| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Xilinx XADC driver |
| * |
| * Copyright 2013-2014 Analog Devices Inc. |
| * Author: Lars-Peter Clausen <lars@metafoo.de> |
| * |
| * Documentation for the parts can be found at: |
| * - XADC hardmacro: Xilinx UG480 |
| * - ZYNQ XADC interface: Xilinx UG585 |
| * - AXI XADC interface: Xilinx PG019 |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/overflow.h> |
| #include <linux/platform_device.h> |
| #include <linux/property.h> |
| #include <linux/slab.h> |
| #include <linux/sysfs.h> |
| |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/events.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| #include <linux/iio/trigger.h> |
| #include <linux/iio/trigger_consumer.h> |
| #include <linux/iio/triggered_buffer.h> |
| |
| #include "xilinx-xadc.h" |
| |
| static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500; |
| |
| /* ZYNQ register definitions */ |
| #define XADC_ZYNQ_REG_CFG 0x00 |
| #define XADC_ZYNQ_REG_INTSTS 0x04 |
| #define XADC_ZYNQ_REG_INTMSK 0x08 |
| #define XADC_ZYNQ_REG_STATUS 0x0c |
| #define XADC_ZYNQ_REG_CFIFO 0x10 |
| #define XADC_ZYNQ_REG_DFIFO 0x14 |
| #define XADC_ZYNQ_REG_CTL 0x18 |
| |
| #define XADC_ZYNQ_CFG_ENABLE BIT(31) |
| #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20) |
| #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20 |
| #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16) |
| #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16 |
| #define XADC_ZYNQ_CFG_WEDGE BIT(13) |
| #define XADC_ZYNQ_CFG_REDGE BIT(12) |
| #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8) |
| #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8) |
| #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8) |
| #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8) |
| #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8) |
| #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f |
| #define XADC_ZYNQ_CFG_IGAP(x) (x) |
| |
| #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9) |
| #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8) |
| #define XADC_ZYNQ_INT_ALARM_MASK 0xff |
| #define XADC_ZYNQ_INT_ALARM_OFFSET 0 |
| |
| #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16) |
| #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16 |
| #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12) |
| #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12 |
| #define XADC_ZYNQ_STATUS_CFIFOF BIT(11) |
| #define XADC_ZYNQ_STATUS_CFIFOE BIT(10) |
| #define XADC_ZYNQ_STATUS_DFIFOF BIT(9) |
| #define XADC_ZYNQ_STATUS_DFIFOE BIT(8) |
| #define XADC_ZYNQ_STATUS_OT BIT(7) |
| #define XADC_ZYNQ_STATUS_ALM(x) BIT(x) |
| |
| #define XADC_ZYNQ_CTL_RESET BIT(4) |
| |
| #define XADC_ZYNQ_CMD_NOP 0x00 |
| #define XADC_ZYNQ_CMD_READ 0x01 |
| #define XADC_ZYNQ_CMD_WRITE 0x02 |
| |
| #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data)) |
| |
| /* AXI register definitions */ |
| #define XADC_AXI_REG_RESET 0x00 |
| #define XADC_AXI_REG_STATUS 0x04 |
| #define XADC_AXI_REG_ALARM_STATUS 0x08 |
| #define XADC_AXI_REG_CONVST 0x0c |
| #define XADC_AXI_REG_XADC_RESET 0x10 |
| #define XADC_AXI_REG_GIER 0x5c |
| #define XADC_AXI_REG_IPISR 0x60 |
| #define XADC_AXI_REG_IPIER 0x68 |
| |
| /* 7 Series */ |
| #define XADC_7S_AXI_ADC_REG_OFFSET 0x200 |
| |
| /* UltraScale */ |
| #define XADC_US_AXI_ADC_REG_OFFSET 0x400 |
| |
| #define XADC_AXI_RESET_MAGIC 0xa |
| #define XADC_AXI_GIER_ENABLE BIT(31) |
| |
| #define XADC_AXI_INT_EOS BIT(4) |
| #define XADC_AXI_INT_ALARM_MASK 0x3c0f |
| |
| #define XADC_FLAGS_BUFFERED BIT(0) |
| #define XADC_FLAGS_IRQ_OPTIONAL BIT(1) |
| |
| /* |
| * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does |
| * not have a hardware FIFO. Which means an interrupt is generated for each |
| * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely |
| * overloaded by the interrupts that it soft-lockups. For this reason the driver |
| * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy, |
| * but still responsive. |
| */ |
| #define XADC_MAX_SAMPLERATE 150000 |
| |
| static void xadc_write_reg(struct xadc *xadc, unsigned int reg, |
| uint32_t val) |
| { |
| writel(val, xadc->base + reg); |
| } |
| |
| static void xadc_read_reg(struct xadc *xadc, unsigned int reg, |
| uint32_t *val) |
| { |
| *val = readl(xadc->base + reg); |
| } |
| |
| /* |
| * The ZYNQ interface uses two asynchronous FIFOs for communication with the |
| * XADC. Reads and writes to the XADC register are performed by submitting a |
| * request to the command FIFO (CFIFO), once the request has been completed the |
| * result can be read from the data FIFO (DFIFO). The method currently used in |
| * this driver is to submit the request for a read/write operation, then go to |
| * sleep and wait for an interrupt that signals that a response is available in |
| * the data FIFO. |
| */ |
| |
| static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd, |
| unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n; i++) |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]); |
| } |
| |
| static void xadc_zynq_drain_fifo(struct xadc *xadc) |
