blob: f18aa321053d75f34544267528d68ade37264e89 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* DSA driver for:
* Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
*
* These switches have a built-in 8051 CPU and can download and execute a
* firmware in this CPU. They can also be configured to use an external CPU
* handling the switch in a memory-mapped manner by connecting to that external
* CPU's memory bus.
*
* Copyright (C) 2018 Linus Wallej <linus.walleij@linaro.org>
* Includes portions of code from the firmware uploader by:
* Copyright (C) 2009 Gabor Juhos <juhosg@openwrt.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/dsa/8021q.h>
#include <linux/random.h>
#include <net/dsa.h>
#include "vitesse-vsc73xx.h"
#define VSC73XX_BLOCK_MAC 0x1 /* Subblocks 0-4, 6 (CPU port) */
#define VSC73XX_BLOCK_ANALYZER 0x2 /* Only subblock 0 */
#define VSC73XX_BLOCK_MII 0x3 /* Subblocks 0 and 1 */
#define VSC73XX_BLOCK_MEMINIT 0x3 /* Only subblock 2 */
#define VSC73XX_BLOCK_CAPTURE 0x4 /* Subblocks 0-4, 6, 7 */
#define VSC73XX_BLOCK_ARBITER 0x5 /* Only subblock 0 */
#define VSC73XX_BLOCK_SYSTEM 0x7 /* Only subblock 0 */
/* MII Block subblock */
#define VSC73XX_BLOCK_MII_INTERNAL 0x0 /* Internal MDIO subblock */
#define VSC73XX_BLOCK_MII_EXTERNAL 0x1 /* External MDIO subblock */
#define CPU_PORT 6 /* CPU port */
#define VSC73XX_NUM_FDB_ROWS 2048
#define VSC73XX_NUM_BUCKETS 4
/* MAC Block registers */
#define VSC73XX_MAC_CFG 0x00
#define VSC73XX_MACHDXGAP 0x02
#define VSC73XX_FCCONF 0x04
#define VSC73XX_FCMACHI 0x08
#define VSC73XX_FCMACLO 0x0c
#define VSC73XX_MAXLEN 0x10
#define VSC73XX_ADVPORTM 0x19
#define VSC73XX_TXUPDCFG 0x24
#define VSC73XX_TXQ_SELECT_CFG 0x28
#define VSC73XX_RXOCT 0x50
#define VSC73XX_TXOCT 0x51
#define VSC73XX_C_RX0 0x52
#define VSC73XX_C_RX1 0x53
#define VSC73XX_C_RX2 0x54
#define VSC73XX_C_TX0 0x55
#define VSC73XX_C_TX1 0x56
#define VSC73XX_C_TX2 0x57
#define VSC73XX_C_CFG 0x58
#define VSC73XX_CAT_DROP 0x6e
#define VSC73XX_CAT_PR_MISC_L2 0x6f
#define VSC73XX_CAT_PR_USR_PRIO 0x75
#define VSC73XX_CAT_VLAN_MISC 0x79
#define VSC73XX_CAT_PORT_VLAN 0x7a
#define VSC73XX_Q_MISC_CONF 0xdf
/* MAC_CFG register bits */
#define VSC73XX_MAC_CFG_WEXC_DIS BIT(31)
#define VSC73XX_MAC_CFG_PORT_RST BIT(29)
#define VSC73XX_MAC_CFG_TX_EN BIT(28)
#define VSC73XX_MAC_CFG_SEED_LOAD BIT(27)
#define VSC73XX_MAC_CFG_SEED_MASK GENMASK(26, 19)
#define VSC73XX_MAC_CFG_SEED_OFFSET 19
#define VSC73XX_MAC_CFG_FDX BIT(18)
#define VSC73XX_MAC_CFG_GIGA_MODE BIT(17)
#define VSC73XX_MAC_CFG_RX_EN BIT(16)
#define VSC73XX_MAC_CFG_VLAN_DBLAWR BIT(15)
#define VSC73XX_MAC_CFG_VLAN_AWR BIT(14)
#define VSC73XX_MAC_CFG_100_BASE_T BIT(13) /* Not in manual */
#define VSC73XX_MAC_CFG_TX_IPG_MASK GENMASK(10, 6)
#define VSC73XX_MAC_CFG_TX_IPG_OFFSET 6
#define VSC73XX_MAC_CFG_TX_IPG_1000M (6 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_TX_IPG_100_10M (17 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_MAC_RX_RST BIT(5)
#define VSC73XX_MAC_CFG_MAC_TX_RST BIT(4)
#define VSC73XX_MAC_CFG_CLK_SEL_MASK GENMASK(2, 0)
#define VSC73XX_MAC_CFG_CLK_SEL_OFFSET 0
#define VSC73XX_MAC_CFG_CLK_SEL_1000M 1
#define VSC73XX_MAC_CFG_CLK_SEL_100M 2
#define VSC73XX_MAC_CFG_CLK_SEL_10M 3
#define VSC73XX_MAC_CFG_CLK_SEL_EXT 4
#define VSC73XX_MAC_CFG_1000M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_H_PHY (VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_1000M_F_RGMII (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_1000M)
#define VSC73XX_MAC_CFG_RESET (VSC73XX_MAC_CFG_PORT_RST | \
VSC73XX_MAC_CFG_MAC_RX_RST | \
VSC73XX_MAC_CFG_MAC_TX_RST)
/* Flow control register bits */
#define VSC73XX_FCCONF_ZERO_PAUSE_EN BIT(17)
#define VSC73XX_FCCONF_FLOW_CTRL_OBEY BIT(16)
#define VSC73XX_FCCONF_PAUSE_VAL_MASK GENMASK(15, 0)
/* ADVPORTM advanced port setup register bits */
#define VSC73XX_ADVPORTM_IFG_PPM BIT(7)
#define VSC73XX_ADVPORTM_EXC_COL_CONT BIT(6)
#define VSC73XX_ADVPORTM_EXT_PORT BIT(5)
#define VSC73XX_ADVPORTM_INV_GTX BIT(4)
#define VSC73XX_ADVPORTM_ENA_GTX BIT(3)
#define VSC73XX_ADVPORTM_DDR_MODE BIT(2)
#define VSC73XX_ADVPORTM_IO_LOOPBACK BIT(1)
#define VSC73XX_ADVPORTM_HOST_LOOPBACK BIT(0)
/* TXUPDCFG transmit modify setup bits */
#define VSC73XX_TXUPDCFG_DSCP_REWR_MODE GENMASK(20, 19)
#define VSC73XX_TXUPDCFG_DSCP_REWR_ENA BIT(18)
#define VSC73XX_TXUPDCFG_TX_INT_TO_USRPRIO_ENA BIT(17)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID GENMASK(15, 4)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA BIT(3)
#define VSC73XX_TXUPDCFG_TX_UPDATE_CRC_CPU_ENA BIT(1)
#define VSC73XX_TXUPDCFG_TX_INSERT_TAG BIT(0)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT 4
/* CAT_DROP categorizer frame dropping register bits */
#define VSC73XX_CAT_DROP_DROP_MC_SMAC_ENA BIT(6)
#define VSC73XX_CAT_DROP_FWD_CTRL_ENA BIT(4)
#define VSC73XX_CAT_DROP_FWD_PAUSE_ENA BIT(3)
#define VSC73XX_CAT_DROP_UNTAGGED_ENA BIT(2)
#define VSC73XX_CAT_DROP_TAGGED_ENA BIT(1)
#define VSC73XX_CAT_DROP_NULL_MAC_ENA BIT(0)
#define VSC73XX_Q_MISC_CONF_EXTENT_MEM BIT(31)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_MASK GENMASK(4, 1)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_512 (1 << 1)
#define VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE BIT(0)
/* CAT_VLAN_MISC categorizer VLAN miscellaneous bits */
#define VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA BIT(8)
#define VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA BIT(7)
/* CAT_PORT_VLAN categorizer port VLAN */
#define VSC73XX_CAT_PORT_VLAN_VLAN_CFI BIT(15)
#define VSC73XX_CAT_PORT_VLAN_VLAN_USR_PRIO GENMASK(14, 12)
#define VSC73XX_CAT_PORT_VLAN_VLAN_VID GENMASK(11, 0)
/* Frame analyzer block 2 registers */
#define VSC73XX_STORMLIMIT 0x02
#define VSC73XX_ADVLEARN 0x03
#define VSC73XX_IFLODMSK 0x04
#define VSC73XX_VLANMASK 0x05
#define VSC73XX_MACHDATA 0x06
#define VSC73XX_MACLDATA 0x07
#define VSC73XX_ANMOVED 0x08
#define VSC73XX_ANAGEFIL 0x09
#define VSC73XX_ANEVENTS 0x0a
#define VSC73XX_ANCNTMASK 0x0b
#define VSC73XX_ANCNTVAL 0x0c
#define VSC73XX_LEARNMASK 0x0d
#define VSC73XX_UFLODMASK 0x0e
#define VSC73XX_MFLODMASK 0x0f
#define VSC73XX_RECVMASK 0x10
#define VSC73XX_AGGRCTRL 0x20
#define VSC73XX_AGGRMSKS 0x30 /* Until 0x3f */
#define VSC73XX_DSTMASKS 0x40 /* Until 0x7f */
#define VSC73XX_SRCMASKS 0x80 /* Until 0x87 */
#define VSC73XX_CAPENAB 0xa0
#define VSC73XX_MACACCESS 0xb0
#define VSC73XX_IPMCACCESS 0xb1
#define VSC73XX_MACTINDX 0xc0
#define VSC73XX_VLANACCESS 0xd0
#define VSC73XX_VLANTIDX 0xe0
#define VSC73XX_AGENCTRL 0xf0
