blob: f9c0dcd965c2e7f4c877ca98f056b168fb099b35 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* OPEN Alliance 10BASE‑T1x MAC‑PHY Serial Interface framework
*
* Author: Parthiban Veerasooran <parthiban.veerasooran@microchip.com>
*/
#include <linux/bitfield.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/phy.h>
#include <linux/oa_tc6.h>
/* OPEN Alliance TC6 registers */
/* Standard Capabilities Register */
#define OA_TC6_REG_STDCAP 0x0002
#define STDCAP_DIRECT_PHY_REG_ACCESS BIT(8)
/* Reset Control and Status Register */
#define OA_TC6_REG_RESET 0x0003
#define RESET_SWRESET BIT(0) /* Software Reset */
/* Configuration Register #0 */
#define OA_TC6_REG_CONFIG0 0x0004
#define CONFIG0_SYNC BIT(15)
#define CONFIG0_ZARFE_ENABLE BIT(12)
/* Status Register #0 */
#define OA_TC6_REG_STATUS0 0x0008
#define STATUS0_RESETC BIT(6) /* Reset Complete */
#define STATUS0_HEADER_ERROR BIT(5)
#define STATUS0_LOSS_OF_FRAME_ERROR BIT(4)
#define STATUS0_RX_BUFFER_OVERFLOW_ERROR BIT(3)
#define STATUS0_TX_PROTOCOL_ERROR BIT(0)
/* Buffer Status Register */
#define OA_TC6_REG_BUFFER_STATUS 0x000B
#define BUFFER_STATUS_TX_CREDITS_AVAILABLE GENMASK(15, 8)
#define BUFFER_STATUS_RX_CHUNKS_AVAILABLE GENMASK(7, 0)
/* Interrupt Mask Register #0 */
#define OA_TC6_REG_INT_MASK0 0x000C
#define INT_MASK0_HEADER_ERR_MASK BIT(5)
#define INT_MASK0_LOSS_OF_FRAME_ERR_MASK BIT(4)
#define INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK BIT(3)
#define INT_MASK0_TX_PROTOCOL_ERR_MASK BIT(0)
/* PHY Clause 22 registers base address and mask */
#define OA_TC6_PHY_STD_REG_ADDR_BASE 0xFF00
#define OA_TC6_PHY_STD_REG_ADDR_MASK 0x1F
/* Control command header */
#define OA_TC6_CTRL_HEADER_DATA_NOT_CTRL BIT(31)
#define OA_TC6_CTRL_HEADER_WRITE_NOT_READ BIT(29)
#define OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR GENMASK(27, 24)
#define OA_TC6_CTRL_HEADER_ADDR GENMASK(23, 8)
#define OA_TC6_CTRL_HEADER_LENGTH GENMASK(7, 1)
#define OA_TC6_CTRL_HEADER_PARITY BIT(0)
/* Data header */
#define OA_TC6_DATA_HEADER_DATA_NOT_CTRL BIT(31)
#define OA_TC6_DATA_HEADER_DATA_VALID BIT(21)
#define OA_TC6_DATA_HEADER_START_VALID BIT(20)
#define OA_TC6_DATA_HEADER_START_WORD_OFFSET GENMASK(19, 16)
#define OA_TC6_DATA_HEADER_END_VALID BIT(14)
#define OA_TC6_DATA_HEADER_END_BYTE_OFFSET GENMASK(13, 8)
#define OA_TC6_DATA_HEADER_PARITY BIT(0)
/* Data footer */
#define OA_TC6_DATA_FOOTER_EXTENDED_STS BIT(31)
#define OA_TC6_DATA_FOOTER_RXD_HEADER_BAD BIT(30)
#define OA_TC6_DATA_FOOTER_CONFIG_SYNC BIT(29)
#define OA_TC6_DATA_FOOTER_RX_CHUNKS GENMASK(28, 24)
#define OA_TC6_DATA_FOOTER_DATA_VALID BIT(21)
#define OA_TC6_DATA_FOOTER_START_VALID BIT(20)
#define OA_TC6_DATA_FOOTER_START_WORD_OFFSET GENMASK(19, 16)
#define OA_TC6_DATA_FOOTER_END_VALID BIT(14)
#define OA_TC6_DATA_FOOTER_END_BYTE_OFFSET GENMASK(13, 8)
#define OA_TC6_DATA_FOOTER_TX_CREDITS GENMASK(5, 1)
/* PHY – Clause 45 registers memory map selector (MMS) as per table 6 in the
* OPEN Alliance specification.