| { |
| uint32_t status, tmp; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); |
| |
| while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) { |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); |
| } |
| } |
| |
| static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask, |
| unsigned int val) |
| { |
| xadc->zynq_intmask &= ~mask; |
| xadc->zynq_intmask |= val; |
| |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, |
| xadc->zynq_intmask | xadc->zynq_masked_alarm); |
| } |
| |
| static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t val) |
| { |
| uint32_t cmd[1]; |
| uint32_t tmp; |
| int ret; |
| |
| spin_lock_irq(&xadc->lock); |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, |
| XADC_ZYNQ_INT_DFIFO_GTH); |
| |
| reinit_completion(&xadc->completion); |
| |
| cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val); |
| xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); |
| tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; |
| tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); |
| |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); |
| spin_unlock_irq(&xadc->lock); |
| |
| ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); |
| if (ret == 0) |
| ret = -EIO; |
| else |
| ret = 0; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); |
| |
| return ret; |
| } |
| |
| static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t *val) |
| { |
| uint32_t cmd[2]; |
| uint32_t resp, tmp; |
| int ret; |
| |
| cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0); |
| cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0); |
| |
| spin_lock_irq(&xadc->lock); |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, |
| XADC_ZYNQ_INT_DFIFO_GTH); |
| xadc_zynq_drain_fifo(xadc); |
| reinit_completion(&xadc->completion); |
| |
| xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); |
| tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; |
| tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); |
| |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); |
| spin_unlock_irq(&xadc->lock); |
| ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); |
| if (ret == 0) |
| ret = -EIO; |
| if (ret < 0) |
| return ret; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); |
| |
| *val = resp & 0xffff; |
| |
| return 0; |
| } |
| |
| static unsigned int xadc_zynq_transform_alarm(unsigned int alarm) |
| { |
| return ((alarm & 0x80) >> 4) | |
| ((alarm & 0x78) << 1) | |
| (alarm & 0x07); |
| } |
| |
| /* |
| * The ZYNQ threshold interrupts are level sensitive. Since we can't make the |
| * threshold condition go way from within the interrupt handler, this means as |
| * soon as a threshold condition is present we would enter the interrupt handler |
| * again and again. To work around this we mask all active thresholds interrupts |
| * in the interrupt handler and start a timer. In this timer we poll the |
| * interrupt status and only if the interrupt is inactive we unmask it again. |
| */ |
| static void xadc_zynq_unmask_worker(struct work_struct *work) |
| { |
| struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work); |
| unsigned int misc_sts, unmask; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts); |
| |
| misc_sts &= XADC_ZYNQ_INT_ALARM_MASK; |
| |
| spin_lock_irq(&xadc->lock); |
| |
| /* Clear those bits which are not active anymore */ |
| unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm; |
| xadc->zynq_masked_alarm &= misc_sts; |
| |
| /* Also clear those which are masked out anyway */ |
| xadc->zynq_masked_alarm &= ~xadc->zynq_intmask; |
| |
| /* Clear the interrupts before we unmask them */ |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask); |
| |
| xadc_zynq_update_intmsk(xadc, 0, 0); |
| |
| spin_unlock_irq(&xadc->lock); |
| |
| /* if still pending some alarm re-trigger the timer */ |
| if (xadc->zynq_masked_alarm) { |
| schedule_delayed_work(&xadc->zynq_unmask_work, |
| msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); |
| } |
| |
| } |
| |
| static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid) |
| { |
| struct iio_dev *indio_dev = devid; |
| struct xadc *xadc = iio_priv(indio_dev); |
| uint32_t status; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); |
| |
| status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm); |
| |
| if (!status) |
| return IRQ_NONE; |
| |
| spin_lock(&xadc->lock); |
| |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status); |
| |
| if (status & XADC_ZYNQ_INT_DFIFO_GTH) { |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, |
| XADC_ZYNQ_INT_DFIFO_GTH); |
| complete(&xadc->completion); |
| } |
| |
| status &= XADC_ZYNQ_INT_ALARM_MASK; |
| if (status) { |
| xadc->zynq_masked_alarm |= status; |
| /* |
| * mask the current event interrupt, |
| * unmask it when the interrupt is no more active. |
| */ |
| xadc_zynq_update_intmsk(xadc, 0, 0); |
| |
| xadc_handle_events(indio_dev, |
| xadc_zynq_transform_alarm(status)); |
| |
| /* unmask the required interrupts in timer. */ |
| schedule_delayed_work(&xadc->zynq_unmask_work, |
| msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); |