#define VSC73XX_CAPRST 0xff
#define VSC73XX_SRCMASKS_CPU_COPY BIT(27)
#define VSC73XX_SRCMASKS_MIRROR BIT(26)
#define VSC73XX_SRCMASKS_PORTS_MASK GENMASK(7, 0)
#define VSC73XX_MACHDATA_VID GENMASK(27, 16)
#define VSC73XX_MACHDATA_MAC0 GENMASK(15, 8)
#define VSC73XX_MACHDATA_MAC1 GENMASK(7, 0)
#define VSC73XX_MACLDATA_MAC2 GENMASK(31, 24)
#define VSC73XX_MACLDATA_MAC3 GENMASK(23, 16)
#define VSC73XX_MACLDATA_MAC4 GENMASK(15, 8)
#define VSC73XX_MACLDATA_MAC5 GENMASK(7, 0)
#define VSC73XX_HASH0_VID_FROM_MASK GENMASK(5, 0)
#define VSC73XX_HASH0_MAC0_FROM_MASK GENMASK(7, 4)
#define VSC73XX_HASH1_MAC0_FROM_MASK GENMASK(3, 0)
#define VSC73XX_HASH1_MAC1_FROM_MASK GENMASK(7, 1)
#define VSC73XX_HASH2_MAC1_FROM_MASK BIT(0)
#define VSC73XX_HASH2_MAC2_FROM_MASK GENMASK(7, 0)
#define VSC73XX_HASH2_MAC3_FROM_MASK GENMASK(7, 6)
#define VSC73XX_HASH3_MAC3_FROM_MASK GENMASK(5, 0)
#define VSC73XX_HASH3_MAC4_FROM_MASK GENMASK(7, 3)
#define VSC73XX_HASH4_MAC4_FROM_MASK GENMASK(2, 0)
#define VSC73XX_HASH0_VID_TO_MASK GENMASK(9, 4)
#define VSC73XX_HASH0_MAC0_TO_MASK GENMASK(3, 0)
#define VSC73XX_HASH1_MAC0_TO_MASK GENMASK(10, 7)
#define VSC73XX_HASH1_MAC1_TO_MASK GENMASK(6, 0)
#define VSC73XX_HASH2_MAC1_TO_MASK BIT(10)
#define VSC73XX_HASH2_MAC2_TO_MASK GENMASK(9, 2)
#define VSC73XX_HASH2_MAC3_TO_MASK GENMASK(1, 0)
#define VSC73XX_HASH3_MAC3_TO_MASK GENMASK(10, 5)
#define VSC73XX_HASH3_MAC4_TO_MASK GENMASK(4, 0)
#define VSC73XX_HASH4_MAC4_TO_MASK GENMASK(10, 8)
#define VSC73XX_MACTINDX_SHADOW BIT(13)
#define VSC73XX_MACTINDX_BUCKET_MSK GENMASK(12, 11)
#define VSC73XX_MACTINDX_INDEX_MSK GENMASK(10, 0)
#define VSC73XX_MACACCESS_CPU_COPY BIT(14)
#define VSC73XX_MACACCESS_FWD_KILL BIT(13)
#define VSC73XX_MACACCESS_IGNORE_VLAN BIT(12)
#define VSC73XX_MACACCESS_AGED_FLAG BIT(11)
#define VSC73XX_MACACCESS_VALID BIT(10)
#define VSC73XX_MACACCESS_LOCKED BIT(9)
#define VSC73XX_MACACCESS_DEST_IDX_MASK GENMASK(8, 3)
#define VSC73XX_MACACCESS_CMD_MASK GENMASK(2, 0)
#define VSC73XX_MACACCESS_CMD_IDLE 0
#define VSC73XX_MACACCESS_CMD_LEARN 1
#define VSC73XX_MACACCESS_CMD_FORGET 2
#define VSC73XX_MACACCESS_CMD_AGE_TABLE 3
#define VSC73XX_MACACCESS_CMD_FLUSH_TABLE 4
#define VSC73XX_MACACCESS_CMD_CLEAR_TABLE 5
#define VSC73XX_MACACCESS_CMD_READ_ENTRY 6
#define VSC73XX_MACACCESS_CMD_WRITE_ENTRY 7
#define VSC73XX_VLANACCESS_LEARN_DISABLED BIT(30)
#define VSC73XX_VLANACCESS_VLAN_MIRROR BIT(29)
#define VSC73XX_VLANACCESS_VLAN_SRC_CHECK BIT(28)
#define VSC73XX_VLANACCESS_VLAN_PORT_MASK GENMASK(9, 2)
#define VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT 2
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK GENMASK(1, 0)
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE 0
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY 1
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY 2
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE 3
/* MII block 3 registers */
#define VSC73XX_MII_STAT 0x0
#define VSC73XX_MII_CMD 0x1
#define VSC73XX_MII_DATA 0x2
#define VSC73XX_MII_MPRES 0x3
#define VSC73XX_MII_STAT_BUSY BIT(3)
#define VSC73XX_MII_STAT_READ BIT(2)
#define VSC73XX_MII_STAT_WRITE BIT(1)
#define VSC73XX_MII_CMD_SCAN BIT(27)
#define VSC73XX_MII_CMD_OPERATION BIT(26)
#define VSC73XX_MII_CMD_PHY_ADDR GENMASK(25, 21)
#define VSC73XX_MII_CMD_PHY_REG GENMASK(20, 16)
#define VSC73XX_MII_CMD_WRITE_DATA GENMASK(15, 0)
#define VSC73XX_MII_DATA_FAILURE BIT(16)
#define VSC73XX_MII_DATA_READ_DATA GENMASK(15, 0)
#define VSC73XX_MII_MPRES_NOPREAMBLE BIT(6)
#define VSC73XX_MII_MPRES_PRESCALEVAL GENMASK(5, 0)
#define VSC73XX_MII_PRESCALEVAL_MIN 3 /* min allowed mdio clock prescaler */
#define VSC73XX_MII_STAT_BUSY BIT(3)
/* Arbiter block 5 registers */
#define VSC73XX_ARBEMPTY 0x0c
#define VSC73XX_ARBDISC 0x0e
#define VSC73XX_SBACKWDROP 0x12
#define VSC73XX_DBACKWDROP 0x13
#define VSC73XX_ARBBURSTPROB 0x15
/* System block 7 registers */
#define VSC73XX_ICPU_SIPAD 0x01
#define VSC73XX_GMIIDELAY 0x05
#define VSC73XX_ICPU_CTRL 0x10
#define VSC73XX_ICPU_ADDR 0x11
#define VSC73XX_ICPU_SRAM 0x12
#define VSC73XX_HWSEM 0x13
#define VSC73XX_GLORESET 0x14
#define VSC73XX_ICPU_MBOX_VAL 0x15
#define VSC73XX_ICPU_MBOX_SET 0x16
#define VSC73XX_ICPU_MBOX_CLR 0x17
#define VSC73XX_CHIPID 0x18
#define VSC73XX_GPIO 0x34
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE 0
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS 1
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS 2
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS 3
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE (0 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS (1 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS (2 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS (3 << 4)
#define VSC73XX_ICPU_CTRL_WATCHDOG_RST BIT(31)
#define VSC73XX_ICPU_CTRL_CLK_DIV_MASK GENMASK(12, 8)
#define VSC73XX_ICPU_CTRL_SRST_HOLD BIT(7)
#define VSC73XX_ICPU_CTRL_ICPU_PI_EN BIT(6)
#define VSC73XX_ICPU_CTRL_BOOT_EN BIT(3)
#define VSC73XX_ICPU_CTRL_EXT_ACC_EN BIT(2)
#define VSC73XX_ICPU_CTRL_CLK_EN BIT(1)
#define VSC73XX_ICPU_CTRL_SRST BIT(0)
#define VSC73XX_CHIPID_ID_SHIFT 12
#define VSC73XX_CHIPID_ID_MASK 0xffff
#define VSC73XX_CHIPID_REV_SHIFT 28
#define VSC73XX_CHIPID_REV_MASK 0xf
#define VSC73XX_CHIPID_ID_7385 0x7385
#define VSC73XX_CHIPID_ID_7388 0x7388
#define VSC73XX_CHIPID_ID_7395 0x7395
#define VSC73XX_CHIPID_ID_7398 0x7398
#define VSC73XX_GLORESET_STROBE BIT(4)
#define VSC73XX_GLORESET_ICPU_LOCK BIT(3)
#define VSC73XX_GLORESET_MEM_LOCK BIT(2)
#define VSC73XX_GLORESET_PHY_RESET BIT(1)
#define VSC73XX_GLORESET_MASTER_RESET BIT(0)
#define VSC7385_CLOCK_DELAY ((3 << 4) | 3)
#define VSC7385_CLOCK_DELAY_MASK ((3 << 4) | 3)
#define VSC73XX_ICPU_CTRL_STOP (VSC73XX_ICPU_CTRL_SRST_HOLD | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_EXT_ACC_EN)
#define VSC73XX_ICPU_CTRL_START (VSC73XX_ICPU_CTRL_CLK_DIV | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_CLK_EN | \
VSC73XX_ICPU_CTRL_SRST)
#define IS_7385(a) ((a)->chipid == VSC73XX_CHIPID_ID_7385)
#define IS_7388(a) ((a)->chipid == VSC73XX_CHIPID_ID_7388)
#define IS_7395(a) ((a)->chipid == VSC73XX_CHIPID_ID_7395)
#define IS_7398(a) ((a)->chipid == VSC73XX_CHIPID_ID_7398)
#define IS_739X(a) (IS_7395(a) || IS_7398(a))
#define VSC73XX_POLL_SLEEP_US 1000
#define VSC73XX_MDIO_POLL_SLEEP_US 5
#define VSC73XX_POLL_TIMEOUT_US 10000
struct vsc73xx_counter {
u8 counter;
const char *name;
};
struct vsc73xx_fdb {
u16 vid;
u8 port;
u8 mac[ETH_ALEN];
bool valid;
};
/* Counters are named according to the MIB standards where applicable.
