = BMC150_ACCEL_DEF_RANGE_4G; |
| |
| /* Set default slope duration and thresholds */ |
| data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; |
| data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; |
| ret = bmc150_accel_update_slope(data); |
| if (ret < 0) |
| return ret; |
| |
| /* Set default as latched interrupts */ |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, |
| BMC150_ACCEL_INT_MODE_LATCH_INT | |
| BMC150_ACCEL_INT_MODE_LATCH_RESET); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_int_rst_latch\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, |
| enum bmc150_type type, const char *name, |
| bool block_supported) |
| { |
| const struct iio_dev_attr **fifo_attrs; |
| struct bmc150_accel_data *data; |
| struct iio_dev *indio_dev; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| dev_set_drvdata(dev, indio_dev); |
| |
| data->regmap = regmap; |
| data->type = type; |
| |
| if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) { |
| ret = iio_read_mount_matrix(dev, &data->orientation); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * VDD is the analog and digital domain voltage supply |
| * VDDIO is the digital I/O voltage supply |
| */ |
| data->regulators[0].supply = "vdd"; |
| data->regulators[1].supply = "vddio"; |
| ret = devm_regulator_bulk_get(dev, |
| ARRAY_SIZE(data->regulators), |
| data->regulators); |
| if (ret) |
| return dev_err_probe(dev, ret, "failed to get regulators\n"); |
| |
| ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| if (ret) { |
| dev_err(dev, "failed to enable regulators: %d\n", ret); |
| return ret; |
| } |
| /* |
| * 2ms or 3ms power-on time according to datasheets, let's better |
| * be safe than sorry and set this delay to 5ms. |
| */ |
| msleep(5); |
| |
| ret = bmc150_accel_chip_init(data); |
| if (ret < 0) |
| goto err_disable_regulators; |
| |
| mutex_init(&data->mutex); |
| |
| indio_dev->channels = data->chip_info->channels; |
| indio_dev->num_channels = data->chip_info->num_channels; |
| indio_dev->name = name ? name : data->chip_info->name; |
| indio_dev->available_scan_masks = bmc150_accel_scan_masks; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->info = &bmc150_accel_info; |
| |
| if (block_supported) { |
| indio_dev->modes |= INDIO_BUFFER_SOFTWARE; |
| indio_dev->info = &bmc150_accel_info_fifo; |
| fifo_attrs = bmc150_accel_fifo_attributes; |
| } else { |
| fifo_attrs = NULL; |
| } |
| |
| ret = iio_triggered_buffer_setup_ext(indio_dev, |
| &iio_pollfunc_store_time, |
| bmc150_accel_trigger_handler, |
| IIO_BUFFER_DIRECTION_IN, |
| &bmc150_accel_buffer_ops, |
| fifo_attrs); |
| if (ret < 0) { |
| dev_err(dev, "Failed: iio triggered buffer setup\n"); |
| goto err_disable_regulators; |
| } |
| |
| if (irq > 0) { |
| ret = devm_request_threaded_irq(dev, irq, |
| bmc150_accel_irq_handler, |
| bmc150_accel_irq_thread_handler, |
| IRQF_TRIGGER_RISING, |
| BMC150_ACCEL_IRQ_NAME, |
| indio_dev); |
| if (ret) |
| goto err_buffer_cleanup; |
| |
| /* |
| * Set latched mode interrupt. While certain interrupts are |
| * non-latched regardless of this settings (e.g. new data) we |
| * want to use latch mode when we can to prevent interrupt |
| * flooding. |
| */ |
| ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, |
| BMC150_ACCEL_INT_MODE_LATCH_RESET); |
| if (ret < 0) { |
| dev_err(dev, "Error writing reg_int_rst_latch\n"); |
| goto err_buffer_cleanup; |
| } |
| |
| bmc150_accel_interrupts_setup(indio_dev, data, irq); |
| |
| ret = bmc150_accel_triggers_setup(indio_dev, data); |
| if (ret) |
| goto err_buffer_cleanup; |
| } |
| |
| ret = pm_runtime_set_active(dev); |
| if (ret) |
| goto err_trigger_unregister; |
| |
| pm_runtime_enable(dev); |
| pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS); |
| pm_runtime_use_autosuspend(dev); |
| |
| ret = iio_device_register(indio_dev); |
| if (ret < 0) { |
| dev_err(dev, "Unable to register iio device\n"); |
| goto err_pm_cleanup; |
| } |
| |
| return 0; |
| |
| err_pm_cleanup: |
| pm_runtime_dont_use_autosuspend(dev); |
| pm_runtime_disable(dev); |
| err_trigger_unregister: |
| bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); |
| err_buffer_cleanup: |
| iio_triggered_buffer_cleanup(indio_dev); |
| err_disable_regulators: |
| regulator_bulk_disable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150); |
| |
| void bmc150_accel_core_remove(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| iio_device_unregister(indio_dev); |
| |
| pm_runtime_disable(dev); |
| pm_runtime_set_suspended(dev); |
| |
| bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); |
| |
| iio_triggered_buffer_cleanup(indio_dev); |
| |
| mutex_lock(&data->mutex); |
| bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); |
| mutex_unlock(&data->mutex); |
| |
| regulator_bulk_disable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| } |
| EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150); |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int bmc150_accel_suspend(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| mutex_lock(&data->mutex); |
| bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); |
| mutex_unlock(&data->mutex); |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_resume(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| |
| mutex_lock(&data->mutex); |
| bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); |
| bmc150_accel_fifo_set_mode(data); |
| mutex_unlock(&data->mutex); |
| |
| if (data->resume_callback) |
| data->resume_callback(dev); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM |
| static int bmc150_accel_runtime_suspend(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); |
| if (ret < 0) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| static int bmc150_accel_runtime_resume(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmc150_accel_data *data = iio_priv(indio_dev); |
| int ret; |
| int sleep_val; |
| |
| ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); |
| if (ret < 0) |
| return ret; |
| ret = bmc150_accel_fifo_set_mode(data); |
| if (ret < 0) |
| return ret; |
| |
| sleep_val = bmc150_accel_get_startup_times(data); |
| if (sleep_val < 20) |
| usleep_range(sleep_val * 1000, 20000); |
| else |
| msleep_interruptible(sleep_val); |
| |
| return 0; |
| } |
| #endif |
| |
| const struct dev_pm_ops bmc150_accel_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) |
| SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, |
| bmc150_accel_runtime_resume, NULL) |
| }; |
| EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150); |
| |
| MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("BMC150 accelerometer driver"); |