| } |
| spin_unlock(&xadc->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #define XADC_ZYNQ_TCK_RATE_MAX 50000000 |
| #define XADC_ZYNQ_IGAP_DEFAULT 20 |
| #define XADC_ZYNQ_PCAP_RATE_MAX 200000000 |
| |
| static int xadc_zynq_setup(struct platform_device *pdev, |
| struct iio_dev *indio_dev, int irq) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| unsigned long pcap_rate; |
| unsigned int tck_div; |
| unsigned int div; |
| unsigned int igap; |
| unsigned int tck_rate; |
| int ret; |
| |
| /* TODO: Figure out how to make igap and tck_rate configurable */ |
| igap = XADC_ZYNQ_IGAP_DEFAULT; |
| tck_rate = XADC_ZYNQ_TCK_RATE_MAX; |
| |
| xadc->zynq_intmask = ~0; |
| |
| pcap_rate = clk_get_rate(xadc->clk); |
| if (!pcap_rate) |
| return -EINVAL; |
| |
| if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { |
| ret = clk_set_rate(xadc->clk, |
| (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX); |
| if (ret) |
| return ret; |
| } |
| |
| if (tck_rate > pcap_rate / 2) { |
| div = 2; |
| } else { |
| div = pcap_rate / tck_rate; |
| if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX) |
| div++; |
| } |
| |
| if (div <= 3) |
| tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2; |
| else if (div <= 7) |
| tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4; |
| else if (div <= 15) |
| tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8; |
| else |
| tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16; |
| |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET); |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0); |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0); |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask); |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE | |
| XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE | |
| tck_div | XADC_ZYNQ_CFG_IGAP(igap)); |
| |
| if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { |
| ret = clk_set_rate(xadc->clk, pcap_rate); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc) |
| { |
| unsigned int div; |
| uint32_t val; |
| |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val); |
| |
| switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) { |
| case XADC_ZYNQ_CFG_TCKRATE_DIV4: |
| div = 4; |
| break; |
| case XADC_ZYNQ_CFG_TCKRATE_DIV8: |
| div = 8; |
| break; |
| case XADC_ZYNQ_CFG_TCKRATE_DIV16: |
| div = 16; |
| break; |
| default: |
| div = 2; |
| break; |
| } |
| |
| return clk_get_rate(xadc->clk) / div; |
| } |
| |
| static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm) |
| { |
| unsigned long flags; |
| uint32_t status; |
| |
| /* Move OT to bit 7 */ |
| alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07); |
| |
| spin_lock_irqsave(&xadc->lock, flags); |
| |
| /* Clear previous interrupts if any. */ |
| xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); |
| xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm); |
| |
| xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK, |
| ~alarm & XADC_ZYNQ_INT_ALARM_MASK); |
| |
| spin_unlock_irqrestore(&xadc->lock, flags); |
| } |
| |
| static const struct xadc_ops xadc_zynq_ops = { |
| .read = xadc_zynq_read_adc_reg, |
| .write = xadc_zynq_write_adc_reg, |
| .setup = xadc_zynq_setup, |
| .get_dclk_rate = xadc_zynq_get_dclk_rate, |
| .interrupt_handler = xadc_zynq_interrupt_handler, |
| .update_alarm = xadc_zynq_update_alarm, |
| .type = XADC_TYPE_S7, |
| /* Temp in C = (val * 503.975) / 2**bits - 273.15 */ |
| .temp_scale = 503975, |
| .temp_offset = 273150, |
| }; |
| |
| static const unsigned int xadc_axi_reg_offsets[] = { |
| [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET, |
| [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET, |
| }; |
| |
| static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t *val) |
| { |
| uint32_t val32; |
| |
| xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, |
| &val32); |
| *val = val32 & 0xffff; |
| |
| return 0; |
| } |
| |
| static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t val) |
| { |
| xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, |
| val); |
| |
| return 0; |
| } |
| |
| static int xadc_axi_setup(struct platform_device *pdev, |
| struct iio_dev *indio_dev, int irq) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| |
| xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC); |
| xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE); |
| |
| return 0; |
| } |
| |
| static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid) |
| { |
| struct iio_dev *indio_dev = devid; |
| struct xadc *xadc = iio_priv(indio_dev); |
| uint32_t status, mask; |
| unsigned int events; |
| |
| xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status); |
| xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask); |
| status &= mask; |
| |
| if (!status) |
| return IRQ_NONE; |
| |
| if ((status & XADC_AXI_INT_EOS) && xadc->trigger) |
| iio_trigger_poll(xadc->trigger); |
| |
| if (status & XADC_AXI_INT_ALARM_MASK) { |
| /* |
| * The order of the bits in the AXI-XADC status register does |
| * not match the order of the bits in the XADC alarm enable |
