| /* |
| drivers/net/ethernet/dec/tulip/eeprom.c |
| |
| Copyright 2000,2001 The Linux Kernel Team |
| Written/copyright 1994-2001 by Donald Becker. |
| |
| This software may be used and distributed according to the terms |
| of the GNU General Public License, incorporated herein by reference. |
| |
| Please submit bug reports to http://bugzilla.kernel.org/. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include "tulip.h" |
| #include <linux/unaligned.h> |
| |
| |
| |
| /* Serial EEPROM section. */ |
| /* The main routine to parse the very complicated SROM structure. |
| Search www.digital.com for "21X4 SROM" to get details. |
| This code is very complex, and will require changes to support |
| additional cards, so I'll be verbose about what is going on. |
| */ |
| |
| /* Known cards that have old-style EEPROMs. */ |
| static struct eeprom_fixup eeprom_fixups[] = { |
| {"Asante", 0, 0, 0x94, {0x1e00, 0x0000, 0x0800, 0x0100, 0x018c, |
| 0x0000, 0x0000, 0xe078, 0x0001, 0x0050, 0x0018 }}, |
| {"SMC9332DST", 0, 0, 0xC0, { 0x1e00, 0x0000, 0x0800, 0x041f, |
| 0x0000, 0x009E, /* 10baseT */ |
| 0x0004, 0x009E, /* 10baseT-FD */ |
| 0x0903, 0x006D, /* 100baseTx */ |
| 0x0905, 0x006D, /* 100baseTx-FD */ }}, |
| {"Cogent EM100", 0, 0, 0x92, { 0x1e00, 0x0000, 0x0800, 0x063f, |
| 0x0107, 0x8021, /* 100baseFx */ |
| 0x0108, 0x8021, /* 100baseFx-FD */ |
| 0x0100, 0x009E, /* 10baseT */ |
| 0x0104, 0x009E, /* 10baseT-FD */ |
| 0x0103, 0x006D, /* 100baseTx */ |
| 0x0105, 0x006D, /* 100baseTx-FD */ }}, |
| {"Maxtech NX-110", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x0513, |
| 0x1001, 0x009E, /* 10base2, CSR12 0x10*/ |
| 0x0000, 0x009E, /* 10baseT */ |
| 0x0004, 0x009E, /* 10baseT-FD */ |
| 0x0303, 0x006D, /* 100baseTx, CSR12 0x03 */ |
| 0x0305, 0x006D, /* 100baseTx-FD CSR12 0x03 */}}, |
| {"Accton EN1207", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x051F, |
| 0x1B01, 0x0000, /* 10base2, CSR12 0x1B */ |
| 0x0B00, 0x009E, /* 10baseT, CSR12 0x0B */ |
| 0x0B04, 0x009E, /* 10baseT-FD,CSR12 0x0B */ |
| 0x1B03, 0x006D, /* 100baseTx, CSR12 0x1B */ |
| 0x1B05, 0x006D, /* 100baseTx-FD CSR12 0x1B */ |
| }}, |
| {"NetWinder", 0x00, 0x10, 0x57, |
| /* Default media = MII |
| * MII block, reset sequence (3) = 0x0821 0x0000 0x0001, capabilities 0x01e1 |
| */ |
| { 0x1e00, 0x0000, 0x000b, 0x8f01, 0x0103, 0x0300, 0x0821, 0x000, 0x0001, 0x0000, 0x01e1 } |
| }, |
| {"Cobalt Microserver", 0, 0x10, 0xE0, {0x1e00, /* 0 == controller #, 1e == offset */ |
| 0x0000, /* 0 == high offset, 0 == gap */ |
| 0x0800, /* Default Autoselect */ |
| 0x8001, /* 1 leaf, extended type, bogus len */ |
| 0x0003, /* Type 3 (MII), PHY #0 */ |
| 0x0400, /* 0 init instr, 4 reset instr */ |
| 0x0801, /* Set control mode, GP0 output */ |
| 0x0000, /* Drive GP0 Low (RST is active low) */ |
| 0x0800, /* control mode, GP0 input (undriven) */ |
| 0x0000, /* clear control mode */ |
| 0x7800, /* 100TX FDX + HDX, 10bT FDX + HDX */ |
| 0x01e0, /* Advertise all above */ |
| 0x5000, /* FDX all above */ |
| 0x1800, /* Set fast TTM in 100bt modes */ |
| 0x0000, /* PHY cannot be unplugged */ |
| }}, |
| {NULL}}; |
| |
| |
| static const char *const block_name[] = { |
| "21140 non-MII", |
| "21140 MII PHY", |
| "21142 Serial PHY", |