* Some counters are custom, non-standard. The standard counters are
* named in accordance with RFC2819, RFC2021 and IEEE Std 802.3-2002 Annex
* 30A Counters.
*/
static const struct vsc73xx_counter vsc73xx_rx_counters[] = {
{ 0, "RxEtherStatsPkts" },
{ 1, "RxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "RxTotalErrorPackets" }, /* non-standard counter */
{ 3, "RxEtherStatsBroadcastPkts" },
{ 4, "RxEtherStatsMulticastPkts" },
{ 5, "RxEtherStatsPkts64Octets" },
{ 6, "RxEtherStatsPkts65to127Octets" },
{ 7, "RxEtherStatsPkts128to255Octets" },
{ 8, "RxEtherStatsPkts256to511Octets" },
{ 9, "RxEtherStatsPkts512to1023Octets" },
{ 10, "RxEtherStatsPkts1024to1518Octets" },
{ 11, "RxJumboFrames" }, /* non-standard counter */
{ 12, "RxaPauseMACControlFramesTransmitted" },
{ 13, "RxFIFODrops" }, /* non-standard counter */
{ 14, "RxBackwardDrops" }, /* non-standard counter */
{ 15, "RxClassifierDrops" }, /* non-standard counter */
{ 16, "RxEtherStatsCRCAlignErrors" },
{ 17, "RxEtherStatsUndersizePkts" },
{ 18, "RxEtherStatsOversizePkts" },
{ 19, "RxEtherStatsFragments" },
{ 20, "RxEtherStatsJabbers" },
{ 21, "RxaMACControlFramesReceived" },
/* 22-24 are undefined */
{ 25, "RxaFramesReceivedOK" },
{ 26, "RxQoSClass0" }, /* non-standard counter */
{ 27, "RxQoSClass1" }, /* non-standard counter */
{ 28, "RxQoSClass2" }, /* non-standard counter */
{ 29, "RxQoSClass3" }, /* non-standard counter */
};
static const struct vsc73xx_counter vsc73xx_tx_counters[] = {
{ 0, "TxEtherStatsPkts" },
{ 1, "TxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "TxTotalErrorPackets" }, /* non-standard counter */
{ 3, "TxEtherStatsBroadcastPkts" },
{ 4, "TxEtherStatsMulticastPkts" },
{ 5, "TxEtherStatsPkts64Octets" },
{ 6, "TxEtherStatsPkts65to127Octets" },
{ 7, "TxEtherStatsPkts128to255Octets" },
{ 8, "TxEtherStatsPkts256to511Octets" },
{ 9, "TxEtherStatsPkts512to1023Octets" },
{ 10, "TxEtherStatsPkts1024to1518Octets" },
{ 11, "TxJumboFrames" }, /* non-standard counter */
{ 12, "TxaPauseMACControlFramesTransmitted" },
{ 13, "TxFIFODrops" }, /* non-standard counter */
{ 14, "TxDrops" }, /* non-standard counter */
{ 15, "TxEtherStatsCollisions" },
{ 16, "TxEtherStatsCRCAlignErrors" },
{ 17, "TxEtherStatsUndersizePkts" },
{ 18, "TxEtherStatsOversizePkts" },
{ 19, "TxEtherStatsFragments" },
{ 20, "TxEtherStatsJabbers" },
/* 21-24 are undefined */
{ 25, "TxaFramesReceivedOK" },
{ 26, "TxQoSClass0" }, /* non-standard counter */
{ 27, "TxQoSClass1" }, /* non-standard counter */
{ 28, "TxQoSClass2" }, /* non-standard counter */
{ 29, "TxQoSClass3" }, /* non-standard counter */
};
struct vsc73xx_vlan_summary {
size_t num_tagged;
size_t num_untagged;
};
enum vsc73xx_port_vlan_conf {
VSC73XX_VLAN_FILTER,
VSC73XX_VLAN_FILTER_UNTAG_ALL,
VSC73XX_VLAN_IGNORE,
};
int vsc73xx_is_addr_valid(u8 block, u8 subblock)
{
switch (block) {
case VSC73XX_BLOCK_MAC:
switch (subblock) {
case 0 ... 4:
case 6:
return 1;
}
break;
case VSC73XX_BLOCK_ANALYZER:
case VSC73XX_BLOCK_SYSTEM:
switch (subblock) {
case 0:
return 1;
}
break;
case VSC73XX_BLOCK_MII:
case VSC73XX_BLOCK_ARBITER:
switch (subblock) {
case 0 ... 1:
return 1;
}
break;
case VSC73XX_BLOCK_CAPTURE:
switch (subblock) {
case 0 ... 4:
case 6 ... 7:
return 1;
}
break;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_is_addr_valid);
static int vsc73xx_read(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 *val)
{
return vsc->ops->read(vsc, block, subblock, reg, val);
}
static int vsc73xx_write(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 val)
{
return vsc->ops->write(vsc, block, subblock, reg, val);
}
static int vsc73xx_update_bits(struct vsc73xx *vsc, u8 block, u8 subblock,
u8 reg, u32 mask, u32 val)
{
u32 tmp, orig;
int ret;
/* Same read-modify-write algorithm as e.g. regmap */
ret = vsc73xx_read(vsc, block, subblock, reg, &orig);
if (ret)
return ret;
tmp = orig & ~mask;
tmp |= val & mask;
return vsc73xx_write(vsc, block, subblock, reg, tmp);
}
static int vsc73xx_detect(struct vsc73xx *vsc)
{
bool icpu_si_boot_en;
bool icpu_pi_en;
u32 val;
u32 rev;
int ret;
u32 id;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_MBOX_VAL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read mailbox (%d)\n", ret);
return ret;
}
if (val == 0xffffffff) {
dev_info(vsc->dev, "chip seems dead.\n");
return -EAGAIN;
}
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_CHIPID, &val);
if (ret) {
dev_err(vsc->dev, "unable to read chip id (%d)\n", ret);
return ret;
}
id = (val >> VSC73XX_CHIPID_ID_SHIFT) &
VSC73XX_CHIPID_ID_MASK;
switch (id) {
case VSC73XX_CHIPID_ID_7385:
case VSC73XX_CHIPID_ID_7388:
case VSC73XX_CHIPID_ID_7395:
case VSC73XX_CHIPID_ID_7398:
break;
default:
dev_err(vsc->dev, "unsupported chip, id=%04x\n", id);
return -ENODEV;
}
vsc->chipid = id;
rev = (val >> VSC73XX_CHIPID_REV_SHIFT) &
VSC73XX_CHIPID_REV_MASK;
dev_info(vsc->dev, "VSC%04X (rev: %d) switch found\n", id, rev);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_CTRL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read iCPU control\n");
return ret;
}
/* The iCPU can always be used but can boot in different ways.
* If it is initially disabled and has no external memory,
* we are in control and can do whatever we like, else we
* are probably in trouble (we need some way to communicate
* with the running firmware) so we bail out for now.
