blob: 4a5698eb12b77c4d80afc30741f10dd366f7f771 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 Kévin L'hôpital <kevin.lhopital@bootlin.com>
* Copyright 2020-2022 Bootlin
* Author: Paul Kocialkowski <paul.kocialkowski@bootlin.com>
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include "sun8i_a83t_dphy.h"
#include "sun8i_a83t_mipi_csi2.h"
#include "sun8i_a83t_mipi_csi2_reg.h"
/* Format */
static const struct sun8i_a83t_mipi_csi2_format
sun8i_a83t_mipi_csi2_formats[] = {
{
.mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
.data_type = MIPI_CSI2_DT_RAW8,
.bpp = 8,
},
{
.mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8,
.data_type = MIPI_CSI2_DT_RAW8,
.bpp = 8,
},
{
.mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8,
.data_type = MIPI_CSI2_DT_RAW8,
.bpp = 8,
},
{
.mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8,
.data_type = MIPI_CSI2_DT_RAW8,
.bpp = 8,
},
{
.mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10,
.data_type = MIPI_CSI2_DT_RAW10,
.bpp = 10,
},
{
.mbus_code = MEDIA_BUS_FMT_SGBRG10_1X10,
.data_type = MIPI_CSI2_DT_RAW10,
.bpp = 10,
},
{
.mbus_code = MEDIA_BUS_FMT_SGRBG10_1X10,
.data_type = MIPI_CSI2_DT_RAW10,
.bpp = 10,
},
{
.mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10,
.data_type = MIPI_CSI2_DT_RAW10,
.bpp = 10,
},
};
static const struct sun8i_a83t_mipi_csi2_format *
sun8i_a83t_mipi_csi2_format_find(u32 mbus_code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats); i++)
if (sun8i_a83t_mipi_csi2_formats[i].mbus_code == mbus_code)
return &sun8i_a83t_mipi_csi2_formats[i];
return NULL;
}
/* Controller */
static void
sun8i_a83t_mipi_csi2_init(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct regmap *regmap = csi2_dev->regmap;
/*
* The Allwinner BSP sets various magic values on a bunch of registers.
* This is apparently a necessary initialization process that will cause
* the capture to fail with unsolicited interrupts hitting if skipped.
*
* Most of the registers are set to proper values later, except for the
* two reserved registers. They are said to hold a "hardware lock"
* value, without more information available.
*/
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG,
SUN8I_A83T_MIPI_CSI2_CTRL_INIT_VALUE);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG,
SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_INIT_VALUE);
regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG, 0);
regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG,
SUN8I_A83T_DPHY_CTRL_INIT_VALUE);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG,
SUN8I_A83T_MIPI_CSI2_RSVD1_HW_LOCK_VALUE);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG,
SUN8I_A83T_MIPI_CSI2_RSVD2_HW_LOCK_VALUE);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG,
SUN8I_A83T_MIPI_CSI2_CFG_INIT_VALUE);
}
static void
sun8i_a83t_mipi_csi2_enable(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct regmap *regmap = csi2_dev->regmap;
regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG,
SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN,
SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN);
}
static void
sun8i_a83t_mipi_csi2_disable(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct regmap *regmap = csi2_dev->regmap;
regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG,
SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN, 0);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0);
}
static void
sun8i_a83t_mipi_csi2_configure(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct regmap *regmap = csi2_dev->regmap;
unsigned int lanes_count =
csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes;
struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format;
const struct sun8i_a83t_mipi_csi2_format *format;
struct device *dev = csi2_dev->dev;
u32 version = 0;
format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code);
if (WARN_ON(!format))
return;
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG,
SUN8I_A83T_MIPI_CSI2_CTRL_RESET_N);
regmap_read(regmap, SUN8I_A83T_MIPI_CSI2_VERSION_REG, &version);
dev_dbg(dev, "A83T MIPI CSI-2 version: %04x\n", version);
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG,
SUN8I_A83T_MIPI_CSI2_CFG_UNPKT_EN |
SUN8I_A83T_MIPI_CSI2_CFG_SYNC_DLY_CYCLE(8) |
SUN8I_A83T_MIPI_CSI2_CFG_N_CHANNEL(1) |
SUN8I_A83T_MIPI_CSI2_CFG_N_LANE(lanes_count));
/*
* Only a single virtual channel (index 0) is currently supported.