| * register. xadc_handle_events() expects the events to be in |
| * the same order as the XADC alarm enable register. |
| */ |
| events = (status & 0x000e) >> 1; |
| events |= (status & 0x0001) << 3; |
| events |= (status & 0x3c00) >> 6; |
| xadc_handle_events(indio_dev, events); |
| } |
| |
| xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm) |
| { |
| uint32_t val; |
| unsigned long flags; |
| |
| /* |
| * The order of the bits in the AXI-XADC status register does not match |
| * the order of the bits in the XADC alarm enable register. We get |
| * passed the alarm mask in the same order as in the XADC alarm enable |
| * register. |
| */ |
| alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) | |
| ((alarm & 0xf0) << 6); |
| |
| spin_lock_irqsave(&xadc->lock, flags); |
| xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); |
| val &= ~XADC_AXI_INT_ALARM_MASK; |
| val |= alarm; |
| xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); |
| spin_unlock_irqrestore(&xadc->lock, flags); |
| } |
| |
| static unsigned long xadc_axi_get_dclk(struct xadc *xadc) |
| { |
| return clk_get_rate(xadc->clk); |
| } |
| |
| static const struct xadc_ops xadc_7s_axi_ops = { |
| .read = xadc_axi_read_adc_reg, |
| .write = xadc_axi_write_adc_reg, |
| .setup = xadc_axi_setup, |
| .get_dclk_rate = xadc_axi_get_dclk, |
| .update_alarm = xadc_axi_update_alarm, |
| .interrupt_handler = xadc_axi_interrupt_handler, |
| .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL, |
| .type = XADC_TYPE_S7, |
| /* Temp in C = (val * 503.975) / 2**bits - 273.15 */ |
| .temp_scale = 503975, |
| .temp_offset = 273150, |
| }; |
| |
| static const struct xadc_ops xadc_us_axi_ops = { |
| .read = xadc_axi_read_adc_reg, |
| .write = xadc_axi_write_adc_reg, |
| .setup = xadc_axi_setup, |
| .get_dclk_rate = xadc_axi_get_dclk, |
| .update_alarm = xadc_axi_update_alarm, |
| .interrupt_handler = xadc_axi_interrupt_handler, |
| .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL, |
| .type = XADC_TYPE_US, |
| /** |
| * Values below are for UltraScale+ (SYSMONE4) using internal reference. |
| * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon |
| */ |
| .temp_scale = 509314, |
| .temp_offset = 280231, |
| }; |
| |
| static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t mask, uint16_t val) |
| { |
| uint16_t tmp; |
| int ret; |
| |
| ret = _xadc_read_adc_reg(xadc, reg, &tmp); |
| if (ret) |
| return ret; |
| |
| return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val); |
| } |
| |
| static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, |
| uint16_t mask, uint16_t val) |
| { |
| int ret; |
| |
| mutex_lock(&xadc->mutex); |
| ret = _xadc_update_adc_reg(xadc, reg, mask, val); |
| mutex_unlock(&xadc->mutex); |
| |
| return ret; |
| } |
| |
| static unsigned long xadc_get_dclk_rate(struct xadc *xadc) |
| { |
| return xadc->ops->get_dclk_rate(xadc); |
| } |
| |
| static int xadc_update_scan_mode(struct iio_dev *indio_dev, |
| const unsigned long *mask) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| size_t n; |
| void *data; |
| |
| n = bitmap_weight(mask, iio_get_masklength(indio_dev)); |
| |
| data = devm_krealloc_array(indio_dev->dev.parent, xadc->data, |
| n, sizeof(*xadc->data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| memset(data, 0, n * sizeof(*xadc->data)); |
| xadc->data = data; |
| |
| return 0; |
| } |
| |
| static unsigned int xadc_scan_index_to_channel(unsigned int scan_index) |
| { |
| switch (scan_index) { |
| case 5: |
| return XADC_REG_VCCPINT; |
| case 6: |
| return XADC_REG_VCCPAUX; |
| case 7: |
| return XADC_REG_VCCO_DDR; |
| case 8: |
| return XADC_REG_TEMP; |
| case 9: |
| return XADC_REG_VCCINT; |
| case 10: |
| return XADC_REG_VCCAUX; |
| case 11: |
| return XADC_REG_VPVN; |
| case 12: |
| return XADC_REG_VREFP; |
| case 13: |
| return XADC_REG_VREFN; |
| case 14: |
| return XADC_REG_VCCBRAM; |
| default: |
| return XADC_REG_VAUX(scan_index - 16); |
| } |
| } |
| |
| static irqreturn_t xadc_trigger_handler(int irq, void *p) |
| { |
| struct iio_poll_func *pf = p; |
| struct iio_dev *indio_dev = pf->indio_dev; |
| struct xadc *xadc = iio_priv(indio_dev); |
| unsigned int chan; |
| int i, j; |
| |
| if (!xadc->data) |
| goto out; |
| |
| j = 0; |
| iio_for_each_active_channel(indio_dev, i) { |
| chan = xadc_scan_index_to_channel(i); |
| xadc_read_adc_reg(xadc, chan, &xadc->data[j]); |
| j++; |
| } |
| |
| iio_push_to_buffers(indio_dev, xadc->data); |
| |
| out: |
| iio_trigger_notify_done(indio_dev->trig); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state) |
| { |
| struct xadc *xadc = iio_trigger_get_drvdata(trigger); |
| unsigned long flags; |
| unsigned int convst; |
| unsigned int val; |
| int ret = 0; |
| |
| mutex_lock(&xadc->mutex); |
| |
| if (state) { |
| /* Only one of the two triggers can be active at a time. */ |
| if (xadc->trigger != NULL) { |
| ret = -EBUSY; |
| goto err_out; |
| } else { |
| xadc->trigger = trigger; |
| if (trigger == xadc->convst_trigger) |
| convst = XADC_CONF0_EC; |
| else |
| convst = 0; |
| } |
| ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC, |
| convst); |
| if (ret) |