*/
icpu_pi_en = !!(val & VSC73XX_ICPU_CTRL_ICPU_PI_EN);
icpu_si_boot_en = !!(val & VSC73XX_ICPU_CTRL_BOOT_EN);
if (icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from SI, has external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
if (icpu_si_boot_en && !icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from PI/SI, no external memory\n");
return -EAGAIN;
}
if (!icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled, boots from PI external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
/* !icpu_si_boot_en && !cpu_pi_en */
dev_info(vsc->dev, "iCPU disabled, no external memory\n");
return 0;
}
static int vsc73xx_mdio_busy_check(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 || !(val & VSC73XX_MII_STAT_BUSY),
VSC73XX_MDIO_POLL_SLEEP_US,
VSC73XX_POLL_TIMEOUT_US, false, vsc,
VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_STAT, &val);
if (ret)
return ret;
return err;
}
static int vsc73xx_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
u32 val;
int ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
/* Setting bit 26 means "read" */
cmd = VSC73XX_MII_CMD_OPERATION |
FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) |
FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_CMD, cmd);
if (ret)
return ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_DATA, &val);
if (ret)
return ret;
if (val & VSC73XX_MII_DATA_FAILURE) {
dev_err(vsc->dev, "reading reg %02x from phy%d failed\n",
regnum, phy);
return -EIO;
}
val &= VSC73XX_MII_DATA_READ_DATA;
dev_dbg(vsc->dev, "read reg %02x from phy%d = %04x\n",
regnum, phy, val);
return val;
}
static int vsc73xx_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
int ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
cmd = FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) |
FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum) |
FIELD_PREP(VSC73XX_MII_CMD_WRITE_DATA, val);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_CMD, cmd);
if (ret)
return ret;
dev_dbg(vsc->dev, "write %04x to reg %02x in phy%d\n",
val, regnum, phy);
return 0;
}
static enum dsa_tag_protocol vsc73xx_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
/* The switch internally uses a 8 byte header with length,
* source port, tag, LPA and priority. This is supposedly
* only accessible when operating the switch using the internal
* CPU or with an external CPU mapping the device in, but not
* when operating the switch over SPI and putting frames in/out
* on port 6 (the CPU port). So far we must assume that we
* cannot access the tag. (See "Internal frame header" section
* 3.9.1 in the manual.)
*/
return DSA_TAG_PROTO_VSC73XX_8021Q;
}
static int vsc73xx_wait_for_vlan_table_cmd(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 ||
((val & VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK) ==
VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE),
VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US,
false, vsc, VSC73XX_BLOCK_ANALYZER,
0, VSC73XX_VLANACCESS, &val);
if (ret)
return ret;
return err;
}
static int
vsc73xx_read_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 *portmap)
{
u32 val;
int ret;
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, &val);
*portmap = (val & VSC73XX_VLANACCESS_VLAN_PORT_MASK) >>
VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT;
return 0;
}
static int
vsc73xx_write_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 portmap)
{
int ret;
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK |
VSC73XX_VLANACCESS_VLAN_SRC_CHECK |
VSC73XX_VLANACCESS_VLAN_PORT_MASK,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY |
VSC73XX_VLANACCESS_VLAN_SRC_CHECK |
(portmap << VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT));
return vsc73xx_wait_for_vlan_table_cmd(vsc);
}
static int
vsc73xx_update_vlan_table(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u8 portmap;
int ret;
ret = vsc73xx_read_vlan_table_entry(vsc, vid, &portmap);
if (ret)
return ret;
if (set)
portmap |= BIT(port);
else
portmap &= ~BIT(port);
return vsc73xx_write_vlan_table_entry(vsc, vid, portmap);
}
static int vsc73xx_configure_rgmii_port_delay(struct dsa_switch *ds)
{
/* Keep 2.0 ns delay for backward complatibility */
u32 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS;
u32 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS;
struct dsa_port *dp = dsa_to_port(ds, CPU_PORT);
struct device_node *port_dn = dp->dn;
struct vsc73xx *vsc = ds->priv;
u32 delay;
if (!of_property_read_u32(port_dn, "tx-internal-delay-ps", &delay)) {
switch (delay) {
case 0:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE;
break;
case 1400:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS;
break;
case 1700:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS;
break;
case 2000:
break;
default:
dev_err(vsc->dev,
"Unsupported RGMII Transmit Clock Delay\n");
return -EINVAL;
}
} else {
dev_dbg(vsc->dev,
"RGMII Transmit Clock Delay isn't configured, set to 2.0 ns\n");
}
if (!of_property_read_u32(port_dn, "rx-internal-delay-ps", &delay)) {
switch (delay) {
case 0:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE;
break;
case 1400:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS;
break;
case 1700:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS;
break;
case 2000:
break;
default:
dev_err(vsc->dev,
"Unsupported RGMII Receive Clock Delay value\n");
return -EINVAL;
}
} else {
dev_dbg(vsc->dev,
"RGMII Receive Clock Delay isn't configured, set to 2.0 ns\n");
}
/* MII delay, set both GTX and RX delay */
return vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GMIIDELAY,
tx_delay | rx_delay);
}
static int vsc73xx_setup(struct dsa_switch *ds)
{
struct vsc73xx *vsc = ds->priv;
int i, ret, val;
dev_info(vsc->dev, "set up the switch\n");
ds->max_num_bridges = DSA_TAG_8021Q_MAX_NUM_BRIDGES;
ds->fdb_isolation = true;
/* Issue RESET */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_MASTER_RESET);
usleep_range(125, 200);
/* Initialize memory, initialize RAM bank 0..15 except 6 and 7
* This sequence appears in the
* VSC7385 SparX-G5 datasheet section 6.6.1
* VSC7395 SparX-G5e datasheet section 6.6.1
* "initialization sequence".
* No explanation is given to the 0x1010400 magic number.
*/
for (i = 0; i <= 15; i++) {
if (i != 6 && i != 7) {
vsc73xx_write(vsc, VSC73XX_BLOCK_MEMINIT,
2,
0, 0x1010400 + i);
mdelay(1);
}
}
mdelay(30);
/* Clear MAC table */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS,
VSC73XX_MACACCESS_CMD_CLEAR_TABLE);
/* Set VLAN table to default values */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE);
msleep(40);
/* Use 20KiB buffers on all ports on VSC7395
* The VSC7385 has 16KiB buffers and that is the
* default if we don't set this up explicitly.
* Port "31" is "all ports".
*/
if (IS_739X(vsc))
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 0x1f,
VSC73XX_Q_MISC_CONF,
VSC73XX_Q_MISC_CONF_EXTENT_MEM);
/* Put all ports into reset until enabled */
for (i = 0; i < 7; i++) {
if (i == 5)
continue;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 4,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
/* Configure RGMII delay */
ret = vsc73xx_configure_rgmii_port_delay(ds);
if (ret)
return ret;
/* Ingess VLAN reception mask (table 145) */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANMASK,
0xff);
/* IP multicast flood mask (table 144) */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_IFLODMSK,
0xff);
mdelay(50);
/* Disable preamble and use maximum allowed clock for the internal
* mdio bus, used for communication with internal PHYs only.
*/
val = VSC73XX_MII_MPRES_NOPREAMBLE |
FIELD_PREP(VSC73XX_MII_MPRES_PRESCALEVAL,
VSC73XX_MII_PRESCALEVAL_MIN);
vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_MPRES, val);
/* Release reset from the internal PHYs */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_PHY_RESET);
udelay(4);
/* Clear VLAN table */
for (i = 0; i < VLAN_N_VID; i++)
vsc73xx_write_vlan_table_entry(vsc, i, 0);
INIT_LIST_HEAD(&vsc->vlans);
rtnl_lock();
ret = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q));
rtnl_unlock();
return ret;
}
static void vsc73xx_teardown(struct dsa_switch *ds)
{
rtnl_lock();
dsa_tag_8021q_unregister(ds);
rtnl_unlock();
}
static void vsc73xx_init_port(struct vsc73xx *vsc, int port)
{
u32 val;
/* MAC configure, first reset the port and then write defaults */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET);
/* Take up the port in 1Gbit mode by default, this will be
* augmented after auto-negotiation on the PHY-facing
* ports.
*/
if (port == CPU_PORT)
val = VSC73XX_MAC_CFG_1000M_F_RGMII;
else
val = VSC73XX_MAC_CFG_1000M_F_PHY;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
val |
VSC73XX_MAC_CFG_TX_EN |
VSC73XX_MAC_CFG_RX_EN);
/* Flow control for the CPU port:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY);
/* Issue pause control frames on PHY facing ports.
* Allow early initiation of MAC transmission if the amount
* of egress data is below 512 bytes on CPU port.
* FIXME: enable 20KiB buffers?
*/
if (port == CPU_PORT)
val = VSC73XX_Q_MISC_CONF_EARLY_TX_512;
else
val = VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE;
val |= VSC73XX_Q_MISC_CONF_EXTENT_MEM;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_Q_MISC_CONF,
val);
/* Flow control MAC: a MAC address used in flow control frames */
val = (vsc->addr[5] << 16) | (vsc->addr[4] << 8) | (vsc->addr[3]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACHI,
val);
val = (vsc->addr[2] << 16) | (vsc->addr[1] << 8) | (vsc->addr[0]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACLO,
val);
/* Tell the categorizer to forward pause frames, not control
* frame. Do not drop anything.
