blob: 37240895ffaafc4eaf9fbed69007fec613f8bdcb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright (C) 2019 ASPEED Technology Inc. */
/* Copyright (C) 2019 IBM Corp. */
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include "sdhci-pltfm.h"
#define ASPEED_SDC_INFO 0x00
#define ASPEED_SDC_S1_MMC8 BIT(25)
#define ASPEED_SDC_S0_MMC8 BIT(24)
#define ASPEED_SDC_PHASE 0xf4
#define ASPEED_SDC_S1_PHASE_IN GENMASK(25, 21)
#define ASPEED_SDC_S0_PHASE_IN GENMASK(20, 16)
#define ASPEED_SDC_S1_PHASE_OUT GENMASK(15, 11)
#define ASPEED_SDC_S1_PHASE_IN_EN BIT(10)
#define ASPEED_SDC_S1_PHASE_OUT_EN GENMASK(9, 8)
#define ASPEED_SDC_S0_PHASE_OUT GENMASK(7, 3)
#define ASPEED_SDC_S0_PHASE_IN_EN BIT(2)
#define ASPEED_SDC_S0_PHASE_OUT_EN GENMASK(1, 0)
#define ASPEED_SDC_PHASE_MAX 31
/* SDIO{10,20} */
#define ASPEED_SDC_CAP1_1_8V (0 * 32 + 26)
/* SDIO{14,24} */
#define ASPEED_SDC_CAP2_SDR104 (1 * 32 + 1)
struct aspeed_sdc {
struct clk *clk;
struct resource *res;
spinlock_t lock;
void __iomem *regs;
};
struct aspeed_sdhci_tap_param {
bool valid;
#define ASPEED_SDHCI_TAP_PARAM_INVERT_CLK BIT(4)
u8 in;
u8 out;
};
struct aspeed_sdhci_tap_desc {
u32 tap_mask;
u32 enable_mask;
u8 enable_value;
};
struct aspeed_sdhci_phase_desc {
struct aspeed_sdhci_tap_desc in;
struct aspeed_sdhci_tap_desc out;
};
struct aspeed_sdhci_pdata {
unsigned int clk_div_start;
const struct aspeed_sdhci_phase_desc *phase_desc;
size_t nr_phase_descs;
};
struct aspeed_sdhci {
const struct aspeed_sdhci_pdata *pdata;
struct aspeed_sdc *parent;
u32 width_mask;
struct mmc_clk_phase_map phase_map;
const struct aspeed_sdhci_phase_desc *phase_desc;
};
/*
* The function sets the mirror register for updating
* capbilities of the current slot.
*
* slot | capability | caps_reg | mirror_reg
* -----|-------------|----------|------------
* 0 | CAP1_1_8V | SDIO140 | SDIO10
* 0 | CAP2_SDR104 | SDIO144 | SDIO14
* 1 | CAP1_1_8V | SDIO240 | SDIO20
* 1 | CAP2_SDR104 | SDIO244 | SDIO24
*/
static void aspeed_sdc_set_slot_capability(struct sdhci_host *host, struct aspeed_sdc *sdc,
int capability, bool enable, u8 slot)
{
u32 mirror_reg_offset;
u32 cap_val;
u8 cap_reg;
if (slot > 1)
return;
cap_reg = capability / 32;
cap_val = sdhci_readl(host, 0x40 + (cap_reg * 4));
if (enable)
cap_val |= BIT(capability % 32);
else
cap_val &= ~BIT(capability % 32);
mirror_reg_offset = ((slot + 1) * 0x10) + (cap_reg * 4);
writel(cap_val, sdc->regs + mirror_reg_offset);
}
static void aspeed_sdc_configure_8bit_mode(struct aspeed_sdc *sdc,
struct aspeed_sdhci *sdhci,
bool bus8)
{
u32 info;
/* Set/clear 8 bit mode */
spin_lock(&sdc->lock);
info = readl(sdc->regs + ASPEED_SDC_INFO);
if (bus8)
info |= sdhci->width_mask;
else
info &= ~sdhci->width_mask;
writel(info, sdc->regs + ASPEED_SDC_INFO);
spin_unlock(&sdc->lock);
}
static u32
aspeed_sdc_set_phase_tap(const struct aspeed_sdhci_tap_desc *desc,
u8 tap, bool enable, u32 reg)
{
reg &= ~(desc->enable_mask | desc->tap_mask);
if (enable) {
reg |= tap << __ffs(desc->tap_mask);
reg |= desc->enable_value << __ffs(desc->enable_mask);
}
return reg;
}
static void