*/
#define OA_TC6_PHY_C45_PCS_MMS2 2 /* MMD 3 */
#define OA_TC6_PHY_C45_PMA_PMD_MMS3 3 /* MMD 1 */
#define OA_TC6_PHY_C45_VS_PLCA_MMS4 4 /* MMD 31 */
#define OA_TC6_PHY_C45_AUTO_NEG_MMS5 5 /* MMD 7 */
#define OA_TC6_PHY_C45_POWER_UNIT_MMS6 6 /* MMD 13 */
#define OA_TC6_CTRL_HEADER_SIZE 4
#define OA_TC6_CTRL_REG_VALUE_SIZE 4
#define OA_TC6_CTRL_IGNORED_SIZE 4
#define OA_TC6_CTRL_MAX_REGISTERS 128
#define OA_TC6_CTRL_SPI_BUF_SIZE (OA_TC6_CTRL_HEADER_SIZE +\
(OA_TC6_CTRL_MAX_REGISTERS *\
OA_TC6_CTRL_REG_VALUE_SIZE) +\
OA_TC6_CTRL_IGNORED_SIZE)
#define OA_TC6_CHUNK_PAYLOAD_SIZE 64
#define OA_TC6_DATA_HEADER_SIZE 4
#define OA_TC6_CHUNK_SIZE (OA_TC6_DATA_HEADER_SIZE +\
OA_TC6_CHUNK_PAYLOAD_SIZE)
#define OA_TC6_MAX_TX_CHUNKS 48
#define OA_TC6_SPI_DATA_BUF_SIZE (OA_TC6_MAX_TX_CHUNKS *\
OA_TC6_CHUNK_SIZE)
#define STATUS0_RESETC_POLL_DELAY 1000
#define STATUS0_RESETC_POLL_TIMEOUT 1000000
/* Internal structure for MAC-PHY drivers */
struct oa_tc6 {
struct device *dev;
struct net_device *netdev;
struct phy_device *phydev;
struct mii_bus *mdiobus;
struct spi_device *spi;
struct mutex spi_ctrl_lock; /* Protects spi control transfer */
void *spi_ctrl_tx_buf;
void *spi_ctrl_rx_buf;
void *spi_data_tx_buf;
void *spi_data_rx_buf;
struct sk_buff *ongoing_tx_skb;
struct sk_buff *waiting_tx_skb;
struct sk_buff *rx_skb;
struct task_struct *spi_thread;
wait_queue_head_t spi_wq;
u16 tx_skb_offset;
u16 spi_data_tx_buf_offset;
u16 tx_credits;
u8 rx_chunks_available;
bool rx_buf_overflow;
bool int_flag;
};
enum oa_tc6_header_type {
OA_TC6_CTRL_HEADER,
OA_TC6_DATA_HEADER,
};
enum oa_tc6_register_op {
OA_TC6_CTRL_REG_READ = 0,
OA_TC6_CTRL_REG_WRITE = 1,
};
enum oa_tc6_data_valid_info {
OA_TC6_DATA_INVALID,
OA_TC6_DATA_VALID,
};
enum oa_tc6_data_start_valid_info {
OA_TC6_DATA_START_INVALID,
OA_TC6_DATA_START_VALID,
};
enum oa_tc6_data_end_valid_info {
OA_TC6_DATA_END_INVALID,
OA_TC6_DATA_END_VALID,
};
static int oa_tc6_spi_transfer(struct oa_tc6 *tc6,
enum oa_tc6_header_type header_type, u16 length)
{
struct spi_transfer xfer = { 0 };
struct spi_message msg;
if (header_type == OA_TC6_DATA_HEADER) {
xfer.tx_buf = tc6->spi_data_tx_buf;
xfer.rx_buf = tc6->spi_data_rx_buf;
} else {
xfer.tx_buf = tc6->spi_ctrl_tx_buf;
xfer.rx_buf = tc6->spi_ctrl_rx_buf;
}
xfer.len = length;
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
return spi_sync(tc6->spi, &msg);
}
static int oa_tc6_get_parity(u32 p)
{
/* Public domain code snippet, lifted from
* http://www-graphics.stanford.edu/~seander/bithacks.html
*/
p ^= p >> 1;
p ^= p >> 2;
p = (p & 0x11111111U) * 0x11111111U;
/* Odd parity is used here */
return !((p >> 28) & 1);
}
static __be32 oa_tc6_prepare_ctrl_header(u32 addr, u8 length,
enum oa_tc6_register_op reg_op)
{
u32 header;
header = FIELD_PREP(OA_TC6_CTRL_HEADER_DATA_NOT_CTRL,
OA_TC6_CTRL_HEADER) |
FIELD_PREP(OA_TC6_CTRL_HEADER_WRITE_NOT_READ, reg_op) |
FIELD_PREP(OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR, addr >> 16) |
FIELD_PREP(OA_TC6_CTRL_HEADER_ADDR, addr) |
FIELD_PREP(OA_TC6_CTRL_HEADER_LENGTH, length - 1);
header |= FIELD_PREP(OA_TC6_CTRL_HEADER_PARITY,
oa_tc6_get_parity(header));
return cpu_to_be32(header);
}
static void oa_tc6_update_ctrl_write_data(struct oa_tc6 *tc6, u32 value[],
u8 length)
{
__be32 *tx_buf = tc6->spi_ctrl_tx_buf + OA_TC6_CTRL_HEADER_SIZE;
for (int i = 0; i < length; i++)
*tx_buf++ = cpu_to_be32(value[i]);
}
static u16 oa_tc6_calculate_ctrl_buf_size(u8 length)
{
/* Control command consists 4 bytes header + 4 bytes register value for
* each register + 4 bytes ignored value.
*/
return OA_TC6_CTRL_HEADER_SIZE + OA_TC6_CTRL_REG_VALUE_SIZE * length +
OA_TC6_CTRL_IGNORED_SIZE;
}
static void oa_tc6_prepare_ctrl_spi_buf(struct oa_tc6 *tc6, u32 address,
u32 value[], u8 length,
enum oa_tc6_register_op reg_op)
{
__be32 *tx_buf = tc6->spi_ctrl_tx_buf;
*tx_buf = oa_tc6_prepare_ctrl_header(address, length, reg_op);
if (reg_op == OA_TC6_CTRL_REG_WRITE)
oa_tc6_update_ctrl_write_data(tc6, value, length);
}
static int oa_tc6_check_ctrl_write_reply(struct oa_tc6 *tc6, u8 size)
{
u8 *tx_buf = tc6->spi_ctrl_tx_buf;
u8 *rx_buf = tc6->spi_ctrl_rx_buf;
rx_buf += OA_TC6_CTRL_IGNORED_SIZE;
/* The echoed control write must match with the one that was
* transmitted.