* While the registers do mention multiple physical channels being
* available (which can be configured to match a specific virtual
* channel or data type), it's unclear whether channels > 0 are actually
* connected and available and the reference source code only makes use
* of channel 0.
*
* Using extra channels would also require matching channels to be
* available on the CSI (and ISP) side, which is also unsure although
* some CSI implementations are said to support multiple channels for
* BT656 time-sharing.
*
* We still configure virtual channel numbers to ensure that virtual
* channel 0 only goes to channel 0.
*/
regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_VCDT0_REG,
SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(3, 3) |
SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(2, 2) |
SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(1, 1) |
SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(0, 0) |
SUN8I_A83T_MIPI_CSI2_VCDT0_CH_DT(0, format->data_type));
}
/* V4L2 Subdev */
static int sun8i_a83t_mipi_csi2_s_stream(struct v4l2_subdev *subdev, int on)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
v4l2_get_subdevdata(subdev);
struct v4l2_subdev *source_subdev = csi2_dev->bridge.source_subdev;
union phy_configure_opts dphy_opts = { 0 };
struct phy_configure_opts_mipi_dphy *dphy_cfg = &dphy_opts.mipi_dphy;
struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format;
const struct sun8i_a83t_mipi_csi2_format *format;
struct phy *dphy = csi2_dev->dphy;
struct device *dev = csi2_dev->dev;
struct v4l2_ctrl *ctrl;
unsigned int lanes_count =
csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes;
unsigned long pixel_rate;
int ret;
if (!source_subdev)
return -ENODEV;
if (!on) {
v4l2_subdev_call(source_subdev, video, s_stream, 0);
ret = 0;
goto disable;
}
/* Runtime PM */
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
/* Sensor pixel rate */
ctrl = v4l2_ctrl_find(source_subdev->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
dev_err(dev, "missing sensor pixel rate\n");
ret = -ENODEV;
goto error_pm;
}
pixel_rate = (unsigned long)v4l2_ctrl_g_ctrl_int64(ctrl);
if (!pixel_rate) {
dev_err(dev, "missing (zero) sensor pixel rate\n");
ret = -ENODEV;
goto error_pm;
}
/* D-PHY */
if (!lanes_count) {
dev_err(dev, "missing (zero) MIPI CSI-2 lanes count\n");
ret = -ENODEV;
goto error_pm;
}
format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code);
if (WARN_ON(!format)) {
ret = -ENODEV;
goto error_pm;
}
phy_mipi_dphy_get_default_config(pixel_rate, format->bpp, lanes_count,
dphy_cfg);
/*
* Note that our hardware is using DDR, which is not taken in account by
* phy_mipi_dphy_get_default_config when calculating hs_clk_rate from
* the pixel rate, lanes count and bpp.
*
* The resulting clock rate is basically the symbol rate over the whole
* link. The actual clock rate is calculated with division by two since
* DDR samples both on rising and falling edges.