| "21142 MII PHY", |
| "21143 SYM PHY", |
| "21143 reset method" |
| }; |
| |
| |
| /** |
| * tulip_build_fake_mediatable - Build a fake mediatable entry. |
| * @tp: Ptr to the tulip private data. |
| * |
| * Some cards like the 3x5 HSC cards (J3514A) do not have a standard |
| * srom and can not be handled under the fixup routine. These cards |
| * still need a valid mediatable entry for correct csr12 setup and |
| * mii handling. |
| * |
| * Since this is currently a parisc-linux specific function, the |
| * #ifdef __hppa__ should completely optimize this function away for |
| * non-parisc hardware. |
| */ |
| static void tulip_build_fake_mediatable(struct tulip_private *tp) |
| { |
| #ifdef CONFIG_GSC |
| if (tp->flags & NEEDS_FAKE_MEDIA_TABLE) { |
| static unsigned char leafdata[] = |
| { 0x01, /* phy number */ |
| 0x02, /* gpr setup sequence length */ |
| 0x02, 0x00, /* gpr setup sequence */ |
| 0x02, /* phy reset sequence length */ |
| 0x01, 0x00, /* phy reset sequence */ |
| 0x00, 0x78, /* media capabilities */ |
| 0x00, 0xe0, /* nway advertisement */ |
| 0x00, 0x05, /* fdx bit map */ |
| 0x00, 0x06 /* ttm bit map */ |
| }; |
| |
| tp->mtable = devm_kmalloc(&tp->pdev->dev, sizeof(struct mediatable) + |
| sizeof(struct medialeaf), GFP_KERNEL); |
| |
| if (tp->mtable == NULL) |
| return; /* Horrible, impossible failure. */ |
| |
| tp->mtable->defaultmedia = 0x800; |
| tp->mtable->leafcount = 1; |
| tp->mtable->csr12dir = 0x3f; /* inputs on bit7 for hsc-pci, bit6 for pci-fx */ |
| tp->mtable->has_nonmii = 0; |
| tp->mtable->has_reset = 0; |
| tp->mtable->has_mii = 1; |
| tp->mtable->csr15dir = tp->mtable->csr15val = 0; |
| tp->mtable->mleaf[0].type = 1; |
| tp->mtable->mleaf[0].media = 11; |
| tp->mtable->mleaf[0].leafdata = &leafdata[0]; |
| tp->flags |= HAS_PHY_IRQ; |
| tp->csr12_shadow = -1; |
| } |
| #endif |
| } |
| |
| void tulip_parse_eeprom(struct net_device *dev) |
| { |
| /* |
| dev is not registered at this point, so logging messages can't |
| use dev_<level> or netdev_<level> but dev->name is good via a |
| hack in the caller |
| */ |
| |
| /* The last media info list parsed, for multiport boards. */ |
| static struct mediatable *last_mediatable; |
| static unsigned char *last_ee_data; |
| static int controller_index; |
| struct tulip_private *tp = netdev_priv(dev); |
| unsigned char *ee_data = tp->eeprom; |
| int i; |
| |
| tp->mtable = NULL; |
| /* Detect an old-style (SA only) EEPROM layout: |
| memcmp(eedata, eedata+16, 8). */ |
| for (i = 0; i < 8; i ++) |
| if (ee_data[i] != ee_data[16+i]) |
| break; |
| if (i >= 8) { |
| if (ee_data[0] == 0xff) { |
| if (last_mediatable) { |
| controller_index++; |
| pr_info("%s: Controller %d of multiport board\n", |
| dev->name, controller_index); |
| tp->mtable = last_mediatable; |
| ee_data = last_ee_data; |
| goto subsequent_board; |
| } else |
| pr_info("%s: Missing EEPROM, this interface may not work correctly!\n", |
| dev->name); |
| return; |
| } |
| /* Do a fix-up based on the vendor half of the station address prefix. */ |
| for (i = 0; eeprom_fixups[i].name; i++) { |
| if (dev->dev_addr[0] == eeprom_fixups[i].addr0 && |
| dev->dev_addr[1] == eeprom_fixups[i].addr1 && |
| dev->dev_addr[2] == eeprom_fixups[i].addr2) { |