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_CAT_DROP,
VSC73XX_CAT_DROP_FWD_PAUSE_ENA);
/* Clear all counters */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port, VSC73XX_C_RX0, 0);
}
static void vsc73xx_reset_port(struct vsc73xx *vsc, int port, u32 initval)
{
int ret, err;
u32 val;
/* Disable RX on this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RX_EN, 0);
/* Discard packets */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), BIT(port));
/* Wait until queue is empty */
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 || (val & BIT(port)),
VSC73XX_POLL_SLEEP_US,
VSC73XX_POLL_TIMEOUT_US, false,
vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBEMPTY, &val);
if (ret)
dev_err(vsc->dev,
"timeout waiting for block arbiter\n");
else if (err < 0)
dev_err(vsc->dev, "error reading arbiter\n");
/* Put this port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET | initval);
}
static void vsc73xx_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
/* Special handling of the CPU-facing port */
if (port == CPU_PORT) {
/* Other ports are already initialized but not this one */
vsc73xx_init_port(vsc, CPU_PORT);
/* Select the external port for this interface (EXT_PORT)
* Enable the GMII GTX external clock
* Use double data rate (DDR mode)
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
CPU_PORT,
VSC73XX_ADVPORTM,
VSC73XX_ADVPORTM_EXT_PORT |
VSC73XX_ADVPORTM_ENA_GTX |
VSC73XX_ADVPORTM_DDR_MODE);
}
}
static void vsc73xx_mac_link_down(struct phylink_config *config,
unsigned int mode, phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
/* This routine is described in the datasheet (below ARBDISC register
* description)
*/
vsc73xx_reset_port(vsc, port, 0);
/* Allow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), BIT(port));
}
static void vsc73xx_mac_link_up(struct phylink_config *config,
struct phy_device *phy, unsigned int mode,
phy_interface_t interface, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
u32 val;
u8 seed;
if (speed == SPEED_1000)
val = VSC73XX_MAC_CFG_GIGA_MODE | VSC73XX_MAC_CFG_TX_IPG_1000M;
else
val = VSC73XX_MAC_CFG_TX_IPG_100_10M;
if (phy_interface_mode_is_rgmii(interface))
val |= VSC73XX_MAC_CFG_CLK_SEL_1000M;
else
val |= VSC73XX_MAC_CFG_CLK_SEL_EXT;
if (duplex == DUPLEX_FULL)
val |= VSC73XX_MAC_CFG_FDX;
else
/* In datasheet description ("Port Mode Procedure" in 5.6.2)
* this bit is configured only for half duplex.
*/
val |= VSC73XX_MAC_CFG_WEXC_DIS;
/* This routine is described in the datasheet (below ARBDISC register
* description)
*/
vsc73xx_reset_port(vsc, port, val);
/* Seed the port randomness with randomness */
get_random_bytes(&seed, 1);
val |= seed << VSC73XX_MAC_CFG_SEED_OFFSET;
val |= VSC73XX_MAC_CFG_SEED_LOAD;
/* Those bits are responsible for MTU only. Kernel takes care about MTU,
* let's enable +8 bytes frame length unconditionally.
*/
val |= VSC73XX_MAC_CFG_VLAN_AWR | VSC73XX_MAC_CFG_VLAN_DBLAWR;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val);
/* Flow control for the PHY facing ports:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
* When generating pause frames, use 0xff as pause value
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY |
0xff);
/* Accept packets again */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), 0);
/* Disallow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), 0);
/* Enable TX, RX, deassert reset, stop loading seed */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET | VSC73XX_MAC_CFG_SEED_LOAD |
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN,
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN);
}
static bool vsc73xx_tag_8021q_active(struct dsa_port *dp)
{
return !dsa_port_is_vlan_filtering(dp);
}
static struct vsc73xx_bridge_vlan *
vsc73xx_bridge_vlan_find(struct vsc73xx *vsc, u16 vid)
{
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list)
if (vlan->vid == vid)
return vlan;
return NULL;
}
static void
vsc73xx_bridge_vlan_remove_port(struct vsc73xx_bridge_vlan *vsc73xx_vlan,
int port)
{
vsc73xx_vlan->portmask &= ~BIT(port);
if (vsc73xx_vlan->portmask)
return;
list_del(&vsc73xx_vlan->list);
kfree(vsc73xx_vlan);
}
static void vsc73xx_bridge_vlan_summary(struct vsc73xx *vsc, int port,
struct vsc73xx_vlan_summary *summary,
u16 ignored_vid)
{
size_t num_tagged = 0, num_untagged = 0;
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list) {
if (!(vlan->portmask & BIT(port)) || vlan->vid == ignored_vid)
continue;
if (vlan->untagged & BIT(port))
num_untagged++;
else
num_tagged++;
}
summary->num_untagged = num_untagged;
summary->num_tagged = num_tagged;
}
static u16 vsc73xx_find_first_vlan_untagged(struct vsc73xx *vsc, int port)
{
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list)
if ((vlan->portmask & BIT(port)) &&
(vlan->untagged & BIT(port)))
return vlan->vid;
return VLAN_N_VID;
}
static int vsc73xx_set_vlan_conf(struct vsc73xx *vsc, int port,
enum vsc73xx_port_vlan_conf port_vlan_conf)
{
u32 val = 0;
int ret;
if (port_vlan_conf == VSC73XX_VLAN_IGNORE)
val = VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA |
VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_VLAN_MISC,
VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA |
VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA, val);
if (ret)
return ret;
val = (port_vlan_conf == VSC73XX_VLAN_FILTER) ?
VSC73XX_TXUPDCFG_TX_INSERT_TAG : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_TXUPDCFG,
VSC73XX_TXUPDCFG_TX_INSERT_TAG, val);
}
/**
* vsc73xx_vlan_commit_conf - Update VLAN configuration of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the VLAN behavior of a port to make sure that when it is under
* a VLAN filtering bridge, the port is either filtering with tag
* preservation, or filtering with all VLANs egress-untagged. Otherwise,
* the port ignores VLAN tags from packets and applies the port-based
* VID.
*
* Must be called when changes are made to:
* - the bridge VLAN filtering state of the port
* - the number or attributes of VLANs from the bridge VLAN table,
* while the port is currently VLAN-aware
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_conf(struct vsc73xx *vsc, int port)
{
enum vsc73xx_port_vlan_conf port_vlan_conf = VSC73XX_VLAN_IGNORE;
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
if (port == CPU_PORT) {
port_vlan_conf = VSC73XX_VLAN_FILTER;
} else if (dsa_port_is_vlan_filtering(dp)) {
struct vsc73xx_vlan_summary summary;
port_vlan_conf = VSC73XX_VLAN_FILTER;
vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID);
if (summary.num_tagged == 0)
port_vlan_conf = VSC73XX_VLAN_FILTER_UNTAG_ALL;
}
return vsc73xx_set_vlan_conf(vsc, port, port_vlan_conf);
}
static int
vsc73xx_vlan_change_untagged(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u32 val = 0;
if (set)
val = VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA |
((vid << VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT) &
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID);
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_TXUPDCFG,
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA |
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID, val);
}
/**
* vsc73xx_vlan_commit_untagged - Update native VLAN of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the native VLAN of a port (the one VLAN which is transmitted
* as egress-tagged on a trunk port) when port is in VLAN filtering mode and
* only one untagged vid is configured.
* In other cases no need to configure it because switch can untag all vlans on
* the port.
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_untagged(struct vsc73xx *vsc, int port)
{
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
struct vsc73xx_vlan_summary summary;
u16 vid = 0;
bool valid;
if (!dsa_port_is_vlan_filtering(dp))
/* Port is configured to untag all vlans in that case.
* No need to commit untagged config change.
*/
return 0;
vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID);
if (summary.num_untagged > 1)
/* Port must untag all vlans in that case.
* No need to commit untagged config change.
*/
return 0;
valid = (summary.num_untagged == 1);
if (valid)
vid = vsc73xx_find_first_vlan_untagged(vsc, port);
return vsc73xx_vlan_change_untagged(vsc, port, vid, valid);
}
static int
vsc73xx_vlan_change_pvid(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u32 val = 0;
int ret;
val = set ? 0 : VSC73XX_CAT_DROP_UNTAGGED_ENA;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_DROP,
VSC73XX_CAT_DROP_UNTAGGED_ENA, val);
if (!set || ret)
return ret;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_PORT_VLAN,
VSC73XX_CAT_PORT_VLAN_VLAN_VID,
vid & VSC73XX_CAT_PORT_VLAN_VLAN_VID);
}
/**
* vsc73xx_vlan_commit_pvid - Update port-based default VLAN of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the PVID of a port so that it follows either the bridge PVID
* configuration, when the bridge is currently VLAN-aware, or the PVID
* from tag_8021q, when the port is standalone or under a VLAN-unaware
* bridge. A port with no PVID drops all untagged and VID 0 tagged
* traffic.
