blob: d7b5587aeb8e8259010ed0cbc2812e28aa8f94e0 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#ifndef _IAVF_TXRX_H_
#define _IAVF_TXRX_H_
/* Interrupt Throttling and Rate Limiting Goodies */
#define IAVF_DEFAULT_IRQ_WORK 256
/* The datasheet for the X710 and XL710 indicate that the maximum value for
* the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
* resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
* the register value which is divided by 2 lets use the actual values and
* avoid an excessive amount of translation.
*/
#define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
#define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */
#define IAVF_ITR_100K 10 /* all values below must be even */
#define IAVF_ITR_50K 20
#define IAVF_ITR_20K 50
#define IAVF_ITR_18K 60
#define IAVF_ITR_8K 122
#define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */
#define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
#define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
#define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
#define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
* the value of the rate limit is non-zero
*/
#define INTRL_ENA BIT(6)
#define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
#define IAVF_INTRL_8K 125 /* 8000 ints/sec */
#define IAVF_INTRL_62K 16 /* 62500 ints/sec */
#define IAVF_INTRL_83K 12 /* 83333 ints/sec */
#define IAVF_QUEUE_END_OF_LIST 0x7FF
/* this enum matches hardware bits and is meant to be used by DYN_CTLN
* registers and QINT registers or more generally anywhere in the manual
* mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
* register but instead is a special value meaning "don't update" ITR0/1/2.
*/
enum iavf_dyn_idx_t {
IAVF_IDX_ITR0 = 0,
IAVF_IDX_ITR1 = 1,
IAVF_IDX_ITR2 = 2,
IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
};
/* these are indexes into ITRN registers */
#define IAVF_RX_ITR IAVF_IDX_ITR0
#define IAVF_TX_ITR IAVF_IDX_ITR1
#define IAVF_PE_ITR IAVF_IDX_ITR2
/* Supported RSS offloads */
#define IAVF_DEFAULT_RSS_HENA ( \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
#define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
#define iavf_rx_desc iavf_32byte_rx_desc
/**
* iavf_test_staterr - tests bits in Rx descriptor status and error fields
* @rx_desc: pointer to receive descriptor (in le64 format)
* @stat_err_bits: value to mask
*
* This function does some fast chicanery in order to return the
* value of the mask which is really only used for boolean tests.
* The status_error_len doesn't need to be shifted because it begins
* at offset zero.
*/
static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc,
const u64 stat_err_bits)
{
return !!(rx_desc->wb.qword1.status_error_len &
cpu_to_le64(stat_err_bits));
}
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define IAVF_RX_INCREMENT(r, i) \
do { \
(i)++; \
if ((i) == (r)->count) \
i = 0; \
r->next_to_clean = i; \
} while (0)
#define IAVF_RX_NEXT_DESC(r, i, n) \
do { \
(i)++; \
if ((i) == (r)->count) \
i = 0; \
(n) = IAVF_RX_DESC((r), (i)); \
} while (0)
#define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \
do { \
IAVF_RX_NEXT_DESC((r), (i), (n)); \
prefetch((n)); \
} while (0)
#define IAVF_MAX_BUFFER_TXD 8
#define IAVF_MIN_TX_LEN 17
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define IAVF_MAX_READ_REQ_SIZE 4096
#define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1)
#define IAVF_MAX_DATA_PER_TXD_ALIGNED \
(IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
/**
* iavf_txd_use_count - estimate the number of descriptors needed for Tx
* @size: transmit request size in bytes
*
* Due to hardware alignment restrictions (4K alignment), we need to
* assume that we can have no more than 12K of data per descriptor, even
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
* Thus, we need to divide by 12K. But division is slow! Instead,
* we decompose the operation into shifts and one relatively cheap
* multiply operation.
*
* To divide by 12K, we first divide by 4K, then divide by 3:
* To divide by 4K, shift right by 12 bits
* To divide by 3, multiply by 85, then divide by 256
* (Divide by 256 is done by shifting right by 8 bits)
* Finally, we add one to round up. Because 256 isn't an exact multiple of
* 3, we'll underestimate near each multiple of 12K. This is actually more
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
* segment. For our purposes this is accurate out to 1M which is orders of
* magnitude greater than our largest possible GSO size.