aspeed_sdc_set_phase_taps(struct aspeed_sdc *sdc,
const struct aspeed_sdhci_phase_desc *desc,
const struct aspeed_sdhci_tap_param *taps)
{
u32 reg;
spin_lock(&sdc->lock);
reg = readl(sdc->regs + ASPEED_SDC_PHASE);
reg = aspeed_sdc_set_phase_tap(&desc->in, taps->in, taps->valid, reg);
reg = aspeed_sdc_set_phase_tap(&desc->out, taps->out, taps->valid, reg);
writel(reg, sdc->regs + ASPEED_SDC_PHASE);
spin_unlock(&sdc->lock);
}
#define PICOSECONDS_PER_SECOND 1000000000000ULL
#define ASPEED_SDHCI_NR_TAPS 15
/* Measured value with *handwave* environmentals and static loading */
#define ASPEED_SDHCI_MAX_TAP_DELAY_PS 1253
static int aspeed_sdhci_phase_to_tap(struct device *dev, unsigned long rate_hz,
int phase_deg)
{
u64 phase_period_ps;
u64 prop_delay_ps;
u64 clk_period_ps;
unsigned int tap;
u8 inverted;
phase_deg %= 360;
if (phase_deg >= 180) {
inverted = ASPEED_SDHCI_TAP_PARAM_INVERT_CLK;
phase_deg -= 180;
dev_dbg(dev,
"Inverting clock to reduce phase correction from %d to %d degrees\n",
phase_deg + 180, phase_deg);
} else {
inverted = 0;
}
prop_delay_ps = ASPEED_SDHCI_MAX_TAP_DELAY_PS / ASPEED_SDHCI_NR_TAPS;
clk_period_ps = div_u64(PICOSECONDS_PER_SECOND, (u64)rate_hz);
phase_period_ps = div_u64((u64)phase_deg * clk_period_ps, 360ULL);
tap = div_u64(phase_period_ps, prop_delay_ps);
if (tap > ASPEED_SDHCI_NR_TAPS) {
dev_dbg(dev,
"Requested out of range phase tap %d for %d degrees of phase compensation at %luHz, clamping to tap %d\n",
tap, phase_deg, rate_hz, ASPEED_SDHCI_NR_TAPS);
tap = ASPEED_SDHCI_NR_TAPS;
}
return inverted | tap;
}
static void
aspeed_sdhci_phases_to_taps(struct device *dev, unsigned long rate,
const struct mmc_clk_phase *phases,
struct aspeed_sdhci_tap_param *taps)
{
taps->valid = phases->valid;
if (!phases->valid)
return;
taps->in = aspeed_sdhci_phase_to_tap(dev, rate, phases->in_deg);
taps->out = aspeed_sdhci_phase_to_tap(dev, rate, phases->out_deg);
}
static void
aspeed_sdhci_configure_phase(struct sdhci_host *host, unsigned long rate)
{
struct aspeed_sdhci_tap_param _taps = {0}, *taps = &_taps;
struct mmc_clk_phase *params;
struct aspeed_sdhci *sdhci;
struct device *dev;
dev = mmc_dev(host->mmc);
sdhci = sdhci_pltfm_priv(sdhci_priv(host));
if (!sdhci->phase_desc)
return;
params = &sdhci->phase_map.phase[host->timing];
aspeed_sdhci_phases_to_taps(dev, rate, params, taps);
aspeed_sdc_set_phase_taps(sdhci->parent, sdhci->phase_desc, taps);
dev_dbg(dev,
"Using taps [%d, %d] for [%d, %d] degrees of phase correction at %luHz (%d)\n",
taps->in & ASPEED_SDHCI_NR_TAPS,
taps->out & ASPEED_SDHCI_NR_TAPS,
params->in_deg, params->out_deg, rate, host->timing);
}
static void aspeed_sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host;
unsigned long parent, bus;
struct aspeed_sdhci *sdhci;
int div;
u16 clk;
pltfm_host = sdhci_priv(host);
sdhci = sdhci_pltfm_priv(pltfm_host);
parent = clk_get_rate(pltfm_host->clk);
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
if (WARN_ON(clock > host->max_clk))
clock = host->max_clk;
/*
* Regarding the AST2600:
*
* If (EMMC12C[7:6], EMMC12C[15:8] == 0) then
* period of SDCLK = period of SDMCLK.