*
* Must be called when changes are made to:
* - the bridge VLAN filtering state of the port
* - the number or attributes of VLANs from the bridge VLAN table,
* while the port is currently VLAN-aware
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_pvid(struct vsc73xx *vsc, int port)
{
struct vsc73xx_portinfo *portinfo = &vsc->portinfo[port];
bool valid = portinfo->pvid_tag_8021q_configured;
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
u16 vid = portinfo->pvid_tag_8021q;
if (dsa_port_is_vlan_filtering(dp)) {
vid = portinfo->pvid_vlan_filtering;
valid = portinfo->pvid_vlan_filtering_configured;
}
return vsc73xx_vlan_change_pvid(vsc, port, vid, valid);
}
static int vsc73xx_vlan_commit_settings(struct vsc73xx *vsc, int port)
{
int ret;
ret = vsc73xx_vlan_commit_untagged(vsc, port);
if (ret)
return ret;
ret = vsc73xx_vlan_commit_pvid(vsc, port);
if (ret)
return ret;
return vsc73xx_vlan_commit_conf(vsc, port);
}
static int vsc73xx_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct vsc73xx *vsc = ds->priv;
dev_info(vsc->dev, "enable port %d\n", port);
vsc73xx_init_port(vsc, port);
return vsc73xx_vlan_commit_settings(vsc, port);
}
static void vsc73xx_port_disable(struct dsa_switch *ds, int port)
{
struct vsc73xx *vsc = ds->priv;
/* Just put the port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
static const struct vsc73xx_counter *
vsc73xx_find_counter(struct vsc73xx *vsc,
u8 counter,
bool tx)
{
const struct vsc73xx_counter *cnts;
int num_cnts;
int i;
if (tx) {
cnts = vsc73xx_tx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_tx_counters);
} else {
cnts = vsc73xx_rx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_rx_counters);
}
for (i = 0; i < num_cnts; i++) {
const struct vsc73xx_counter *cnt;
cnt = &cnts[i];
if (cnt->counter == counter)
return cnt;
}
return NULL;
}
static void vsc73xx_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
const struct vsc73xx_counter *cnt;
struct vsc73xx *vsc = ds->priv;
u8 indices[6];
u8 *buf = data;
int i;
u32 val;
int ret;
if (stringset != ETH_SS_STATS)
return;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_C_CFG, &val);
if (ret)
return;
indices[0] = (val & 0x1f); /* RX counter 0 */
indices[1] = ((val >> 5) & 0x1f); /* RX counter 1 */
indices[2] = ((val >> 10) & 0x1f); /* RX counter 2 */
indices[3] = ((val >> 16) & 0x1f); /* TX counter 0 */
indices[4] = ((val >> 21) & 0x1f); /* TX counter 1 */
indices[5] = ((val >> 26) & 0x1f); /* TX counter 2 */
/* The first counters is the RX octets */
ethtool_puts(&buf, "RxEtherStatsOctets");
/* Each port supports recording 3 RX counters and 3 TX counters,
* figure out what counters we use in this set-up and return the
* names of them. The hardware default counters will be number of
* packets on RX/TX, combined broadcast+multicast packets RX/TX and
* total error packets RX/TX.
*/
for (i = 0; i < 3; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], false);
ethtool_puts(&buf, cnt ? cnt->name : "");
}
/* TX stats begins with the number of TX octets */
ethtool_puts(&buf, "TxEtherStatsOctets");
for (i = 3; i < 6; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], true);
ethtool_puts(&buf, cnt ? cnt->name : "");
}
}
static int vsc73xx_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
/* We only support SS_STATS */
if (sset != ETH_SS_STATS)
return 0;
/* RX and TX packets, then 3 RX counters, 3 TX counters */
return 8;
}
static void vsc73xx_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct vsc73xx *vsc = ds->priv;
u8 regs[] = {
VSC73XX_RXOCT,
VSC73XX_C_RX0,
VSC73XX_C_RX1,
VSC73XX_C_RX2,
VSC73XX_TXOCT,
VSC73XX_C_TX0,
VSC73XX_C_TX1,
VSC73XX_C_TX2,
};
u32 val;
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(regs); i++) {
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
regs[i], &val);
if (ret) {
dev_err(vsc->dev, "error reading counter %d\n", i);
return;
}
data[i] = val;
}
}
static int vsc73xx_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct vsc73xx *vsc = ds->priv;
return vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAXLEN, new_mtu + ETH_HLEN + ETH_FCS_LEN);
}
/* According to application not "VSC7398 Jumbo Frames" setting
* up the frame size to 9.6 KB does not affect the performance on standard
* frames. It is clear from the application note that
* "9.6 kilobytes" == 9600 bytes.
*/
static int vsc73xx_get_max_mtu(struct dsa_switch *ds, int port)
{
return 9600 - ETH_HLEN - ETH_FCS_LEN;
}
static void vsc73xx_phylink_get_caps(struct dsa_switch *dsa, int port,
struct phylink_config *config)
{
unsigned long *interfaces = config->supported_interfaces;
if (port == 5)
return;
if (port == CPU_PORT) {
__set_bit(PHY_INTERFACE_MODE_MII, interfaces);
__set_bit(PHY_INTERFACE_MODE_REVMII, interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
__set_bit(PHY_INTERFACE_MODE_RGMII, interfaces);
}
if (port <= 4) {
/* Internal PHYs */
__set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces);
/* phylib default */
__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
}
config->mac_capabilities = MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000;
}
static int
vsc73xx_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering, struct netlink_ext_ack *extack)
{
struct vsc73xx *vsc = ds->priv;
/* The commit to hardware processed below is required because vsc73xx
* is using tag_8021q. When vlan_filtering is disabled, tag_8021q uses
* pvid/untagged vlans for port recognition. The values configured for
* vlans and pvid/untagged states are stored in portinfo structure.
* When vlan_filtering is enabled, we need to restore pvid/untagged from
* portinfo structure. Analogous routine is processed when
* vlan_filtering is disabled, but values used for tag_8021q are
* restored.
*/
return vsc73xx_vlan_commit_settings(vsc, port);
}
static int vsc73xx_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct dsa_port *dp = dsa_to_port(ds, port);
struct vsc73xx_bridge_vlan *vsc73xx_vlan;
struct vsc73xx_vlan_summary summary;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret = 0;
/* Be sure to deny alterations to the configuration done by tag_8021q.
*/
if (vid_is_dsa_8021q(vlan->vid)) {
NL_SET_ERR_MSG_MOD(extack,
"Range 3072-4095 reserved for dsa_8021q operation");
return -EBUSY;
}
/* The processed vlan->vid is excluded from the search because the VLAN
* can be re-added with a different set of flags, so it's easiest to
* ignore its old flags from the VLAN database software copy.
*/
vsc73xx_bridge_vlan_summary(vsc, port, &summary, vlan->vid);
/* VSC73XX allows only three untagged states: none, one or all */
if ((untagged && summary.num_tagged > 0 && summary.num_untagged > 0) ||
(!untagged && summary.num_untagged > 1)) {
NL_SET_ERR_MSG_MOD(extack,
"Port can have only none, one or all untagged vlan");
return -EBUSY;
}
vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid);
if (!vsc73xx_vlan) {
vsc73xx_vlan = kzalloc(sizeof(*vsc73xx_vlan), GFP_KERNEL);
if (!vsc73xx_vlan)
return -ENOMEM;
vsc73xx_vlan->vid = vlan->vid;
list_add_tail(&vsc73xx_vlan->list, &vsc->vlans);
}
vsc73xx_vlan->portmask |= BIT(port);
/* CPU port must be always tagged because source port identification is
* based on tag_8021q.