| if (dev->dev_addr[2] == 0xE8 && ee_data[0x1a] == 0x55) |
| i++; /* An Accton EN1207, not an outlaw Maxtech. */ |
| memcpy(ee_data + 26, eeprom_fixups[i].newtable, |
| sizeof(eeprom_fixups[i].newtable)); |
| pr_info("%s: Old format EEPROM on '%s' board. Using substitute media control info\n", |
| dev->name, eeprom_fixups[i].name); |
| break; |
| } |
| } |
| if (eeprom_fixups[i].name == NULL) { /* No fixup found. */ |
| pr_info("%s: Old style EEPROM with no media selection information\n", |
| dev->name); |
| return; |
| } |
| } |
| |
| controller_index = 0; |
| if (ee_data[19] > 1) { /* Multiport board. */ |
| last_ee_data = ee_data; |
| } |
| subsequent_board: |
| |
| if (ee_data[27] == 0) { /* No valid media table. */ |
| tulip_build_fake_mediatable(tp); |
| } else { |
| unsigned char *p = (void *)ee_data + ee_data[27]; |
| unsigned char csr12dir = 0; |
| int count, new_advertise = 0; |
| struct mediatable *mtable; |
| u16 media = get_u16(p); |
| |
| p += 2; |
| if (tp->flags & CSR12_IN_SROM) |
| csr12dir = *p++; |
| count = *p++; |
| |
| /* there is no phy information, don't even try to build mtable */ |
| if (count == 0) { |
| if (tulip_debug > 0) |
| pr_warn("%s: no phy info, aborting mtable build\n", |
| dev->name); |
| return; |
| } |
| |
| mtable = devm_kmalloc(&tp->pdev->dev, struct_size(mtable, mleaf, count), |
| GFP_KERNEL); |
| if (mtable == NULL) |
| return; /* Horrible, impossible failure. */ |
| last_mediatable = tp->mtable = mtable; |
| mtable->defaultmedia = media; |
| mtable->leafcount = count; |
| mtable->csr12dir = csr12dir; |
| mtable->has_nonmii = mtable->has_mii = mtable->has_reset = 0; |
| mtable->csr15dir = mtable->csr15val = 0; |
| |
| pr_info("%s: EEPROM default media type %s\n", |
| dev->name, |
| media & 0x0800 ? "Autosense" |
| : medianame[media & MEDIA_MASK]); |
| for (i = 0; i < count; i++) { |
| struct medialeaf *leaf = &mtable->mleaf[i]; |
| |
| if ((p[0] & 0x80) == 0) { /* 21140 Compact block. */ |
| leaf->type = 0; |
| leaf->media = p[0] & 0x3f; |
| leaf->leafdata = p; |
| if ((p[2] & 0x61) == 0x01) /* Bogus, but Znyx boards do it. */ |
| mtable->has_mii = 1; |
| p += 4; |
| } else { |
| leaf->type = p[1]; |
| if (p[1] == 0x05) { |
| mtable->has_reset = i; |
| leaf->media = p[2] & 0x0f; |
| } else if (tp->chip_id == DM910X && p[1] == 0x80) { |
| /* Hack to ignore Davicom delay period block */ |
| mtable->leafcount--; |
| count--; |
| i--; |
| leaf->leafdata = p + 2; |
| p += (p[0] & 0x3f) + 1; |
| continue; |
| } else if (p[1] & 1) { |
| int gpr_len, reset_len; |
| |
| mtable->has_mii = 1; |
| leaf->media = 11; |
| gpr_len=p[3]*2; |
| reset_len=p[4+gpr_len]*2; |
| new_advertise |= get_u16(&p[7+gpr_len+reset_len]); |
| } else { |
| mtable->has_nonmii = 1; |
| leaf->media = p[2] & MEDIA_MASK; |
| /* Davicom's media number for 100BaseTX is strange */ |
| if (tp->chip_id == DM910X && leaf->media == 1) |
| leaf->media = 3; |
| switch (leaf->media) { |
| case 0: new_advertise |= 0x0020; break; |
| case 4: new_advertise |= 0x0040; break; |
| case 3: new_advertise |= 0x0080; break; |
| case 5: new_advertise |= 0x0100; break; |
| case 6: new_advertise |= 0x0200; break; |
| } |
| if (p[1] == 2 && leaf->media == 0) { |
| if (p[2] & 0x40) { |