*/
dev_dbg(dev, "A83T MIPI CSI-2 config:\n");
dev_dbg(dev, "%ld pixels/s, %u bits/pixel, %u lanes, %lu Hz clock\n",
pixel_rate, format->bpp, lanes_count,
dphy_cfg->hs_clk_rate / 2);
ret = phy_reset(dphy);
if (ret) {
dev_err(dev, "failed to reset MIPI D-PHY\n");
goto error_pm;
}
ret = phy_configure(dphy, &dphy_opts);
if (ret) {
dev_err(dev, "failed to configure MIPI D-PHY\n");
goto error_pm;
}
/* Controller */
sun8i_a83t_mipi_csi2_configure(csi2_dev);
sun8i_a83t_mipi_csi2_enable(csi2_dev);
/* D-PHY */
ret = phy_power_on(dphy);
if (ret) {
dev_err(dev, "failed to power on MIPI D-PHY\n");
goto error_pm;
}
/* Source */
ret = v4l2_subdev_call(source_subdev, video, s_stream, 1);
if (ret && ret != -ENOIOCTLCMD)
goto disable;
return 0;
disable:
phy_power_off(dphy);
sun8i_a83t_mipi_csi2_disable(csi2_dev);
error_pm:
pm_runtime_put(dev);
return ret;
}
static const struct v4l2_subdev_video_ops
sun8i_a83t_mipi_csi2_video_ops = {
.s_stream = sun8i_a83t_mipi_csi2_s_stream,
};
static void
sun8i_a83t_mipi_csi2_mbus_format_prepare(struct v4l2_mbus_framefmt *mbus_format)
{
if (!sun8i_a83t_mipi_csi2_format_find(mbus_format->code))
mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code;
mbus_format->field = V4L2_FIELD_NONE;
mbus_format->colorspace = V4L2_COLORSPACE_RAW;
mbus_format->quantization = V4L2_QUANTIZATION_DEFAULT;
mbus_format->xfer_func = V4L2_XFER_FUNC_DEFAULT;
}
static int sun8i_a83t_mipi_csi2_init_state(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
v4l2_get_subdevdata(subdev);
unsigned int pad = SUN8I_A83T_MIPI_CSI2_PAD_SINK;
struct v4l2_mbus_framefmt *mbus_format =
v4l2_subdev_state_get_format(state, pad);
struct mutex *lock = &csi2_dev->bridge.lock;
mutex_lock(lock);
mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code;
mbus_format->width = 640;
mbus_format->height = 480;
sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format);
mutex_unlock(lock);
return 0;
}
static int
sun8i_a83t_mipi_csi2_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code_enum)
{
if (code_enum->index >= ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats))
return -EINVAL;
code_enum->code =
sun8i_a83t_mipi_csi2_formats[code_enum->index].mbus_code;
return 0;
}
static int sun8i_a83t_mipi_csi2_get_fmt(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
v4l2_get_subdevdata(subdev);
struct v4l2_mbus_framefmt *mbus_format = &format->format;
struct mutex *lock = &csi2_dev->bridge.lock;
mutex_lock(lock);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
*mbus_format = *v4l2_subdev_state_get_format(state,
format->pad);
else
*mbus_format = csi2_dev->bridge.mbus_format;
mutex_unlock(lock);
return 0;
}
static int sun8i_a83t_mipi_csi2_set_fmt(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
v4l2_get_subdevdata(subdev);
struct v4l2_mbus_framefmt *mbus_format = &format->format;
struct mutex *lock = &csi2_dev->bridge.lock;
mutex_lock(lock);
sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
*v4l2_subdev_state_get_format(state, format->pad) =
*mbus_format;
else
csi2_dev->bridge.mbus_format = *mbus_format;
mutex_unlock(lock);
return 0;
}
static const struct v4l2_subdev_pad_ops sun8i_a83t_mipi_csi2_pad_ops = {
.enum_mbus_code = sun8i_a83t_mipi_csi2_enum_mbus_code,
.get_fmt = sun8i_a83t_mipi_csi2_get_fmt,
.set_fmt = sun8i_a83t_mipi_csi2_set_fmt,
};