*/
if (port == CPU_PORT)
goto update_vlan_table;
if (untagged)
vsc73xx_vlan->untagged |= BIT(port);
else
vsc73xx_vlan->untagged &= ~BIT(port);
portinfo = &vsc->portinfo[port];
if (pvid) {
portinfo->pvid_vlan_filtering_configured = true;
portinfo->pvid_vlan_filtering = vlan->vid;
} else if (portinfo->pvid_vlan_filtering_configured &&
portinfo->pvid_vlan_filtering == vlan->vid) {
portinfo->pvid_vlan_filtering_configured = false;
}
commit_to_hardware = !vsc73xx_tag_8021q_active(dp);
if (commit_to_hardware) {
ret = vsc73xx_vlan_commit_settings(vsc, port);
if (ret)
goto err;
}
update_vlan_table:
ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, true);
if (!ret)
return 0;
err:
vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port);
return ret;
}
static int vsc73xx_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct vsc73xx_bridge_vlan *vsc73xx_vlan;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret;
ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, false);
if (ret)
return ret;
portinfo = &vsc->portinfo[port];
if (portinfo->pvid_vlan_filtering_configured &&
portinfo->pvid_vlan_filtering == vlan->vid)
portinfo->pvid_vlan_filtering_configured = false;
vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid);
if (vsc73xx_vlan)
vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port);
commit_to_hardware = !vsc73xx_tag_8021q_active(dsa_to_port(ds, port));
if (commit_to_hardware)
return vsc73xx_vlan_commit_settings(vsc, port);
return 0;
}
static int vsc73xx_tag_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
u16 flags)
{
bool pvid = flags & BRIDGE_VLAN_INFO_PVID;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret;
portinfo = &vsc->portinfo[port];
if (pvid) {
portinfo->pvid_tag_8021q_configured = true;
portinfo->pvid_tag_8021q = vid;
}
commit_to_hardware = vsc73xx_tag_8021q_active(dsa_to_port(ds, port));
if (commit_to_hardware) {
ret = vsc73xx_vlan_commit_settings(vsc, port);
if (ret)
return ret;
}
return vsc73xx_update_vlan_table(vsc, port, vid, true);
}
static int vsc73xx_tag_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
{
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
portinfo = &vsc->portinfo[port];
if (portinfo->pvid_tag_8021q_configured &&
portinfo->pvid_tag_8021q == vid) {
struct dsa_port *dp = dsa_to_port(ds, port);
bool commit_to_hardware;
int err;
portinfo->pvid_tag_8021q_configured = false;
commit_to_hardware = vsc73xx_tag_8021q_active(dp);
if (commit_to_hardware) {
err = vsc73xx_vlan_commit_settings(vsc, port);
if (err)
return err;
}
}
return vsc73xx_update_vlan_table(vsc, port, vid, false);
}
static int vsc73xx_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~BR_LEARNING)
return -EINVAL;
return 0;
}
static int vsc73xx_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & BR_LEARNING) {
u32 val = flags.val & BR_LEARNING ? BIT(port) : 0;
struct vsc73xx *vsc = ds->priv;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_LEARNMASK, BIT(port), val);
}
return 0;
}
static void vsc73xx_refresh_fwd_map(struct dsa_switch *ds, int port, u8 state)
{
struct dsa_port *other_dp, *dp = dsa_to_port(ds, port);
struct vsc73xx *vsc = ds->priv;
u16 mask;
if (state != BR_STATE_FORWARDING) {
/* Ports that aren't in the forwarding state must not
* forward packets anywhere.
*/
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + port,
VSC73XX_SRCMASKS_PORTS_MASK, 0);
dsa_switch_for_each_available_port(other_dp, ds) {
if (other_dp == dp)
continue;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + other_dp->index,
BIT(port), 0);
}
return;
}
/* Forwarding ports must forward to the CPU and to other ports
* in the same bridge
*/
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + CPU_PORT, BIT(port), BIT(port));
mask = BIT(CPU_PORT);
dsa_switch_for_each_user_port(other_dp, ds) {
int other_port = other_dp->index;
if (port == other_port || !dsa_port_bridge_same(dp, other_dp) ||
other_dp->stp_state != BR_STATE_FORWARDING)
continue;
mask |= BIT(other_port);
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + other_port,
BIT(port), BIT(port));
}
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + port,
VSC73XX_SRCMASKS_PORTS_MASK, mask);
}
/* FIXME: STP frames aren't forwarded at this moment. BPDU frames are
* forwarded only from and to PI/SI interface. For more info see chapter
* 2.7.1 (CPU Forwarding) in datasheet.
* This function is required for tag_8021q operations.
*/
static void vsc73xx_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct vsc73xx *vsc = ds->priv;
u32 val = 0;
if (state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING)
val = dp->learning ? BIT(port) : 0;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_LEARNMASK, BIT(port), val);
val = (state == BR_STATE_BLOCKING || state == BR_STATE_DISABLED) ?
0 : BIT(port);
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_RECVMASK, BIT(port), val);
/* CPU Port should always forward packets when user ports are forwarding
* so let's configure it from other ports only.
*/
if (port != CPU_PORT)
vsc73xx_refresh_fwd_map(ds, port, state);
}
static u16 vsc73xx_calc_hash(const unsigned char *addr, u16 vid)
{
/* VID 5-0, MAC 47-44 */
u16 hash = FIELD_PREP(VSC73XX_HASH0_VID_TO_MASK,
FIELD_GET(VSC73XX_HASH0_VID_FROM_MASK, vid)) |
FIELD_PREP(VSC73XX_HASH0_MAC0_TO_MASK,
FIELD_GET(VSC73XX_HASH0_MAC0_FROM_MASK, addr[0]));
/* MAC 43-33 */
hash ^= FIELD_PREP(VSC73XX_HASH1_MAC0_TO_MASK,
FIELD_GET(VSC73XX_HASH1_MAC0_FROM_MASK, addr[0])) |
FIELD_PREP(VSC73XX_HASH1_MAC1_TO_MASK,
FIELD_GET(VSC73XX_HASH1_MAC1_FROM_MASK, addr[1]));
/* MAC 32-22 */
hash ^= FIELD_PREP(VSC73XX_HASH2_MAC1_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC1_FROM_MASK, addr[1])) |
FIELD_PREP(VSC73XX_HASH2_MAC2_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC2_FROM_MASK, addr[2])) |
FIELD_PREP(VSC73XX_HASH2_MAC3_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC3_FROM_MASK, addr[3]));
/* MAC 21-11 */
hash ^= FIELD_PREP(VSC73XX_HASH3_MAC3_TO_MASK,
FIELD_GET(VSC73XX_HASH3_MAC3_FROM_MASK, addr[3])) |
FIELD_PREP(VSC73XX_HASH3_MAC4_TO_MASK,
FIELD_GET(VSC73XX_HASH3_MAC4_FROM_MASK, addr[4]));
/* MAC 10-0 */
hash ^= FIELD_PREP(VSC73XX_HASH4_MAC4_TO_MASK,
FIELD_GET(VSC73XX_HASH4_MAC4_FROM_MASK, addr[4])) |
addr[5];
return hash;
}
static int
vsc73xx_port_wait_for_mac_table_cmd(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 ||
((val & VSC73XX_MACACCESS_CMD_MASK) ==
VSC73XX_MACACCESS_CMD_IDLE),
VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US,
false, vsc, VSC73XX_BLOCK_ANALYZER,
0, VSC73XX_MACACCESS, &val);
if (ret)
return ret;
return err;
}
static int vsc73xx_port_read_mac_table_row(struct vsc73xx *vsc, u16 index,
struct vsc73xx_fdb *fdb)
{
int ret, i;
u32 val;
if (!fdb)
return -EINVAL;
if (index >= VSC73XX_NUM_FDB_ROWS)
return -EINVAL;
for (i = 0; i < VSC73XX_NUM_BUCKETS; i++) {
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACTINDX,
(i ? 0 : VSC73XX_MACTINDX_SHADOW) |
FIELD_PREP(VSC73XX_MACTINDX_BUCKET_MSK, i) |
index);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS,
VSC73XX_MACACCESS_CMD_MASK,
VSC73XX_MACACCESS_CMD_READ_ENTRY);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS, &val);
if (ret)
return ret;
fdb[i].valid = FIELD_GET(VSC73XX_MACACCESS_VALID, val);
if (!fdb[i].valid)
continue;
fdb[i].port = FIELD_GET(VSC73XX_MACACCESS_DEST_IDX_MASK, val);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACHDATA, &val);
if (ret)
return ret;
fdb[i].vid = FIELD_GET(VSC73XX_MACHDATA_VID, val);
fdb[i].mac[0] = FIELD_GET(VSC73XX_MACHDATA_MAC0, val);
fdb[i].mac[1] = FIELD_GET(VSC73XX_MACHDATA_MAC1, val);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACLDATA, &val);
if (ret)
return ret;
fdb[i].mac[2] = FIELD_GET(VSC73XX_MACLDATA_MAC2, val);
fdb[i].mac[3] = FIELD_GET(VSC73XX_MACLDATA_MAC3, val);
fdb[i].mac[4] = FIELD_GET(VSC73XX_MACLDATA_MAC4, val);
fdb[i].mac[5] = FIELD_GET(VSC73XX_MACLDATA_MAC5, val);
}
return ret;
}
static int
vsc73xx_fdb_operation(struct vsc73xx *vsc, const unsigned char *addr, u16 vid,