*
* If (EMMC12C[7:6], EMMC12C[15:8] != 0) then
* period of SDCLK = period of SDMCLK * 2 * (EMMC12C[7:6], EMMC[15:8])
*
* If you keep EMMC12C[7:6] = 0 and EMMC12C[15:8] as one-hot,
* 0x1/0x2/0x4/etc, you will find it is compatible to AST2400 or AST2500
*
* Keep the one-hot behaviour for backwards compatibility except for
* supporting the value 0 in (EMMC12C[7:6], EMMC12C[15:8]), and capture
* the 0-value capability in clk_div_start.
*/
for (div = sdhci->pdata->clk_div_start; div < 256; div *= 2) {
bus = parent / div;
if (bus <= clock)
break;
}
div >>= 1;
clk = div << SDHCI_DIVIDER_SHIFT;
aspeed_sdhci_configure_phase(host, bus);
sdhci_enable_clk(host, clk);
}
static unsigned int aspeed_sdhci_get_max_clock(struct sdhci_host *host)
{
if (host->mmc->f_max)
return host->mmc->f_max;
return sdhci_pltfm_clk_get_max_clock(host);
}
static void aspeed_sdhci_set_bus_width(struct sdhci_host *host, int width)
{
struct sdhci_pltfm_host *pltfm_priv;
struct aspeed_sdhci *aspeed_sdhci;
struct aspeed_sdc *aspeed_sdc;
u8 ctrl;
pltfm_priv = sdhci_priv(host);
aspeed_sdhci = sdhci_pltfm_priv(pltfm_priv);
aspeed_sdc = aspeed_sdhci->parent;
/* Set/clear 8-bit mode */
aspeed_sdc_configure_8bit_mode(aspeed_sdc, aspeed_sdhci,
width == MMC_BUS_WIDTH_8);
/* Set/clear 1 or 4 bit mode */
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static u32 aspeed_sdhci_readl(struct sdhci_host *host, int reg)
{
u32 val = readl(host->ioaddr + reg);
if (unlikely(reg == SDHCI_PRESENT_STATE) &&
(host->mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH))
val ^= SDHCI_CARD_PRESENT;
return val;
}
static const struct sdhci_ops aspeed_sdhci_ops = {
.read_l = aspeed_sdhci_readl,
.set_clock = aspeed_sdhci_set_clock,
.get_max_clock = aspeed_sdhci_get_max_clock,
.set_bus_width = aspeed_sdhci_set_bus_width,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
static const struct sdhci_pltfm_data aspeed_sdhci_pdata = {
.ops = &aspeed_sdhci_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
};
static inline int aspeed_sdhci_calculate_slot(struct aspeed_sdhci *dev,
struct resource *res)
{
resource_size_t delta;
if (!res || resource_type(res) != IORESOURCE_MEM)
return -EINVAL;
if (res->start < dev->parent->res->start)
return -EINVAL;
delta = res->start - dev->parent->res->start;
if (delta & (0x100 - 1))
return -EINVAL;
return (delta / 0x100) - 1;
}
static int aspeed_sdhci_probe(struct platform_device *pdev)
{
const struct aspeed_sdhci_pdata *aspeed_pdata;
struct device_node *np = pdev->dev.of_node;
struct sdhci_pltfm_host *pltfm_host;
struct aspeed_sdhci *dev;
struct sdhci_host *host;
struct resource *res;
int slot;
int ret;
aspeed_pdata = of_device_get_match_data(&pdev->dev);
if (!aspeed_pdata) {
dev_err(&pdev->dev, "Missing platform configuration data\n");
return -EINVAL;
}