static const struct v4l2_subdev_ops sun8i_a83t_mipi_csi2_subdev_ops = {
.video = &sun8i_a83t_mipi_csi2_video_ops,
.pad = &sun8i_a83t_mipi_csi2_pad_ops,
};
static const struct v4l2_subdev_internal_ops sun8i_a83t_mipi_csi2_internal_ops = {
.init_state = sun8i_a83t_mipi_csi2_init_state,
};
/* Media Entity */
static const struct media_entity_operations sun8i_a83t_mipi_csi2_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
/* V4L2 Async */
static int
sun8i_a83t_mipi_csi2_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *remote_subdev,
struct v4l2_async_connection *async_subdev)
{
struct v4l2_subdev *subdev = notifier->sd;
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
container_of(notifier, struct sun8i_a83t_mipi_csi2_device,
bridge.notifier);
struct media_entity *sink_entity = &subdev->entity;
struct media_entity *source_entity = &remote_subdev->entity;
struct device *dev = csi2_dev->dev;
int sink_pad_index = 0;
int source_pad_index;
int ret;
ret = media_entity_get_fwnode_pad(source_entity, remote_subdev->fwnode,
MEDIA_PAD_FL_SOURCE);
if (ret < 0) {
dev_err(dev, "missing source pad in external entity %s\n",
source_entity->name);
return -EINVAL;
}
source_pad_index = ret;
dev_dbg(dev, "creating %s:%u -> %s:%u link\n", source_entity->name,
source_pad_index, sink_entity->name, sink_pad_index);
ret = media_create_pad_link(source_entity, source_pad_index,
sink_entity, sink_pad_index,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret) {
dev_err(dev, "failed to create %s:%u -> %s:%u link\n",
source_entity->name, source_pad_index,
sink_entity->name, sink_pad_index);
return ret;
}
csi2_dev->bridge.source_subdev = remote_subdev;
return 0;
}
static const struct v4l2_async_notifier_operations
sun8i_a83t_mipi_csi2_notifier_ops = {
.bound = sun8i_a83t_mipi_csi2_notifier_bound,
};
/* Bridge */
static int
sun8i_a83t_mipi_csi2_bridge_source_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier;
struct v4l2_fwnode_endpoint *endpoint = &csi2_dev->bridge.endpoint;
struct v4l2_async_connection *subdev_async;
struct fwnode_handle *handle;
struct device *dev = csi2_dev->dev;
int ret;
handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!handle)
return -ENODEV;
endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
ret = v4l2_fwnode_endpoint_parse(handle, endpoint);
if (ret)
goto complete;
subdev_async =
v4l2_async_nf_add_fwnode_remote(notifier, handle,
struct v4l2_async_connection);
if (IS_ERR(subdev_async))
ret = PTR_ERR(subdev_async);
complete:
fwnode_handle_put(handle);
return ret;
}
static int
sun8i_a83t_mipi_csi2_bridge_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct sun8i_a83t_mipi_csi2_bridge *bridge = &csi2_dev->bridge;
struct v4l2_subdev *subdev = &bridge->subdev;
struct v4l2_async_notifier *notifier = &bridge->notifier;
struct media_pad *pads = bridge->pads;
struct device *dev = csi2_dev->dev;
bool notifier_registered = false;
int ret;
mutex_init(&bridge->lock);
/* V4L2 Subdev */
v4l2_subdev_init(subdev, &sun8i_a83t_mipi_csi2_subdev_ops);
subdev->internal_ops = &sun8i_a83t_mipi_csi2_internal_ops;
strscpy(subdev->name, SUN8I_A83T_MIPI_CSI2_NAME, sizeof(subdev->name));
subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
subdev->owner = THIS_MODULE;
subdev->dev = dev;
v4l2_set_subdevdata(subdev, csi2_dev);
/* Media Entity */