u16 hash, u16 cmd_mask, u16 cmd_val)
{
int ret;
u32 val;
val = FIELD_PREP(VSC73XX_MACHDATA_VID, vid) |
FIELD_PREP(VSC73XX_MACHDATA_MAC0, addr[0]) |
FIELD_PREP(VSC73XX_MACHDATA_MAC1, addr[1]);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACHDATA,
val);
if (ret)
return ret;
val = FIELD_PREP(VSC73XX_MACLDATA_MAC2, addr[2]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC3, addr[3]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC4, addr[4]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC5, addr[5]);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACLDATA,
val);
if (ret)
return ret;
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACTINDX,
hash);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS, cmd_mask, cmd_val);
if (ret)
return ret;
return vsc73xx_port_wait_for_mac_table_cmd(vsc);
}
static int vsc73xx_fdb_del_entry(struct vsc73xx *vsc, int port,
const unsigned char *addr, u16 vid)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
u16 hash = vsc73xx_calc_hash(addr, vid);
int bucket, ret;
mutex_lock(&vsc->fdb_lock);
ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb);
if (ret)
goto err;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (fdb[bucket].valid && fdb[bucket].port == port &&
ether_addr_equal(addr, fdb[bucket].mac))
break;
}
if (bucket == VSC73XX_NUM_BUCKETS) {
/* Can't find MAC in MAC table */
ret = -ENODATA;
goto err;
}
ret = vsc73xx_fdb_operation(vsc, addr, vid, hash,
VSC73XX_MACACCESS_CMD_MASK,
VSC73XX_MACACCESS_CMD_FORGET);
err:
mutex_unlock(&vsc->fdb_lock);
return ret;
}
static int vsc73xx_fdb_add_entry(struct vsc73xx *vsc, int port,
const unsigned char *addr, u16 vid)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
u16 hash = vsc73xx_calc_hash(addr, vid);
int bucket, ret;
u32 val;
mutex_lock(&vsc->fdb_lock);
ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb);
if (ret)
goto err;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (!fdb[bucket].valid)
break;
}
if (bucket == VSC73XX_NUM_BUCKETS) {
/* Bucket is full */
ret = -EOVERFLOW;
goto err;
}
val = VSC73XX_MACACCESS_VALID | VSC73XX_MACACCESS_LOCKED |
FIELD_PREP(VSC73XX_MACACCESS_DEST_IDX_MASK, port) |
VSC73XX_MACACCESS_CMD_LEARN;
ret = vsc73xx_fdb_operation(vsc, addr, vid, hash,
VSC73XX_MACACCESS_VALID |
VSC73XX_MACACCESS_LOCKED |
VSC73XX_MACACCESS_DEST_IDX_MASK |
VSC73XX_MACACCESS_CMD_MASK, val);
err:
mutex_unlock(&vsc->fdb_lock);
return ret;
}
static int vsc73xx_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
struct vsc73xx *vsc = ds->priv;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
return vsc73xx_fdb_add_entry(vsc, port, addr, vid);
}
static int vsc73xx_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
struct vsc73xx *vsc = ds->priv;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
return vsc73xx_fdb_del_entry(vsc, port, addr, vid);
}
static int vsc73xx_port_fdb_dump(struct dsa_switch *ds,
int port, dsa_fdb_dump_cb_t *cb, void *data)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
struct vsc73xx *vsc = ds->priv;
u16 i, bucket;
int err = 0;
mutex_lock(&vsc->fdb_lock);
for (i = 0; i < VSC73XX_NUM_FDB_ROWS; i++) {
err = vsc73xx_port_read_mac_table_row(vsc, i, fdb);
if (err)
goto unlock;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (!fdb[bucket].valid || fdb[bucket].port != port)
continue;
/* We need to hide dsa_8021q VLANs from the user */
if (vid_is_dsa_8021q(fdb[bucket].vid))
fdb[bucket].vid = 0;
err = cb(fdb[bucket].mac, fdb[bucket].vid, false, data);
if (err)
goto unlock;
}
}
unlock:
mutex_unlock(&vsc->fdb_lock);
return err;
}
static const struct phylink_mac_ops vsc73xx_phylink_mac_ops = {
.mac_config = vsc73xx_mac_config,
.mac_link_down = vsc73xx_mac_link_down,
.mac_link_up = vsc73xx_mac_link_up,
};
static const struct dsa_switch_ops vsc73xx_ds_ops = {
.get_tag_protocol = vsc73xx_get_tag_protocol,
.setup = vsc73xx_setup,
.teardown = vsc73xx_teardown,
.phy_read = vsc73xx_phy_read,
.phy_write = vsc73xx_phy_write,
.get_strings = vsc73xx_get_strings,
.get_ethtool_stats = vsc73xx_get_ethtool_stats,
.get_sset_count = vsc73xx_get_sset_count,
.port_enable = vsc73xx_port_enable,
.port_disable = vsc73xx_port_disable,
.port_pre_bridge_flags = vsc73xx_port_pre_bridge_flags,
.port_bridge_flags = vsc73xx_port_bridge_flags,
.port_bridge_join = dsa_tag_8021q_bridge_join,
.port_bridge_leave = dsa_tag_8021q_bridge_leave,
.port_change_mtu = vsc73xx_change_mtu,
.port_fdb_add = vsc73xx_fdb_add,
.port_fdb_del = vsc73xx_fdb_del,
.port_fdb_dump = vsc73xx_port_fdb_dump,
.port_max_mtu = vsc73xx_get_max_mtu,
.port_stp_state_set = vsc73xx_port_stp_state_set,
.port_vlan_filtering = vsc73xx_port_vlan_filtering,
.port_vlan_add = vsc73xx_port_vlan_add,
.port_vlan_del = vsc73xx_port_vlan_del,
.phylink_get_caps = vsc73xx_phylink_get_caps,
.tag_8021q_vlan_add = vsc73xx_tag_8021q_vlan_add,
.tag_8021q_vlan_del = vsc73xx_tag_8021q_vlan_del,
};
static int vsc73xx_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !!(val & BIT(offset));
}
static void vsc73xx_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset), tmp);
}
static int vsc73xx_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4) | BIT(offset),
BIT(offset + 4) | tmp);
}
static int vsc73xx_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4),
0);
}
static int vsc73xx_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !(val & BIT(offset + 4));
}
static int vsc73xx_gpio_probe(struct vsc73xx *vsc)
{
int ret;
vsc->gc.label = devm_kasprintf(vsc->dev, GFP_KERNEL, "VSC%04x",
vsc->chipid);
if (!vsc->gc.label)
return -ENOMEM;
vsc->gc.ngpio = 4;
vsc->gc.owner = THIS_MODULE;
vsc->gc.parent = vsc->dev;
vsc->gc.base = -1;
vsc->gc.get = vsc73xx_gpio_get;
vsc->gc.set = vsc73xx_gpio_set;
vsc->gc.direction_input = vsc73xx_gpio_direction_input;
vsc->gc.direction_output = vsc73xx_gpio_direction_output;
vsc->gc.get_direction = vsc73xx_gpio_get_direction;
vsc->gc.can_sleep = true;
ret = devm_gpiochip_add_data(vsc->dev, &vsc->gc, vsc);
if (ret) {
dev_err(vsc->dev, "unable to register GPIO chip\n");
return ret;
}
return 0;
}
int vsc73xx_probe(struct vsc73xx *vsc)
{
struct device *dev = vsc->dev;
int ret;
/* Release reset, if any */
vsc->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(vsc->reset)) {
dev_err(dev, "failed to get RESET GPIO\n");
return PTR_ERR(vsc->reset);
}
if (vsc->reset)
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
if (ret == -EAGAIN) {
dev_err(vsc->dev,
"Chip seems to be out of control. Assert reset and try again.\n");
gpiod_set_value_cansleep(vsc->reset, 1);
/* Reset pulse should be 20ns minimum, according to datasheet
* table 245, so 10us should be fine
*/
usleep_range(10, 100);
gpiod_set_value_cansleep(vsc->reset, 0);
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
}
if (ret) {
dev_err(dev, "no chip found (%d)\n", ret);
return -ENODEV;
}
mutex_init(&vsc->fdb_lock);
eth_random_addr(vsc->addr);
dev_info(vsc->dev,
"MAC for control frames: %02X:%02X:%02X:%02X:%02X:%02X\n",
vsc->addr[0], vsc->addr[1], vsc->addr[2],
vsc->addr[3], vsc->addr[4], vsc->addr[5]);
vsc->ds = devm_kzalloc(dev, sizeof(*vsc->ds), GFP_KERNEL);
if (!vsc->ds)
return -ENOMEM;
vsc->ds->dev = dev;
vsc->ds->num_ports = VSC73XX_MAX_NUM_PORTS;
vsc->ds->priv = vsc;
vsc->ds->ops = &vsc73xx_ds_ops;
vsc->ds->phylink_mac_ops = &vsc73xx_phylink_mac_ops;
ret = dsa_register_switch(vsc->ds);
if (ret) {
dev_err(dev, "unable to register switch (%d)\n", ret);
return ret;
}
ret = vsc73xx_gpio_probe(vsc);
if (ret) {
dsa_unregister_switch(vsc->ds);
return ret;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_probe);
void vsc73xx_remove(struct vsc73xx *vsc)
{
dsa_unregister_switch(vsc->ds);
gpiod_set_value(vsc->reset, 1);
}
EXPORT_SYMBOL(vsc73xx_remove);
void vsc73xx_shutdown(struct vsc73xx *vsc)
{
dsa_switch_shutdown(vsc->ds);
}
EXPORT_SYMBOL(vsc73xx_shutdown);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("Vitesse VSC7385/7388/7395/7398 driver");
MODULE_LICENSE("GPL v2");