host = sdhci_pltfm_init(pdev, &aspeed_sdhci_pdata, sizeof(*dev));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
dev = sdhci_pltfm_priv(pltfm_host);
dev->pdata = aspeed_pdata;
dev->parent = dev_get_drvdata(pdev->dev.parent);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
slot = aspeed_sdhci_calculate_slot(dev, res);
if (slot < 0)
return slot;
else if (slot >= 2)
return -EINVAL;
if (slot < dev->pdata->nr_phase_descs) {
dev->phase_desc = &dev->pdata->phase_desc[slot];
} else {
dev_info(&pdev->dev,
"Phase control not supported for slot %d\n", slot);
dev->phase_desc = NULL;
}
dev->width_mask = !slot ? ASPEED_SDC_S0_MMC8 : ASPEED_SDC_S1_MMC8;
dev_info(&pdev->dev, "Configured for slot %d\n", slot);
sdhci_get_of_property(pdev);
if (of_property_read_bool(np, "mmc-hs200-1_8v") ||
of_property_read_bool(np, "sd-uhs-sdr104")) {
aspeed_sdc_set_slot_capability(host, dev->parent, ASPEED_SDC_CAP1_1_8V,
true, slot);
}
if (of_property_read_bool(np, "sd-uhs-sdr104")) {
aspeed_sdc_set_slot_capability(host, dev->parent, ASPEED_SDC_CAP2_SDR104,
true, slot);
}
pltfm_host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pltfm_host->clk))
return PTR_ERR(pltfm_host->clk);
ret = clk_prepare_enable(pltfm_host->clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable SDIO clock\n");
goto err_pltfm_free;
}
ret = mmc_of_parse(host->mmc);
if (ret)
goto err_sdhci_add;
if (dev->phase_desc)
mmc_of_parse_clk_phase(&pdev->dev, &dev->phase_map);
ret = sdhci_add_host(host);
if (ret)
goto err_sdhci_add;
return 0;
err_sdhci_add:
clk_disable_unprepare(pltfm_host->clk);
err_pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static void aspeed_sdhci_remove(struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_host *host;
host = platform_get_drvdata(pdev);
pltfm_host = sdhci_priv(host);
sdhci_remove_host(host, 0);
clk_disable_unprepare(pltfm_host->clk);
sdhci_pltfm_free(pdev);
}
static const struct aspeed_sdhci_pdata ast2400_sdhci_pdata = {
.clk_div_start = 2,
};
static const struct aspeed_sdhci_phase_desc ast2600_sdhci_phase[] = {
/* SDHCI/Slot 0 */
[0] = {
.in = {
.tap_mask = ASPEED_SDC_S0_PHASE_IN,
.enable_mask = ASPEED_SDC_S0_PHASE_IN_EN,
.enable_value = 1,
},
.out = {
.tap_mask = ASPEED_SDC_S0_PHASE_OUT,
.enable_mask = ASPEED_SDC_S0_PHASE_OUT_EN,
.enable_value = 3,
},
},
/* SDHCI/Slot 1 */
[1] = {
.in = {
.tap_mask = ASPEED_SDC_S1_PHASE_IN,
.enable_mask = ASPEED_SDC_S1_PHASE_IN_EN,
.enable_value = 1,
},
.out = {
.tap_mask = ASPEED_SDC_S1_PHASE_OUT,
.enable_mask = ASPEED_SDC_S1_PHASE_OUT_EN,
.enable_value = 3,
},
},
};
static const struct aspeed_sdhci_pdata ast2600_sdhci_pdata = {
.clk_div_start = 1,
.phase_desc = ast2600_sdhci_phase,
.nr_phase_descs = ARRAY_SIZE(ast2600_sdhci_phase),
};
static const struct of_device_id aspeed_sdhci_of_match[] = {
{ .compatible = "aspeed,ast2400-sdhci", .data = &ast2400_sdhci_pdata, },