subdev->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
subdev->entity.ops = &sun8i_a83t_mipi_csi2_entity_ops;
/* Media Pads */
pads[SUN8I_A83T_MIPI_CSI2_PAD_SINK].flags = MEDIA_PAD_FL_SINK |
MEDIA_PAD_FL_MUST_CONNECT;
pads[SUN8I_A83T_MIPI_CSI2_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE |
MEDIA_PAD_FL_MUST_CONNECT;
ret = media_entity_pads_init(&subdev->entity,
SUN8I_A83T_MIPI_CSI2_PAD_COUNT, pads);
if (ret)
return ret;
/* V4L2 Async */
v4l2_async_subdev_nf_init(notifier, subdev);
notifier->ops = &sun8i_a83t_mipi_csi2_notifier_ops;
ret = sun8i_a83t_mipi_csi2_bridge_source_setup(csi2_dev);
if (ret && ret != -ENODEV)
goto error_v4l2_notifier_cleanup;
/* Only register the notifier when a sensor is connected. */
if (ret != -ENODEV) {
ret = v4l2_async_nf_register(notifier);
if (ret < 0)
goto error_v4l2_notifier_cleanup;
notifier_registered = true;
}
/* V4L2 Subdev */
ret = v4l2_async_register_subdev(subdev);
if (ret < 0)
goto error_v4l2_notifier_unregister;
return 0;
error_v4l2_notifier_unregister:
if (notifier_registered)
v4l2_async_nf_unregister(notifier);
error_v4l2_notifier_cleanup:
v4l2_async_nf_cleanup(notifier);
media_entity_cleanup(&subdev->entity);
return ret;
}
static void
sun8i_a83t_mipi_csi2_bridge_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
struct v4l2_subdev *subdev = &csi2_dev->bridge.subdev;
struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier;
v4l2_async_unregister_subdev(subdev);
v4l2_async_nf_unregister(notifier);
v4l2_async_nf_cleanup(notifier);
media_entity_cleanup(&subdev->entity);
}
/* Platform */
static int sun8i_a83t_mipi_csi2_suspend(struct device *dev)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev);
clk_disable_unprepare(csi2_dev->clock_misc);
clk_disable_unprepare(csi2_dev->clock_mipi);
clk_disable_unprepare(csi2_dev->clock_mod);
reset_control_assert(csi2_dev->reset);
return 0;
}
static int sun8i_a83t_mipi_csi2_resume(struct device *dev)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev);
int ret;
ret = reset_control_deassert(csi2_dev->reset);
if (ret) {
dev_err(dev, "failed to deassert reset\n");
return ret;
}
ret = clk_prepare_enable(csi2_dev->clock_mod);
if (ret) {
dev_err(dev, "failed to enable module clock\n");
goto error_reset;
}
ret = clk_prepare_enable(csi2_dev->clock_mipi);
if (ret) {
dev_err(dev, "failed to enable MIPI clock\n");
goto error_clock_mod;
}
ret = clk_prepare_enable(csi2_dev->clock_misc);
if (ret) {
dev_err(dev, "failed to enable CSI misc clock\n");
goto error_clock_mipi;
}
sun8i_a83t_mipi_csi2_init(csi2_dev);
return 0;
error_clock_mipi:
clk_disable_unprepare(csi2_dev->clock_mipi);
error_clock_mod:
clk_disable_unprepare(csi2_dev->clock_mod);
error_reset:
reset_control_assert(csi2_dev->reset);
return ret;
}
static const struct dev_pm_ops sun8i_a83t_mipi_csi2_pm_ops = {
.runtime_suspend = sun8i_a83t_mipi_csi2_suspend,
.runtime_resume = sun8i_a83t_mipi_csi2_resume,
};
static const struct regmap_config sun8i_a83t_mipi_csi2_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = 0x120,
};
static int
sun8i_a83t_mipi_csi2_resources_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev,
struct platform_device *platform_dev)
{
struct device *dev = csi2_dev->dev;
void __iomem *io_base;
int ret;
/* Registers */