| goto err_out; |
| } else { |
| xadc->trigger = NULL; |
| } |
| |
| spin_lock_irqsave(&xadc->lock, flags); |
| xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); |
| xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS); |
| if (state) |
| val |= XADC_AXI_INT_EOS; |
| else |
| val &= ~XADC_AXI_INT_EOS; |
| xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); |
| spin_unlock_irqrestore(&xadc->lock, flags); |
| |
| err_out: |
| mutex_unlock(&xadc->mutex); |
| |
| return ret; |
| } |
| |
| static const struct iio_trigger_ops xadc_trigger_ops = { |
| .set_trigger_state = &xadc_trigger_set_state, |
| }; |
| |
| static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev, |
| const char *name) |
| { |
| struct device *dev = indio_dev->dev.parent; |
| struct iio_trigger *trig; |
| int ret; |
| |
| trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name, |
| iio_device_id(indio_dev), name); |
| if (trig == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| trig->ops = &xadc_trigger_ops; |
| iio_trigger_set_drvdata(trig, iio_priv(indio_dev)); |
| |
| ret = devm_iio_trigger_register(dev, trig); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return trig; |
| } |
| |
| static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode) |
| { |
| uint16_t val; |
| |
| /* |
| * As per datasheet the power-down bits are don't care in the |
| * UltraScale, but as per reality setting the power-down bit for the |
| * non-existing ADC-B powers down the main ADC, so just return and don't |
| * do anything. |
| */ |
| if (xadc->ops->type == XADC_TYPE_US) |
| return 0; |
| |
| /* Powerdown the ADC-B when it is not needed. */ |
| switch (seq_mode) { |
| case XADC_CONF1_SEQ_SIMULTANEOUS: |
| case XADC_CONF1_SEQ_INDEPENDENT: |
| val = 0; |
| break; |
| default: |
| val = XADC_CONF2_PD_ADC_B; |
| break; |
| } |
| |
| return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK, |
| val); |
| } |
| |
| static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode) |
| { |
| unsigned int aux_scan_mode = scan_mode >> 16; |
| |
| /* UltraScale has only one ADC and supports only continuous mode */ |
| if (xadc->ops->type == XADC_TYPE_US) |
| return XADC_CONF1_SEQ_CONTINUOUS; |
| |
| if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL) |
| return XADC_CONF1_SEQ_SIMULTANEOUS; |
| |
| if ((aux_scan_mode & 0xff00) == 0 || |
| (aux_scan_mode & 0x00ff) == 0) |
| return XADC_CONF1_SEQ_CONTINUOUS; |
| |
| return XADC_CONF1_SEQ_SIMULTANEOUS; |
| } |
| |
| static int xadc_postdisable(struct iio_dev *indio_dev) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| unsigned long scan_mask; |
| int ret; |
| int i; |
| |
| scan_mask = 1; /* Run calibration as part of the sequence */ |
| for (i = 0; i < indio_dev->num_channels; i++) |
| scan_mask |= BIT(indio_dev->channels[i].scan_index); |
| |
| /* Enable all channels and calibration */ |
| ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); |
| if (ret) |
| return ret; |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); |
| if (ret) |
| return ret; |
| |
| ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, |
| XADC_CONF1_SEQ_CONTINUOUS); |
| if (ret) |
| return ret; |
| |
| return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS); |
| } |
| |
| static int xadc_preenable(struct iio_dev *indio_dev) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| unsigned long scan_mask; |
| int seq_mode; |
| int ret; |
| |
| ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, |
| XADC_CONF1_SEQ_DEFAULT); |
| if (ret) |
| goto err; |
| |
| scan_mask = *indio_dev->active_scan_mask; |
| seq_mode = xadc_get_seq_mode(xadc, scan_mask); |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); |
| if (ret) |
| goto err; |
| |
| /* |
| * In simultaneous mode the upper and lower aux channels are samples at |
| * the same time. In this mode the upper 8 bits in the sequencer |
| * register are don't care and the lower 8 bits control two channels |
| * each. As such we must set the bit if either the channel in the lower |
| * group or the upper group is enabled. |
| */ |
| if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS) |
| scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000; |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); |
| if (ret) |
| goto err; |
| |
| ret = xadc_power_adc_b(xadc, seq_mode); |
| if (ret) |
| goto err; |
| |
| ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, |
| seq_mode); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| xadc_postdisable(indio_dev); |
| return ret; |
| } |
| |
| static const struct iio_buffer_setup_ops xadc_buffer_ops = { |
| .preenable = &xadc_preenable, |
| .postdisable = &xadc_postdisable, |
| }; |
| |
| static int xadc_read_samplerate(struct xadc *xadc) |
| { |
| unsigned int div; |
| uint16_t val16; |
| int ret; |
| |
| ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16); |
| if (ret) |
| return ret; |
| |
| div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET; |
| if (div < 2) |
| div = 2; |
| |
| return xadc_get_dclk_rate(xadc) / div / 26; |
| } |
| |