*/
if (memcmp(tx_buf, rx_buf, size - OA_TC6_CTRL_IGNORED_SIZE))
return -EPROTO;
return 0;
}
static int oa_tc6_check_ctrl_read_reply(struct oa_tc6 *tc6, u8 size)
{
u32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE;
u32 *tx_buf = tc6->spi_ctrl_tx_buf;
/* The echoed control read header must match with the one that was
* transmitted.
*/
if (*tx_buf != *rx_buf)
return -EPROTO;
return 0;
}
static void oa_tc6_copy_ctrl_read_data(struct oa_tc6 *tc6, u32 value[],
u8 length)
{
__be32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE +
OA_TC6_CTRL_HEADER_SIZE;
for (int i = 0; i < length; i++)
value[i] = be32_to_cpu(*rx_buf++);
}
static int oa_tc6_perform_ctrl(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length, enum oa_tc6_register_op reg_op)
{
u16 size;
int ret;
/* Prepare control command and copy to SPI control buffer */
oa_tc6_prepare_ctrl_spi_buf(tc6, address, value, length, reg_op);
size = oa_tc6_calculate_ctrl_buf_size(length);
/* Perform SPI transfer */
ret = oa_tc6_spi_transfer(tc6, OA_TC6_CTRL_HEADER, size);
if (ret) {
dev_err(&tc6->spi->dev, "SPI transfer failed for control: %d\n",
ret);
return ret;
}
/* Check echoed/received control write command reply for errors */
if (reg_op == OA_TC6_CTRL_REG_WRITE)
return oa_tc6_check_ctrl_write_reply(tc6, size);
/* Check echoed/received control read command reply for errors */
ret = oa_tc6_check_ctrl_read_reply(tc6, size);
if (ret)
return ret;
oa_tc6_copy_ctrl_read_data(tc6, value, length);
return 0;
}
/**
* oa_tc6_read_registers - function for reading multiple consecutive registers.
* @tc6: oa_tc6 struct.
* @address: address of the first register to be read in the MAC-PHY.
* @value: values to be read from the starting register address @address.
* @length: number of consecutive registers to be read from @address.
*
* Maximum of 128 consecutive registers can be read starting at @address.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_read_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length)
{
int ret;
if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
return -EINVAL;
}
mutex_lock(&tc6->spi_ctrl_lock);
ret = oa_tc6_perform_ctrl(tc6, address, value, length,
OA_TC6_CTRL_REG_READ);
mutex_unlock(&tc6->spi_ctrl_lock);
return ret;
}
EXPORT_SYMBOL_GPL(oa_tc6_read_registers);
/**
* oa_tc6_read_register - function for reading a MAC-PHY register.
* @tc6: oa_tc6 struct.
* @address: register address of the MAC-PHY to be read.
* @value: value read from the @address register address of the MAC-PHY.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_read_register(struct oa_tc6 *tc6, u32 address, u32 *value)
{
return oa_tc6_read_registers(tc6, address, value, 1);
}
EXPORT_SYMBOL_GPL(oa_tc6_read_register);
/**
* oa_tc6_write_registers - function for writing multiple consecutive registers.
* @tc6: oa_tc6 struct.
* @address: address of the first register to be written in the MAC-PHY.
* @value: values to be written from the starting register address @address.
* @length: number of consecutive registers to be written from @address.
*
* Maximum of 128 consecutive registers can be written starting at @address.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_write_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length)
{
int ret;
if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
return -EINVAL;
}
mutex_lock(&tc6->spi_ctrl_lock);
ret = oa_tc6_perform_ctrl(tc6, address, value, length,
OA_TC6_CTRL_REG_WRITE);
mutex_unlock(&tc6->spi_ctrl_lock);
return ret;
}
EXPORT_SYMBOL_GPL(oa_tc6_write_registers);
/**
* oa_tc6_write_register - function for writing a MAC-PHY register.
* @tc6: oa_tc6 struct.
* @address: register address of the MAC-PHY to be written.
* @value: value to be written in the @address register address of the MAC-PHY.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_write_register(struct oa_tc6 *tc6, u32 address, u32 value)
{
return oa_tc6_write_registers(tc6, address, &value, 1);
}
EXPORT_SYMBOL_GPL(oa_tc6_write_register);
static int oa_tc6_check_phy_reg_direct_access_capability(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STDCAP, &regval);
if (ret)
return ret;
if (!(regval & STDCAP_DIRECT_PHY_REG_ACCESS))
return -ENODEV;
return 0;
}
static void oa_tc6_handle_link_change(struct net_device *netdev)
{
phy_print_status(netdev->phydev);
}
static int oa_tc6_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
{
struct oa_tc6 *tc6 = bus->priv;
u32 regval;
bool ret;
ret = oa_tc6_read_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
(regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
&regval);
if (ret)
return ret;
return regval;
}
static int oa_tc6_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct oa_tc6 *tc6 = bus->priv;
return oa_tc6_write_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
(regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
val);
}
static int oa_tc6_get_phy_c45_mms(int devnum)