io_base = devm_platform_ioremap_resource(platform_dev, 0);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
csi2_dev->regmap =
devm_regmap_init_mmio_clk(dev, "bus", io_base,
&sun8i_a83t_mipi_csi2_regmap_config);
if (IS_ERR(csi2_dev->regmap)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(csi2_dev->regmap);
}
/* Clocks */
csi2_dev->clock_mod = devm_clk_get(dev, "mod");
if (IS_ERR(csi2_dev->clock_mod)) {
dev_err(dev, "failed to acquire mod clock\n");
return PTR_ERR(csi2_dev->clock_mod);
}
ret = clk_set_rate_exclusive(csi2_dev->clock_mod, 297000000);
if (ret) {
dev_err(dev, "failed to set mod clock rate\n");
return ret;
}
csi2_dev->clock_mipi = devm_clk_get(dev, "mipi");
if (IS_ERR(csi2_dev->clock_mipi)) {
dev_err(dev, "failed to acquire mipi clock\n");
ret = PTR_ERR(csi2_dev->clock_mipi);
goto error_clock_rate_exclusive;
}
csi2_dev->clock_misc = devm_clk_get(dev, "misc");
if (IS_ERR(csi2_dev->clock_misc)) {
dev_err(dev, "failed to acquire misc clock\n");
ret = PTR_ERR(csi2_dev->clock_misc);
goto error_clock_rate_exclusive;
}
/* Reset */
csi2_dev->reset = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(csi2_dev->reset)) {
dev_err(dev, "failed to get reset controller\n");
ret = PTR_ERR(csi2_dev->reset);
goto error_clock_rate_exclusive;
}
/* D-PHY */
ret = sun8i_a83t_dphy_register(csi2_dev);
if (ret) {
dev_err(dev, "failed to initialize MIPI D-PHY\n");
goto error_clock_rate_exclusive;
}
/* Runtime PM */
pm_runtime_enable(dev);
return 0;
error_clock_rate_exclusive:
clk_rate_exclusive_put(csi2_dev->clock_mod);
return ret;
}
static void
sun8i_a83t_mipi_csi2_resources_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev)
{
pm_runtime_disable(csi2_dev->dev);
phy_exit(csi2_dev->dphy);
clk_rate_exclusive_put(csi2_dev->clock_mod);
}
static int sun8i_a83t_mipi_csi2_probe(struct platform_device *platform_dev)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev;
struct device *dev = &platform_dev->dev;
int ret;
csi2_dev = devm_kzalloc(dev, sizeof(*csi2_dev), GFP_KERNEL);
if (!csi2_dev)
return -ENOMEM;
csi2_dev->dev = dev;
platform_set_drvdata(platform_dev, csi2_dev);
ret = sun8i_a83t_mipi_csi2_resources_setup(csi2_dev, platform_dev);
if (ret)
return ret;
ret = sun8i_a83t_mipi_csi2_bridge_setup(csi2_dev);
if (ret)
goto error_resources;
return 0;
error_resources:
sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev);
return ret;
}
static void sun8i_a83t_mipi_csi2_remove(struct platform_device *platform_dev)
{
struct sun8i_a83t_mipi_csi2_device *csi2_dev =
platform_get_drvdata(platform_dev);
sun8i_a83t_mipi_csi2_bridge_cleanup(csi2_dev);
sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev);
}
static const struct of_device_id sun8i_a83t_mipi_csi2_of_match[] = {
{ .compatible = "allwinner,sun8i-a83t-mipi-csi2" },
{},
};
MODULE_DEVICE_TABLE(of, sun8i_a83t_mipi_csi2_of_match);
static struct platform_driver sun8i_a83t_mipi_csi2_platform_driver = {
.probe = sun8i_a83t_mipi_csi2_probe,
.remove_new = sun8i_a83t_mipi_csi2_remove,
.driver = {
.name = SUN8I_A83T_MIPI_CSI2_NAME,
.of_match_table = sun8i_a83t_mipi_csi2_of_match,
.pm = &sun8i_a83t_mipi_csi2_pm_ops,
},
};
module_platform_driver(sun8i_a83t_mipi_csi2_platform_driver);
MODULE_DESCRIPTION("Allwinner A83T MIPI CSI-2 and D-PHY Controller Driver");
MODULE_AUTHOR("Paul Kocialkowski <paul.kocialkowski@bootlin.com>");
MODULE_LICENSE("GPL");