| u32 base15 = get_unaligned((u16*)&p[7]); |
| mtable->csr15dir = |
| (get_unaligned((u16*)&p[9])<<16) + base15; |
| mtable->csr15val = |
| (get_unaligned((u16*)&p[11])<<16) + base15; |
| } else { |
| mtable->csr15dir = get_unaligned((u16*)&p[3])<<16; |
| mtable->csr15val = get_unaligned((u16*)&p[5])<<16; |
| } |
| } |
| } |
| leaf->leafdata = p + 2; |
| p += (p[0] & 0x3f) + 1; |
| } |
| if (tulip_debug > 1 && leaf->media == 11) { |
| unsigned char *bp = leaf->leafdata; |
| pr_info("%s: MII interface PHY %d, setup/reset sequences %d/%d long, capabilities %02x %02x\n", |
| dev->name, |
| bp[0], bp[1], bp[2 + bp[1]*2], |
| bp[5 + bp[2 + bp[1]*2]*2], |
| bp[4 + bp[2 + bp[1]*2]*2]); |
| } |
| pr_info("%s: Index #%d - Media %s (#%d) described by a %s (%d) block\n", |
| dev->name, |
| i, medianame[leaf->media & 15], leaf->media, |
| leaf->type < ARRAY_SIZE(block_name) ? block_name[leaf->type] : "<unknown>", |
| leaf->type); |
| } |
| if (new_advertise) |
| tp->sym_advertise = new_advertise; |
| } |
| } |
| /* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->.*/ |
| |
| /* EEPROM_Ctrl bits. */ |
| #define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */ |
| #define EE_CS 0x01 /* EEPROM chip select. */ |
| #define EE_DATA_WRITE 0x04 /* Data from the Tulip to EEPROM. */ |
| #define EE_WRITE_0 0x01 |
| #define EE_WRITE_1 0x05 |
| #define EE_DATA_READ 0x08 /* Data from the EEPROM chip. */ |
| #define EE_ENB (0x4800 | EE_CS) |
| |
| /* Delay between EEPROM clock transitions. |
| Even at 33Mhz current PCI implementations don't overrun the EEPROM clock. |
| We add a bus turn-around to insure that this remains true. */ |
| #define eeprom_delay() ioread32(ee_addr) |
| |
| /* The EEPROM commands include the alway-set leading bit. */ |
| #define EE_READ_CMD (6) |
| |
| /* Note: this routine returns extra data bits for size detection. */ |
| int tulip_read_eeprom(struct net_device *dev, int location, int addr_len) |
| { |
| int i; |
| unsigned retval = 0; |
| struct tulip_private *tp = netdev_priv(dev); |
| void __iomem *ee_addr = tp->base_addr + CSR9; |
| int read_cmd = location | (EE_READ_CMD << addr_len); |
| |
| /* If location is past the end of what we can address, don't |
| * read some other location (ie truncate). Just return zero. |
| */ |
| if (location > (1 << addr_len) - 1) |
| return 0; |
| |
| iowrite32(EE_ENB & ~EE_CS, ee_addr); |
| iowrite32(EE_ENB, ee_addr); |
| |
| /* Shift the read command bits out. */ |
| for (i = 4 + addr_len; i >= 0; i--) { |
| short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| iowrite32(EE_ENB | dataval, ee_addr); |
| eeprom_delay(); |
| iowrite32(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); |
| eeprom_delay(); |
| retval = (retval << 1) | ((ioread32(ee_addr) & EE_DATA_READ) ? 1 : 0); |
| } |
| iowrite32(EE_ENB, ee_addr); |
| eeprom_delay(); |
| |
| for (i = 16; i > 0; i--) { |
| iowrite32(EE_ENB | EE_SHIFT_CLK, ee_addr); |
| eeprom_delay(); |
| retval = (retval << 1) | ((ioread32(ee_addr) & EE_DATA_READ) ? 1 : 0); |
| iowrite32(EE_ENB, ee_addr); |
| eeprom_delay(); |
| } |
| |
| /* Terminate the EEPROM access. */ |
| iowrite32(EE_ENB & ~EE_CS, ee_addr); |
| return (tp->flags & HAS_SWAPPED_SEEPROM) ? swab16(retval) : retval; |
| } |
| |