{
switch (devnum) {
case MDIO_MMD_PCS:
return OA_TC6_PHY_C45_PCS_MMS2;
case MDIO_MMD_PMAPMD:
return OA_TC6_PHY_C45_PMA_PMD_MMS3;
case MDIO_MMD_VEND2:
return OA_TC6_PHY_C45_VS_PLCA_MMS4;
case MDIO_MMD_AN:
return OA_TC6_PHY_C45_AUTO_NEG_MMS5;
case MDIO_MMD_POWER_UNIT:
return OA_TC6_PHY_C45_POWER_UNIT_MMS6;
default:
return -EOPNOTSUPP;
}
}
static int oa_tc6_mdiobus_read_c45(struct mii_bus *bus, int addr, int devnum,
int regnum)
{
struct oa_tc6 *tc6 = bus->priv;
u32 regval;
int ret;
ret = oa_tc6_get_phy_c45_mms(devnum);
if (ret < 0)
return ret;
ret = oa_tc6_read_register(tc6, (ret << 16) | regnum, &regval);
if (ret)
return ret;
return regval;
}
static int oa_tc6_mdiobus_write_c45(struct mii_bus *bus, int addr, int devnum,
int regnum, u16 val)
{
struct oa_tc6 *tc6 = bus->priv;
int ret;
ret = oa_tc6_get_phy_c45_mms(devnum);
if (ret < 0)
return ret;
return oa_tc6_write_register(tc6, (ret << 16) | regnum, val);
}
static int oa_tc6_mdiobus_register(struct oa_tc6 *tc6)
{
int ret;
tc6->mdiobus = mdiobus_alloc();
if (!tc6->mdiobus) {
netdev_err(tc6->netdev, "MDIO bus alloc failed\n");
return -ENOMEM;
}
tc6->mdiobus->priv = tc6;
tc6->mdiobus->read = oa_tc6_mdiobus_read;
tc6->mdiobus->write = oa_tc6_mdiobus_write;
/* OPEN Alliance 10BASE-T1x compliance MAC-PHYs will have both C22 and
* C45 registers space. If the PHY is discovered via C22 bus protocol it
* assumes it uses C22 protocol and always uses C22 registers indirect
* access to access C45 registers. This is because, we don't have a
* clean separation between C22/C45 register space and C22/C45 MDIO bus
* protocols. Resulting, PHY C45 registers direct access can't be used
* which can save multiple SPI bus access. To support this feature, PHY
* drivers can set .read_mmd/.write_mmd in the PHY driver to call
* .read_c45/.write_c45. Ex: drivers/net/phy/microchip_t1s.c
*/
tc6->mdiobus->read_c45 = oa_tc6_mdiobus_read_c45;
tc6->mdiobus->write_c45 = oa_tc6_mdiobus_write_c45;
tc6->mdiobus->name = "oa-tc6-mdiobus";
tc6->mdiobus->parent = tc6->dev;
snprintf(tc6->mdiobus->id, ARRAY_SIZE(tc6->mdiobus->id), "%s",
dev_name(&tc6->spi->dev));
ret = mdiobus_register(tc6->mdiobus);
if (ret) {
netdev_err(tc6->netdev, "Could not register MDIO bus\n");
mdiobus_free(tc6->mdiobus);
return ret;
}
return 0;
}
static void oa_tc6_mdiobus_unregister(struct oa_tc6 *tc6)
{
mdiobus_unregister(tc6->mdiobus);
mdiobus_free(tc6->mdiobus);
}
static int oa_tc6_phy_init(struct oa_tc6 *tc6)
{
int ret;
ret = oa_tc6_check_phy_reg_direct_access_capability(tc6);
if (ret) {
netdev_err(tc6->netdev,
"Direct PHY register access is not supported by the MAC-PHY\n");
return ret;
}
ret = oa_tc6_mdiobus_register(tc6);
if (ret)
return ret;
tc6->phydev = phy_find_first(tc6->mdiobus);
if (!tc6->phydev) {
netdev_err(tc6->netdev, "No PHY found\n");
oa_tc6_mdiobus_unregister(tc6);
return -ENODEV;
}
tc6->phydev->is_internal = true;
ret = phy_connect_direct(tc6->netdev, tc6->phydev,
&oa_tc6_handle_link_change,
PHY_INTERFACE_MODE_INTERNAL);
if (ret) {
netdev_err(tc6->netdev, "Can't attach PHY to %s\n",
tc6->mdiobus->id);
oa_tc6_mdiobus_unregister(tc6);
return ret;
}
phy_attached_info(tc6->netdev->phydev);
return 0;
}
static void oa_tc6_phy_exit(struct oa_tc6 *tc6)
{
phy_disconnect(tc6->phydev);
oa_tc6_mdiobus_unregister(tc6);
}
static int oa_tc6_read_status0(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, &regval);
if (ret) {
dev_err(&tc6->spi->dev, "STATUS0 register read failed: %d\n",
ret);
return 0;
}
return regval;
}
static int oa_tc6_sw_reset_macphy(struct oa_tc6 *tc6)
{
u32 regval = RESET_SWRESET;
int ret;
ret = oa_tc6_write_register(tc6, OA_TC6_REG_RESET, regval);
if (ret)
return ret;
/* Poll for soft reset complete for every 1ms until 1s timeout */
ret = readx_poll_timeout(oa_tc6_read_status0, tc6, regval,
regval & STATUS0_RESETC,
STATUS0_RESETC_POLL_DELAY,
STATUS0_RESETC_POLL_TIMEOUT);
if (ret)
return -ENODEV;
/* Clear the reset complete status */
return oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, regval);
}
static int oa_tc6_unmask_macphy_error_interrupts(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_INT_MASK0, &regval);
if (ret)
return ret;
regval &= ~(INT_MASK0_TX_PROTOCOL_ERR_MASK |
INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK |
INT_MASK0_LOSS_OF_FRAME_ERR_MASK |
INT_MASK0_HEADER_ERR_MASK);
return oa_tc6_write_register(tc6, OA_TC6_REG_INT_MASK0, regval);
}
static int oa_tc6_enable_data_transfer(struct oa_tc6 *tc6)
{
u32 value;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, &value);
if (ret)
return ret;
/* Enable configuration synchronization for data transfer */
value |= CONFIG0_SYNC;
return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, value);
}
static void oa_tc6_cleanup_ongoing_rx_skb(struct oa_tc6 *tc6)
{
if (tc6->rx_skb) {
tc6->netdev->stats.rx_dropped++;
kfree_skb(tc6->rx_skb);
tc6->rx_skb = NULL;
}
}