{ .compatible = "aspeed,ast2500-sdhci", .data = &ast2400_sdhci_pdata, },
{ .compatible = "aspeed,ast2600-sdhci", .data = &ast2600_sdhci_pdata, },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_sdhci_of_match);
static struct platform_driver aspeed_sdhci_driver = {
.driver = {
.name = "sdhci-aspeed",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = aspeed_sdhci_of_match,
},
.probe = aspeed_sdhci_probe,
.remove_new = aspeed_sdhci_remove,
};
static int aspeed_sdc_probe(struct platform_device *pdev)
{
struct device_node *parent, *child;
struct aspeed_sdc *sdc;
int ret;
sdc = devm_kzalloc(&pdev->dev, sizeof(*sdc), GFP_KERNEL);
if (!sdc)
return -ENOMEM;
spin_lock_init(&sdc->lock);
sdc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sdc->clk))
return PTR_ERR(sdc->clk);
ret = clk_prepare_enable(sdc->clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable SDCLK\n");
return ret;
}
sdc->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &sdc->res);
if (IS_ERR(sdc->regs)) {
ret = PTR_ERR(sdc->regs);
goto err_clk;
}
dev_set_drvdata(&pdev->dev, sdc);
parent = pdev->dev.of_node;
for_each_available_child_of_node(parent, child) {
struct platform_device *cpdev;
cpdev = of_platform_device_create(child, NULL, &pdev->dev);
if (!cpdev) {
of_node_put(child);
ret = -ENODEV;
goto err_clk;
}
}
return 0;
err_clk:
clk_disable_unprepare(sdc->clk);
return ret;
}
static void aspeed_sdc_remove(struct platform_device *pdev)
{
struct aspeed_sdc *sdc = dev_get_drvdata(&pdev->dev);
clk_disable_unprepare(sdc->clk);
}
static const struct of_device_id aspeed_sdc_of_match[] = {
{ .compatible = "aspeed,ast2400-sd-controller", },
{ .compatible = "aspeed,ast2500-sd-controller", },
{ .compatible = "aspeed,ast2600-sd-controller", },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_sdc_of_match);
static struct platform_driver aspeed_sdc_driver = {
.driver = {
.name = "sd-controller-aspeed",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sdhci_pltfm_pmops,
.of_match_table = aspeed_sdc_of_match,
},
.probe = aspeed_sdc_probe,
.remove_new = aspeed_sdc_remove,
};
#if defined(CONFIG_MMC_SDHCI_OF_ASPEED_TEST)
#include "sdhci-of-aspeed-test.c"
#endif
static int __init aspeed_sdc_init(void)
{
int rc;
rc = platform_driver_register(&aspeed_sdhci_driver);
if (rc < 0)
return rc;
rc = platform_driver_register(&aspeed_sdc_driver);
if (rc < 0)
platform_driver_unregister(&aspeed_sdhci_driver);
return rc;
}
module_init(aspeed_sdc_init);
static void __exit aspeed_sdc_exit(void)
{
platform_driver_unregister(&aspeed_sdc_driver);
platform_driver_unregister(&aspeed_sdhci_driver);
}
module_exit(aspeed_sdc_exit);
MODULE_DESCRIPTION("Driver for the ASPEED SD/SDIO/SDHCI Controllers");
MODULE_AUTHOR("Ryan Chen <ryan_chen@aspeedtech.com>");
MODULE_AUTHOR("Andrew Jeffery <andrew@aj.id.au>");
MODULE_LICENSE("GPL");