| static int xadc_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, int *val2, long info) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| unsigned int bits = chan->scan_type.realbits; |
| uint16_t val16; |
| int ret; |
| |
| switch (info) { |
| case IIO_CHAN_INFO_RAW: |
| if (iio_buffer_enabled(indio_dev)) |
| return -EBUSY; |
| ret = xadc_read_adc_reg(xadc, chan->address, &val16); |
| if (ret < 0) |
| return ret; |
| |
| val16 >>= chan->scan_type.shift; |
| if (chan->scan_type.sign == 'u') |
| *val = val16; |
| else |
| *val = sign_extend32(val16, bits - 1); |
| |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SCALE: |
| switch (chan->type) { |
| case IIO_VOLTAGE: |
| /* V = (val * 3.0) / 2**bits */ |
| switch (chan->address) { |
| case XADC_REG_VCCINT: |
| case XADC_REG_VCCAUX: |
| case XADC_REG_VREFP: |
| case XADC_REG_VREFN: |
| case XADC_REG_VCCBRAM: |
| case XADC_REG_VCCPINT: |
| case XADC_REG_VCCPAUX: |
| case XADC_REG_VCCO_DDR: |
| *val = 3000; |
| break; |
| default: |
| *val = 1000; |
| break; |
| } |
| *val2 = bits; |
| return IIO_VAL_FRACTIONAL_LOG2; |
| case IIO_TEMP: |
| *val = xadc->ops->temp_scale; |
| *val2 = bits; |
| return IIO_VAL_FRACTIONAL_LOG2; |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_OFFSET: |
| /* Only the temperature channel has an offset */ |
| *val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale); |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| ret = xadc_read_samplerate(xadc); |
| if (ret < 0) |
| return ret; |
| |
| *val = ret; |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int xadc_write_samplerate(struct xadc *xadc, int val) |
| { |
| unsigned long clk_rate = xadc_get_dclk_rate(xadc); |
| unsigned int div; |
| |
| if (!clk_rate) |
| return -EINVAL; |
| |
| if (val <= 0) |
| return -EINVAL; |
| |
| /* Max. 150 kSPS */ |
| if (val > XADC_MAX_SAMPLERATE) |
| val = XADC_MAX_SAMPLERATE; |
| |
| val *= 26; |
| |
| /* Min 1MHz */ |
| if (val < 1000000) |
| val = 1000000; |
| |
| /* |
| * We want to round down, but only if we do not exceed the 150 kSPS |
| * limit. |
| */ |
| div = clk_rate / val; |
| if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE) |
| div++; |
| if (div < 2) |
| div = 2; |
| else if (div > 0xff) |
| div = 0xff; |
| |
| return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK, |
| div << XADC_CONF2_DIV_OFFSET); |
| } |
| |
| static int xadc_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int val, int val2, long info) |
| { |
| struct xadc *xadc = iio_priv(indio_dev); |
| |
| if (info != IIO_CHAN_INFO_SAMP_FREQ) |
| return -EINVAL; |
| |
| return xadc_write_samplerate(xadc, val); |
| } |
| |
| static const struct iio_event_spec xadc_temp_events[] = { |
| { |
| .type = IIO_EV_TYPE_THRESH, |
| .dir = IIO_EV_DIR_RISING, |
| .mask_separate = BIT(IIO_EV_INFO_ENABLE) | |
| BIT(IIO_EV_INFO_VALUE) | |
| BIT(IIO_EV_INFO_HYSTERESIS), |
| }, |
| }; |
| |
| /* Separate values for upper and lower thresholds, but only a shared enabled */ |
| static const struct iio_event_spec xadc_voltage_events[] = { |
| { |
| .type = IIO_EV_TYPE_THRESH, |
| .dir = IIO_EV_DIR_RISING, |
| .mask_separate = BIT(IIO_EV_INFO_VALUE), |
| }, { |
| .type = IIO_EV_TYPE_THRESH, |
| .dir = IIO_EV_DIR_FALLING, |
| .mask_separate = BIT(IIO_EV_INFO_VALUE), |
| }, { |
| .type = IIO_EV_TYPE_THRESH, |
| .dir = IIO_EV_DIR_EITHER, |
| .mask_separate = BIT(IIO_EV_INFO_ENABLE), |
| }, |
| }; |
| |
| #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \ |
| .type = IIO_TEMP, \ |
| .indexed = 1, \ |
| .channel = (_chan), \ |
| .address = (_addr), \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_OFFSET), \ |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ |
| .event_spec = xadc_temp_events, \ |
| .num_event_specs = ARRAY_SIZE(xadc_temp_events), \ |
| .scan_index = (_scan_index), \ |
| .scan_type = { \ |
| .sign = 'u', \ |
| .realbits = (_bits), \ |
| .storagebits = 16, \ |
| .shift = 16 - (_bits), \ |
| .endianness = IIO_CPU, \ |
| }, \ |
| } |
| |
| #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \ |
| .type = IIO_VOLTAGE, \ |
| .indexed = 1, \ |
| .channel = (_chan), \ |
| .address = (_addr), \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE), \ |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ |
| .event_spec = (_alarm) ? xadc_voltage_events : NULL, \ |
| .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \ |
| .scan_index = (_scan_index), \ |
| .scan_type = { \ |
| .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \ |
| .realbits = (_bits), \ |
| .storagebits = 16, \ |
| .shift = 16 - (_bits), \ |
| .endianness = IIO_CPU, \ |
| }, \ |
| .extend_name = _ext, \ |
| } |
| |
| /* 7 Series */ |
| #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \ |
| XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12) |
| #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ |
| XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm) |
| |
| static const struct iio_chan_spec xadc_7s_channels[] = { |
| XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP), |
| XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), |
| XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), |
| XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), |
| XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true), |
| XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true), |
| XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true), |
| XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), |
| XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), |
| XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), |
| XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), |
| XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), |
| }; |
| |
| /* UltraScale */ |
| #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \ |
| XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10) |
| #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ |
| XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm) |
| |
| static const struct iio_chan_spec xadc_us_channels[] = { |
| XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP), |
| XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), |
| XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), |
| XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), |
| XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true), |
| XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true), |
| XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true), |
| XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), |
| XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), |
| XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), |
| XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), |
| XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), |
| XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), |
| XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), |
| XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), |
| XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), |
| XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), |
| XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), |
| XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), |
| XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), |
| XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), |
| XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), |
| XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), |
| XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), |
| XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), |
| XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), |
| }; |
| |
| static const struct iio_info xadc_info = { |
| .read_raw = &xadc_read_raw, |
| .write_raw = &xadc_write_raw, |
| .read_event_config = &xadc_read_event_config, |
| .write_event_config = &xadc_write_event_config, |
| .read_event_value = &xadc_read_event_value, |
| .write_event_value = &xadc_write_event_value, |
| .update_scan_mode = &xadc_update_scan_mode, |
| }; |
| |
| static const struct of_device_id xadc_of_match_table[] = { |
| { |
| .compatible = "xlnx,zynq-xadc-1.00.a", |
| .data = &xadc_zynq_ops |
| }, { |
| .compatible = "xlnx,axi-xadc-1.00.a", |
| .data = &xadc_7s_axi_ops |
| }, { |
| .compatible = "xlnx,system-management-wiz-1.3", |
| .data = &xadc_us_axi_ops |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, xadc_of_match_table); |
| |
| static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq) |
| { |
| struct device *dev = indio_dev->dev.parent; |
| struct xadc *xadc = iio_priv(indio_dev); |
| const struct iio_chan_spec *channel_templates; |
| struct iio_chan_spec *channels, *chan; |
| struct fwnode_handle *chan_node, *child; |
| unsigned int max_channels; |
| unsigned int num_channels; |
| const char *external_mux; |
| u32 ext_mux_chan; |
| u32 reg; |
| int ret; |
| int i; |
| |
| *conf = 0; |
| |
| ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux); |
| if (ret < 0 || strcasecmp(external_mux, "none") == 0) |
| xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE; |
| else if (strcasecmp(external_mux, "single") == 0) |
| xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE; |
| else if (strcasecmp(external_mux, "dual") == 0) |
| xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL; |
| else |
| return -EINVAL; |
| |
| if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) { |
| ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan); |
| if (ret < 0) |
| return ret; |
| |
| if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) { |
| if (ext_mux_chan == 0) |
| ext_mux_chan = XADC_REG_VPVN; |
| else if (ext_mux_chan <= 16) |
| ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); |
| else |
| return -EINVAL; |
| } else { |
| if (ext_mux_chan > 0 && ext_mux_chan <= 8) |
| ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); |
| else |
| return -EINVAL; |
| } |
| |
| *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan); |
| } |
| if (xadc->ops->type == XADC_TYPE_S7) { |
| channel_templates = xadc_7s_channels; |
| max_channels = ARRAY_SIZE(xadc_7s_channels); |
| } else { |
| channel_templates = xadc_us_channels; |
| max_channels = ARRAY_SIZE(xadc_us_channels); |
| } |
| channels = devm_kmemdup(dev, channel_templates, |
| sizeof(channels[0]) * max_channels, GFP_KERNEL); |