static void oa_tc6_cleanup_ongoing_tx_skb(struct oa_tc6 *tc6)
{
if (tc6->ongoing_tx_skb) {
tc6->netdev->stats.tx_dropped++;
kfree_skb(tc6->ongoing_tx_skb);
tc6->ongoing_tx_skb = NULL;
}
}
static int oa_tc6_process_extended_status(struct oa_tc6 *tc6)
{
u32 value;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, &value);
if (ret) {
netdev_err(tc6->netdev, "STATUS0 register read failed: %d\n",
ret);
return ret;
}
/* Clear the error interrupts status */
ret = oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, value);
if (ret) {
netdev_err(tc6->netdev, "STATUS0 register write failed: %d\n",
ret);
return ret;
}
if (FIELD_GET(STATUS0_RX_BUFFER_OVERFLOW_ERROR, value)) {
tc6->rx_buf_overflow = true;
oa_tc6_cleanup_ongoing_rx_skb(tc6);
net_err_ratelimited("%s: Receive buffer overflow error\n",
tc6->netdev->name);
return -EAGAIN;
}
if (FIELD_GET(STATUS0_TX_PROTOCOL_ERROR, value)) {
netdev_err(tc6->netdev, "Transmit protocol error\n");
return -ENODEV;
}
/* TODO: Currently loss of frame and header errors are treated as
* non-recoverable errors. They will be handled in the next version.
*/
if (FIELD_GET(STATUS0_LOSS_OF_FRAME_ERROR, value)) {
netdev_err(tc6->netdev, "Loss of frame error\n");
return -ENODEV;
}
if (FIELD_GET(STATUS0_HEADER_ERROR, value)) {
netdev_err(tc6->netdev, "Header error\n");
return -ENODEV;
}
return 0;
}
static int oa_tc6_process_rx_chunk_footer(struct oa_tc6 *tc6, u32 footer)
{
/* Process rx chunk footer for the following,
* 1. tx credits
* 2. errors if any from MAC-PHY
* 3. receive chunks available
*/
tc6->tx_credits = FIELD_GET(OA_TC6_DATA_FOOTER_TX_CREDITS, footer);
tc6->rx_chunks_available = FIELD_GET(OA_TC6_DATA_FOOTER_RX_CHUNKS,
footer);
if (FIELD_GET(OA_TC6_DATA_FOOTER_EXTENDED_STS, footer)) {
int ret = oa_tc6_process_extended_status(tc6);
if (ret)
return ret;
}
/* TODO: Currently received header bad and configuration unsync errors
* are treated as non-recoverable errors. They will be handled in the
* next version.
*/
if (FIELD_GET(OA_TC6_DATA_FOOTER_RXD_HEADER_BAD, footer)) {
netdev_err(tc6->netdev, "Rxd header bad error\n");
return -ENODEV;
}
if (!FIELD_GET(OA_TC6_DATA_FOOTER_CONFIG_SYNC, footer)) {
netdev_err(tc6->netdev, "Config unsync error\n");
return -ENODEV;
}
return 0;
}
static void oa_tc6_submit_rx_skb(struct oa_tc6 *tc6)
{
tc6->rx_skb->protocol = eth_type_trans(tc6->rx_skb, tc6->netdev);
tc6->netdev->stats.rx_packets++;
tc6->netdev->stats.rx_bytes += tc6->rx_skb->len;
netif_rx(tc6->rx_skb);
tc6->rx_skb = NULL;
}
static void oa_tc6_update_rx_skb(struct oa_tc6 *tc6, u8 *payload, u8 length)
{
memcpy(skb_put(tc6->rx_skb, length), payload, length);
}
static int oa_tc6_allocate_rx_skb(struct oa_tc6 *tc6)
{
tc6->rx_skb = netdev_alloc_skb_ip_align(tc6->netdev, tc6->netdev->mtu +
ETH_HLEN + ETH_FCS_LEN);
if (!tc6->rx_skb) {
tc6->netdev->stats.rx_dropped++;
return -ENOMEM;
}
return 0;
}
static int oa_tc6_prcs_complete_rx_frame(struct oa_tc6 *tc6, u8 *payload,
u16 size)
{
int ret;
ret = oa_tc6_allocate_rx_skb(tc6);
if (ret)
return ret;
oa_tc6_update_rx_skb(tc6, payload, size);
oa_tc6_submit_rx_skb(tc6);
return 0;
}
static int oa_tc6_prcs_rx_frame_start(struct oa_tc6 *tc6, u8 *payload, u16 size)
{
int ret;
ret = oa_tc6_allocate_rx_skb(tc6);
if (ret)
return ret;
oa_tc6_update_rx_skb(tc6, payload, size);
return 0;
}
static void oa_tc6_prcs_rx_frame_end(struct oa_tc6 *tc6, u8 *payload, u16 size)
{
oa_tc6_update_rx_skb(tc6, payload, size);
oa_tc6_submit_rx_skb(tc6);
}
static void oa_tc6_prcs_ongoing_rx_frame(struct oa_tc6 *tc6, u8 *payload,
u32 footer)
{
oa_tc6_update_rx_skb(tc6, payload, OA_TC6_CHUNK_PAYLOAD_SIZE);
}
static int oa_tc6_prcs_rx_chunk_payload(struct oa_tc6 *tc6, u8 *data,
u32 footer)
{
u8 start_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_START_WORD_OFFSET,
footer) * sizeof(u32);
u8 end_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_END_BYTE_OFFSET,
footer);
bool start_valid = FIELD_GET(OA_TC6_DATA_FOOTER_START_VALID, footer);
bool end_valid = FIELD_GET(OA_TC6_DATA_FOOTER_END_VALID, footer);
u16 size;
/* Restart the new rx frame after receiving rx buffer overflow error */
if (start_valid && tc6->rx_buf_overflow)
tc6->rx_buf_overflow = false;
if (tc6->rx_buf_overflow)
return 0;
/* Process the chunk with complete rx frame */
if (start_valid && end_valid && start_byte_offset < end_byte_offset) {
size = end_byte_offset + 1 - start_byte_offset;
return oa_tc6_prcs_complete_rx_frame(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with only rx frame start */
if (start_valid && !end_valid) {
size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
return oa_tc6_prcs_rx_frame_start(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with only rx frame end */
if (end_valid && !start_valid) {
size = end_byte_offset + 1;
oa_tc6_prcs_rx_frame_end(tc6, data, size);
return 0;
}
/* Process the chunk with previous rx frame end and next rx frame
* start.