*
* This would then be implemented as:
* return (((size >> 12) * 85) >> 8) + 1;
*
* Since multiplication and division are commutative, we can reorder
* operations into:
* return ((size * 85) >> 20) + 1;
*/
static inline unsigned int iavf_txd_use_count(unsigned int size)
{
return ((size * 85) >> 20) + 1;
}
/* Tx Descriptors needed, worst case */
#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
#define IAVF_MIN_DESC_PENDING 4
#define IAVF_TX_FLAGS_HW_VLAN BIT(1)
#define IAVF_TX_FLAGS_SW_VLAN BIT(2)
#define IAVF_TX_FLAGS_TSO BIT(3)
#define IAVF_TX_FLAGS_IPV4 BIT(4)
#define IAVF_TX_FLAGS_IPV6 BIT(5)
#define IAVF_TX_FLAGS_FCCRC BIT(6)
#define IAVF_TX_FLAGS_FSO BIT(7)
#define IAVF_TX_FLAGS_FD_SB BIT(9)
#define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10)
#define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11)
#define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000
#define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
#define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29
#define IAVF_TX_FLAGS_VLAN_SHIFT 16
struct iavf_tx_buffer {
struct iavf_tx_desc *next_to_watch;
union {
struct sk_buff *skb;
void *raw_buf;
};
unsigned int bytecount;
unsigned short gso_segs;
DEFINE_DMA_UNMAP_ADDR(dma);
DEFINE_DMA_UNMAP_LEN(len);
u32 tx_flags;
};
struct iavf_queue_stats {
u64 packets;
u64 bytes;
};
struct iavf_tx_queue_stats {
u64 restart_queue;
u64 tx_busy;
u64 tx_done_old;
u64 tx_linearize;
u64 tx_force_wb;
u64 tx_lost_interrupt;
};
struct iavf_rx_queue_stats {
u64 non_eop_descs;
u64 alloc_page_failed;
u64 alloc_buff_failed;
};
/* some useful defines for virtchannel interface, which
* is the only remaining user of header split
*/
#define IAVF_RX_DTYPE_NO_SPLIT 0
#define IAVF_RX_DTYPE_HEADER_SPLIT 1
#define IAVF_RX_DTYPE_SPLIT_ALWAYS 2
#define IAVF_RX_SPLIT_L2 0x1
#define IAVF_RX_SPLIT_IP 0x2
#define IAVF_RX_SPLIT_TCP_UDP 0x4
#define IAVF_RX_SPLIT_SCTP 0x8
/* struct that defines a descriptor ring, associated with a VSI */
struct iavf_ring {
struct iavf_ring *next; /* pointer to next ring in q_vector */
void *desc; /* Descriptor ring memory */
union {
struct page_pool *pp; /* Used on Rx for buffer management */
struct device *dev; /* Used on Tx for DMA mapping */
};
struct net_device *netdev; /* netdev ring maps to */
union {
struct libeth_fqe *rx_fqes;
struct iavf_tx_buffer *tx_bi;
};
u8 __iomem *tail;
u32 truesize;
u16 queue_index; /* Queue number of ring */
/* high bit set means dynamic, use accessors routines to read/write.
* hardware only supports 2us resolution for the ITR registers.
* these values always store the USER setting, and must be converted
* before programming to a register.
*/
u16 itr_setting;
u16 count; /* Number of descriptors */
/* used in interrupt processing */
u16 next_to_use;
u16 next_to_clean;
u16 flags;
#define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0)
#define IAVF_TXR_FLAGS_ARM_WB BIT(1)
/* BIT(2) is free */
#define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3)
#define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4)
#define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5)
/* stats structs */
struct iavf_queue_stats stats;
struct u64_stats_sync syncp;
union {
struct iavf_tx_queue_stats tx_stats;
struct iavf_rx_queue_stats rx_stats;
};
int prev_pkt_ctr; /* For Tx stall detection */
unsigned int size; /* length of descriptor ring in bytes */
dma_addr_t dma; /* physical address of ring */
struct iavf_vsi *vsi; /* Backreference to associated VSI */
struct iavf_q_vector *q_vector; /* Backreference to associated vector */
struct rcu_head rcu; /* to avoid race on free */
struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must
* return before it sees the EOP for
* the current packet, we save that skb
* here and resume receiving this
* packet the next time
* iavf_clean_rx_ring_irq() is called
* for this ring.
*/
u32 rx_buf_len;
} ____cacheline_internodealigned_in_smp;
#define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002
#define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002
#define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e
#define IAVF_ITR_ADAPTIVE_LATENCY 0x8000
#define IAVF_ITR_ADAPTIVE_BULK 0x0000
#define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
struct iavf_ring_container {
struct iavf_ring *ring; /* pointer to linked list of ring(s) */
unsigned long next_update; /* jiffies value of next update */
unsigned int total_bytes; /* total bytes processed this int */
unsigned int total_packets; /* total packets processed this int */
u16 count;
u16 target_itr; /* target ITR setting for ring(s) */
u16 current_itr; /* current ITR setting for ring(s) */
};
/* iterator for handling rings in ring container */
#define iavf_for_each_ring(pos, head) \
for (pos = (head).ring; pos != NULL; pos = pos->next)
bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
void iavf_free_tx_resources(struct iavf_ring *tx_ring);
void iavf_free_rx_resources(struct iavf_ring *rx_ring);
int iavf_napi_poll(struct napi_struct *napi, int budget);
void iavf_detect_recover_hung(struct iavf_vsi *vsi);
int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
bool __iavf_chk_linearize(struct sk_buff *skb);
/**
* iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
* @skb: send buffer
*
* Returns number of data descriptors needed for this skb. Returns 0 to indicate
* there is not enough descriptors available in this ring since we need at least
* one descriptor.
**/
static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
{
const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
int count = 0, size = skb_headlen(skb);
for (;;) {
count += iavf_txd_use_count(size);
if (!nr_frags--)
break;
size = skb_frag_size(frag++);
}
return count;
}
/**
* iavf_maybe_stop_tx - 1st level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns 0 if stop is not needed
**/
static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
{
if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
return 0;
return __iavf_maybe_stop_tx(tx_ring, size);
}
/**
* iavf_chk_linearize - Check if there are more than 8 fragments per packet
* @skb: send buffer
* @count: number of buffers used
*
* Note: Our HW can't scatter-gather more than 8 fragments to build
* a packet on the wire and so we need to figure out the cases where we
* need to linearize the skb.
**/
static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
{
/* Both TSO and single send will work if count is less than 8 */
if (likely(count < IAVF_MAX_BUFFER_TXD))
return false;
if (skb_is_gso(skb))
return __iavf_chk_linearize(skb);
/* we can support up to 8 data buffers for a single send */
return count != IAVF_MAX_BUFFER_TXD;
}
/**
* txring_txq - helper to convert from a ring to a queue
* @ring: Tx ring to find the netdev equivalent of
**/
static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->queue_index);
}
#endif /* _IAVF_TXRX_H_ */