| if (!channels) |
| return -ENOMEM; |
| |
| num_channels = 9; |
| chan = &channels[9]; |
| |
| chan_node = device_get_named_child_node(dev, "xlnx,channels"); |
| fwnode_for_each_child_node(chan_node, child) { |
| if (num_channels >= max_channels) { |
| fwnode_handle_put(child); |
| break; |
| } |
| |
| ret = fwnode_property_read_u32(child, "reg", ®); |
| if (ret || reg > 16) |
| continue; |
| |
| if (fwnode_property_read_bool(child, "xlnx,bipolar")) |
| chan->scan_type.sign = 's'; |
| |
| if (reg == 0) { |
| chan->scan_index = 11; |
| chan->address = XADC_REG_VPVN; |
| } else { |
| chan->scan_index = 15 + reg; |
| chan->address = XADC_REG_VAUX(reg - 1); |
| } |
| num_channels++; |
| chan++; |
| } |
| fwnode_handle_put(chan_node); |
| |
| /* No IRQ => no events */ |
| if (irq <= 0) { |
| for (i = 0; i < num_channels; i++) { |
| channels[i].event_spec = NULL; |
| channels[i].num_event_specs = 0; |
| } |
| } |
| |
| indio_dev->num_channels = num_channels; |
| indio_dev->channels = devm_krealloc_array(dev, channels, |
| num_channels, sizeof(*channels), |
| GFP_KERNEL); |
| /* If we can't resize the channels array, just use the original */ |
| if (!indio_dev->channels) |
| indio_dev->channels = channels; |
| |
| return 0; |
| } |
| |
| static const char * const xadc_type_names[] = { |
| [XADC_TYPE_S7] = "xadc", |
| [XADC_TYPE_US] = "xilinx-system-monitor", |
| }; |
| |
| static void xadc_cancel_delayed_work(void *data) |
| { |
| struct delayed_work *work = data; |
| |
| cancel_delayed_work_sync(work); |
| } |
| |
| static int xadc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct xadc_ops *ops; |
| struct iio_dev *indio_dev; |
| unsigned int bipolar_mask; |
| unsigned int conf0; |
| struct xadc *xadc; |
| int ret; |
| int irq; |
| int i; |
| |
| ops = device_get_match_data(dev); |
| if (!ops) |
| return -EINVAL; |
| |
| irq = platform_get_irq_optional(pdev, 0); |
| if (irq < 0 && |
| (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL))) |
| return irq; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| xadc = iio_priv(indio_dev); |
| xadc->ops = ops; |
| init_completion(&xadc->completion); |
| mutex_init(&xadc->mutex); |
| spin_lock_init(&xadc->lock); |
| INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker); |
| |
| xadc->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(xadc->base)) |
| return PTR_ERR(xadc->base); |
| |
| indio_dev->name = xadc_type_names[xadc->ops->type]; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->info = &xadc_info; |
| |
| ret = xadc_parse_dt(indio_dev, &conf0, irq); |
| if (ret) |
| return ret; |
| |
| if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { |
| ret = devm_iio_triggered_buffer_setup(dev, indio_dev, |
| &iio_pollfunc_store_time, |
| &xadc_trigger_handler, |
| &xadc_buffer_ops); |
| if (ret) |
| return ret; |
| |
| if (irq > 0) { |
| xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst"); |
| if (IS_ERR(xadc->convst_trigger)) |
| return PTR_ERR(xadc->convst_trigger); |
| |
| xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev, |
| "samplerate"); |
| if (IS_ERR(xadc->samplerate_trigger)) |
| return PTR_ERR(xadc->samplerate_trigger); |
| } |
| } |
| |
| xadc->clk = devm_clk_get_enabled(dev, NULL); |
| if (IS_ERR(xadc->clk)) |
| return PTR_ERR(xadc->clk); |
| |
| /* |
| * Make sure not to exceed the maximum samplerate since otherwise the |
| * resulting interrupt storm will soft-lock the system. |
| */ |
| if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { |
| ret = xadc_read_samplerate(xadc); |
| if (ret < 0) |
| return ret; |
| |
| if (ret > XADC_MAX_SAMPLERATE) { |
| ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE); |
| if (ret < 0) |
| return ret; |
| } |
| } |
| |
| if (irq > 0) { |
| ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler, |
| 0, dev_name(dev), indio_dev); |
| if (ret) |
| return ret; |
| |
| ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work, |
| &xadc->zynq_unmask_work); |
| if (ret) |
| return ret; |
| } |
| |
| ret = xadc->ops->setup(pdev, indio_dev, irq); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < 16; i++) |
| xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i), |
| &xadc->threshold[i]); |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0); |
| if (ret) |
| return ret; |
| |
| bipolar_mask = 0; |
| for (i = 0; i < indio_dev->num_channels; i++) { |
| if (indio_dev->channels[i].scan_type.sign == 's') |
| bipolar_mask |= BIT(indio_dev->channels[i].scan_index); |
| } |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask); |
| if (ret) |
| return ret; |
| |
| ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1), |
| bipolar_mask >> 16); |
| if (ret) |
| return ret; |
| |
| /* Go to non-buffered mode */ |
| xadc_postdisable(indio_dev); |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| |
| static struct platform_driver xadc_driver = { |
| .probe = xadc_probe, |
| .driver = { |
| .name = "xadc", |
| .of_match_table = xadc_of_match_table, |
| }, |
| }; |
| module_platform_driver(xadc_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); |
| MODULE_DESCRIPTION("Xilinx XADC IIO driver"); |