*/
if (start_valid && end_valid && start_byte_offset > end_byte_offset) {
/* After rx buffer overflow error received, there might be a
* possibility of getting an end valid of a previously
* incomplete rx frame along with the new rx frame start valid.
*/
if (tc6->rx_skb) {
size = end_byte_offset + 1;
oa_tc6_prcs_rx_frame_end(tc6, data, size);
}
size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
return oa_tc6_prcs_rx_frame_start(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with ongoing rx frame data */
oa_tc6_prcs_ongoing_rx_frame(tc6, data, footer);
return 0;
}
static u32 oa_tc6_get_rx_chunk_footer(struct oa_tc6 *tc6, u16 footer_offset)
{
u8 *rx_buf = tc6->spi_data_rx_buf;
__be32 footer;
footer = *((__be32 *)&rx_buf[footer_offset]);
return be32_to_cpu(footer);
}
static int oa_tc6_process_spi_data_rx_buf(struct oa_tc6 *tc6, u16 length)
{
u16 no_of_rx_chunks = length / OA_TC6_CHUNK_SIZE;
u32 footer;
int ret;
/* All the rx chunks in the receive SPI data buffer are examined here */
for (int i = 0; i < no_of_rx_chunks; i++) {
/* Last 4 bytes in each received chunk consist footer info */
footer = oa_tc6_get_rx_chunk_footer(tc6, i * OA_TC6_CHUNK_SIZE +
OA_TC6_CHUNK_PAYLOAD_SIZE);
ret = oa_tc6_process_rx_chunk_footer(tc6, footer);
if (ret)
return ret;
/* If there is a data valid chunks then process it for the
* information needed to determine the validity and the location
* of the receive frame data.
*/
if (FIELD_GET(OA_TC6_DATA_FOOTER_DATA_VALID, footer)) {
u8 *payload = tc6->spi_data_rx_buf + i *
OA_TC6_CHUNK_SIZE;
ret = oa_tc6_prcs_rx_chunk_payload(tc6, payload,
footer);
if (ret)
return ret;
}
}
return 0;
}
static __be32 oa_tc6_prepare_data_header(bool data_valid, bool start_valid,
bool end_valid, u8 end_byte_offset)
{
u32 header = FIELD_PREP(OA_TC6_DATA_HEADER_DATA_NOT_CTRL,
OA_TC6_DATA_HEADER) |
FIELD_PREP(OA_TC6_DATA_HEADER_DATA_VALID, data_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_START_VALID, start_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_END_VALID, end_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_END_BYTE_OFFSET,
end_byte_offset);
header |= FIELD_PREP(OA_TC6_DATA_HEADER_PARITY,
oa_tc6_get_parity(header));
return cpu_to_be32(header);
}
static void oa_tc6_add_tx_skb_to_spi_buf(struct oa_tc6 *tc6)
{
enum oa_tc6_data_end_valid_info end_valid = OA_TC6_DATA_END_INVALID;
__be32 *tx_buf = tc6->spi_data_tx_buf + tc6->spi_data_tx_buf_offset;
u16 remaining_len = tc6->ongoing_tx_skb->len - tc6->tx_skb_offset;
u8 *tx_skb_data = tc6->ongoing_tx_skb->data + tc6->tx_skb_offset;
enum oa_tc6_data_start_valid_info start_valid;
u8 end_byte_offset = 0;
u16 length_to_copy;
/* Initial value is assigned here to avoid more than 80 characters in
* the declaration place.
*/
start_valid = OA_TC6_DATA_START_INVALID;
/* Set start valid if the current tx chunk contains the start of the tx
* ethernet frame.
*/
if (!tc6->tx_skb_offset)
start_valid = OA_TC6_DATA_START_VALID;
/* If the remaining tx skb length is more than the chunk payload size of
* 64 bytes then copy only 64 bytes and leave the ongoing tx skb for
* next tx chunk.
*/
length_to_copy = min_t(u16, remaining_len, OA_TC6_CHUNK_PAYLOAD_SIZE);
/* Copy the tx skb data to the tx chunk payload buffer */
memcpy(tx_buf + 1, tx_skb_data, length_to_copy);
tc6->tx_skb_offset += length_to_copy;
/* Set end valid if the current tx chunk contains the end of the tx
* ethernet frame.
*/
if (tc6->ongoing_tx_skb->len == tc6->tx_skb_offset) {
end_valid = OA_TC6_DATA_END_VALID;
end_byte_offset = length_to_copy - 1;
tc6->tx_skb_offset = 0;
tc6->netdev->stats.tx_bytes += tc6->ongoing_tx_skb->len;
tc6->netdev->stats.tx_packets++;
kfree_skb(tc6->ongoing_tx_skb);
tc6->ongoing_tx_skb = NULL;
}
*tx_buf = oa_tc6_prepare_data_header(OA_TC6_DATA_VALID, start_valid,
end_valid, end_byte_offset);
tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
}
static u16 oa_tc6_prepare_spi_tx_buf_for_tx_skbs(struct oa_tc6 *tc6)
{
u16 used_tx_credits;
/* Get tx skbs and convert them into tx chunks based on the tx credits
* available.
*/
for (used_tx_credits = 0; used_tx_credits < tc6->tx_credits;
used_tx_credits++) {
if (!tc6->ongoing_tx_skb) {
tc6->ongoing_tx_skb = tc6->waiting_tx_skb;
tc6->waiting_tx_skb = NULL;
}
if (!tc6->ongoing_tx_skb)
break;
oa_tc6_add_tx_skb_to_spi_buf(tc6);
}
return used_tx_credits * OA_TC6_CHUNK_SIZE;
}
static void oa_tc6_add_empty_chunks_to_spi_buf(struct oa_tc6 *tc6,
u16 needed_empty_chunks)
{
__be32 header;
header = oa_tc6_prepare_data_header(OA_TC6_DATA_INVALID,
OA_TC6_DATA_START_INVALID,
OA_TC6_DATA_END_INVALID, 0);
while (needed_empty_chunks--) {
__be32 *tx_buf = tc6->spi_data_tx_buf +
tc6->spi_data_tx_buf_offset;
*tx_buf = header;
tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
}
}
static u16 oa_tc6_prepare_spi_tx_buf_for_rx_chunks(struct oa_tc6 *tc6, u16 len)
{
u16 tx_chunks = len / OA_TC6_CHUNK_SIZE;
u16 needed_empty_chunks;
/* If there are more chunks to receive than to transmit, we need to add
* enough empty tx chunks to allow the reception of the excess rx
* chunks.
*/
if (tx_chunks >= tc6->rx_chunks_available)
return len;
needed_empty_chunks = tc6->rx_chunks_available - tx_chunks;
oa_tc6_add_empty_chunks_to_spi_buf(tc6, needed_empty_chunks);
return needed_empty_chunks * OA_TC6_CHUNK_SIZE + len;
}
static int oa_tc6_try_spi_transfer(struct oa_tc6 *tc6)
{
int ret;
while (true) {
u16 spi_len = 0;
tc6->spi_data_tx_buf_offset = 0;
if (tc6->ongoing_tx_skb || tc6->waiting_tx_skb)
spi_len = oa_tc6_prepare_spi_tx_buf_for_tx_skbs(tc6);
spi_len = oa_tc6_prepare_spi_tx_buf_for_rx_chunks(tc6, spi_len);
if (tc6->int_flag) {
tc6->int_flag = false;
if (spi_len == 0) {
oa_tc6_add_empty_chunks_to_spi_buf(tc6, 1);
spi_len = OA_TC6_CHUNK_SIZE;
}
}
if (spi_len == 0)
break;
ret = oa_tc6_spi_transfer(tc6, OA_TC6_DATA_HEADER, spi_len);
if (ret) {
netdev_err(tc6->netdev, "SPI data transfer failed: %d\n",
ret);
return ret;
}
ret = oa_tc6_process_spi_data_rx_buf(tc6, spi_len);
if (ret) {
if (ret == -EAGAIN)
continue;
oa_tc6_cleanup_ongoing_tx_skb(tc6);
oa_tc6_cleanup_ongoing_rx_skb(tc6);
netdev_err(tc6->netdev, "Device error: %d\n", ret);
return ret;
}
if (!tc6->waiting_tx_skb && netif_queue_stopped(tc6->netdev))
netif_wake_queue(tc6->netdev);
}
return 0;
}
static int oa_tc6_spi_thread_handler(void *data)
{
struct oa_tc6 *tc6 = data;
int ret;
while (likely(!kthread_should_stop())) {
/* This kthread will be waken up if there is a tx skb or mac-phy
* interrupt to perform spi transfer with tx chunks.
*/
wait_event_interruptible(tc6->spi_wq, tc6->waiting_tx_skb ||
tc6->int_flag ||
kthread_should_stop());
if (kthread_should_stop())
break;
ret = oa_tc6_try_spi_transfer(tc6);
if (ret)
return ret;
}
return 0;
}
static int oa_tc6_update_buffer_status_from_register(struct oa_tc6 *tc6)
{
u32 value;
int ret;
/* Initially tx credits and rx chunks available to be updated from the
* register as there is no data transfer performed yet. Later they will
* be updated from the rx footer.
*/
ret = oa_tc6_read_register(tc6, OA_TC6_REG_BUFFER_STATUS, &value);
if (ret)
return ret;
tc6->tx_credits = FIELD_GET(BUFFER_STATUS_TX_CREDITS_AVAILABLE, value);
tc6->rx_chunks_available = FIELD_GET(BUFFER_STATUS_RX_CHUNKS_AVAILABLE,
value);
return 0;
}
static irqreturn_t oa_tc6_macphy_isr(int irq, void *data)
{
struct oa_tc6 *tc6 = data;
/* MAC-PHY interrupt can occur for the following reasons.
* - availability of tx credits if it was 0 before and not reported in
* the previous rx footer.
* - availability of rx chunks if it was 0 before and not reported in
* the previous rx footer.
* - extended status event not reported in the previous rx footer.
*/
tc6->int_flag = true;
/* Wake spi kthread to perform spi transfer */
wake_up_interruptible(&tc6->spi_wq);
return IRQ_HANDLED;
}
/**
* oa_tc6_zero_align_receive_frame_enable - function to enable zero align
* receive frame feature.
* @tc6: oa_tc6 struct.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_zero_align_receive_frame_enable(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, &regval);
if (ret)
return ret;
/* Set Zero-Align Receive Frame Enable */
regval |= CONFIG0_ZARFE_ENABLE;
return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, regval);
}
EXPORT_SYMBOL_GPL(oa_tc6_zero_align_receive_frame_enable);
/**
* oa_tc6_start_xmit - function for sending the tx skb which consists ethernet
* frame.
* @tc6: oa_tc6 struct.
* @skb: socket buffer in which the ethernet frame is stored.
*
* Return: NETDEV_TX_OK if the transmit ethernet frame skb added in the tx_skb_q
* otherwise returns NETDEV_TX_BUSY.
*/
netdev_tx_t oa_tc6_start_xmit(struct oa_tc6 *tc6, struct sk_buff *skb)
{
if (tc6->waiting_tx_skb) {
netif_stop_queue(tc6->netdev);
return NETDEV_TX_BUSY;
}
if (skb_linearize(skb)) {
dev_kfree_skb_any(skb);
tc6->netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
tc6->waiting_tx_skb = skb;
/* Wake spi kthread to perform spi transfer */
wake_up_interruptible(&tc6->spi_wq);
return NETDEV_TX_OK;
}
EXPORT_SYMBOL_GPL(oa_tc6_start_xmit);
/**
* oa_tc6_init - allocates and initializes oa_tc6 structure.
* @spi: device with which data will be exchanged.
* @netdev: network device interface structure.
*
* Return: pointer reference to the oa_tc6 structure if the MAC-PHY
* initialization is successful otherwise NULL.
*/
struct oa_tc6 *oa_tc6_init(struct spi_device *spi, struct net_device *netdev)
{
struct oa_tc6 *tc6;
int ret;
tc6 = devm_kzalloc(&spi->dev, sizeof(*tc6), GFP_KERNEL);
if (!tc6)
return NULL;
tc6->spi = spi;
tc6->netdev = netdev;
SET_NETDEV_DEV(netdev, &spi->dev);
mutex_init(&tc6->spi_ctrl_lock);
/* Set the SPI controller to pump at realtime priority */
tc6->spi->rt = true;
spi_setup(tc6->spi);
tc6->spi_ctrl_tx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_CTRL_SPI_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_ctrl_tx_buf)
return NULL;
tc6->spi_ctrl_rx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_CTRL_SPI_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_ctrl_rx_buf)
return NULL;
tc6->spi_data_tx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_SPI_DATA_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_data_tx_buf)
return NULL;
tc6->spi_data_rx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_SPI_DATA_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_data_rx_buf)
return NULL;
ret = oa_tc6_sw_reset_macphy(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC-PHY software reset failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_unmask_macphy_error_interrupts(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC-PHY error interrupts unmask failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_phy_init(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC internal PHY initialization failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_enable_data_transfer(tc6);
if (ret) {
dev_err(&tc6->spi->dev, "Failed to enable data transfer: %d\n",
ret);
goto phy_exit;
}
ret = oa_tc6_update_buffer_status_from_register(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"Failed to update buffer status: %d\n", ret);
goto phy_exit;
}
init_waitqueue_head(&tc6->spi_wq);
tc6->spi_thread = kthread_run(oa_tc6_spi_thread_handler, tc6,
"oa-tc6-spi-thread");
if (IS_ERR(tc6->spi_thread)) {
dev_err(&tc6->spi->dev, "Failed to create SPI thread\n");
goto phy_exit;
}
sched_set_fifo(tc6->spi_thread);
ret = devm_request_irq(&tc6->spi->dev, tc6->spi->irq, oa_tc6_macphy_isr,
IRQF_TRIGGER_FALLING, dev_name(&tc6->spi->dev),
tc6);
if (ret) {
dev_err(&tc6->spi->dev, "Failed to request macphy isr %d\n",
ret);
goto kthread_stop;
}
/* oa_tc6_sw_reset_macphy() function resets and clears the MAC-PHY reset
* complete status. IRQ is also asserted on reset completion and it is
* remain asserted until MAC-PHY receives a data chunk. So performing an
* empty data chunk transmission will deassert the IRQ. Refer section
* 7.7 and 9.2.8.8 in the OPEN Alliance specification for more details.
*/
tc6->int_flag = true;
wake_up_interruptible(&tc6->spi_wq);
return tc6;
kthread_stop:
kthread_stop(tc6->spi_thread);
phy_exit:
oa_tc6_phy_exit(tc6);
return NULL;
}
EXPORT_SYMBOL_GPL(oa_tc6_init);
/**
* oa_tc6_exit - exit function.
* @tc6: oa_tc6 struct.
*/
void oa_tc6_exit(struct oa_tc6 *tc6)
{
oa_tc6_phy_exit(tc6);
kthread_stop(tc6->spi_thread);
dev_kfree_skb_any(tc6->ongoing_tx_skb);
dev_kfree_skb_any(tc6->waiting_tx_skb);
dev_kfree_skb_any(tc6->rx_skb);
}
EXPORT_SYMBOL_GPL(oa_tc6_exit);
MODULE_DESCRIPTION("OPEN Alliance 10BASE‑T1x MAC‑PHY Serial Interface Lib");
MODULE_AUTHOR("Parthiban Veerasooran <parthiban.veerasooran@microchip.com>");
MODULE_LICENSE("GPL");