blob: 77b35abc6f6fa43a2cd88e020a3d6f6330bc22d8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* This is the driver for the GMAC on-chip Ethernet controller for ST SoCs.
* DWC Ether MAC version 4.xx has been used for developing this code.
*
* This contains the functions to handle the dma.
*
* Copyright (C) 2015 STMicroelectronics Ltd
*
* Author: Alexandre Torgue <alexandre.torgue@st.com>
*/
#include <linux/io.h>
#include "dwmac4.h"
#include "dwmac4_dma.h"
#include "stmmac.h"
static void dwmac4_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi)
{
u32 value = readl(ioaddr + DMA_SYS_BUS_MODE);
int i;
pr_info("dwmac4: Master AXI performs %s burst length\n",
(value & DMA_SYS_BUS_FB) ? "fixed" : "any");
if (axi->axi_lpi_en)
value |= DMA_AXI_EN_LPI;
if (axi->axi_xit_frm)
value |= DMA_AXI_LPI_XIT_FRM;
value &= ~DMA_AXI_WR_OSR_LMT;
value |= (axi->axi_wr_osr_lmt & DMA_AXI_OSR_MAX) <<
DMA_AXI_WR_OSR_LMT_SHIFT;
value &= ~DMA_AXI_RD_OSR_LMT;
value |= (axi->axi_rd_osr_lmt & DMA_AXI_OSR_MAX) <<
DMA_AXI_RD_OSR_LMT_SHIFT;
/* Depending on the UNDEF bit the Master AXI will perform any burst
* length according to the BLEN programmed (by default all BLEN are
* set).
*/
for (i = 0; i < AXI_BLEN; i++) {
switch (axi->axi_blen[i]) {
case 256:
value |= DMA_AXI_BLEN256;
break;
case 128:
value |= DMA_AXI_BLEN128;
break;
case 64:
value |= DMA_AXI_BLEN64;
break;
case 32:
value |= DMA_AXI_BLEN32;
break;
case 16:
value |= DMA_AXI_BLEN16;
break;
case 8:
value |= DMA_AXI_BLEN8;
break;
case 4:
value |= DMA_AXI_BLEN4;
break;
}
}
writel(value, ioaddr + DMA_SYS_BUS_MODE);
}
static void dwmac4_dma_init_rx_chan(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
dma_addr_t dma_rx_phy, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value;
u32 rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl;
value = readl(ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, chan));
value = value | (rxpbl << DMA_BUS_MODE_RPBL_SHIFT);
writel(value, ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, chan));
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && likely(dma_cfg->eame))
writel(upper_32_bits(dma_rx_phy),
ioaddr + DMA_CHAN_RX_BASE_ADDR_HI(dwmac4_addrs, chan));
writel(lower_32_bits(dma_rx_phy),
ioaddr + DMA_CHAN_RX_BASE_ADDR(dwmac4_addrs, chan));
}
static void dwmac4_dma_init_tx_chan(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
dma_addr_t dma_tx_phy, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value;
u32 txpbl = dma_cfg->txpbl ?: dma_cfg->pbl;
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
value = value | (txpbl << DMA_BUS_MODE_PBL_SHIFT);
/* Enable OSP to get best performance */
value |= DMA_CONTROL_OSP;
writel(value, ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && likely(dma_cfg->eame))
writel(upper_32_bits(dma_tx_phy),
ioaddr + DMA_CHAN_TX_BASE_ADDR_HI(dwmac4_addrs, chan));
writel(lower_32_bits(dma_tx_phy),
ioaddr + DMA_CHAN_TX_BASE_ADDR(dwmac4_addrs, chan));
}
static void dwmac4_dma_init_channel(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value;
/* common channel control register config */
value = readl(ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
if (dma_cfg->pblx8)
value = value | DMA_BUS_MODE_PBL;
writel(value, ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
/* Mask interrupts by writing to CSR7 */
writel(DMA_CHAN_INTR_DEFAULT_MASK,
ioaddr + DMA_CHAN_INTR_ENA(dwmac4_addrs, chan));
}
static void dwmac410_dma_init_channel(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value;
/* common channel control register config */
value = readl(ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
if (dma_cfg->pblx8)
value = value | DMA_BUS_MODE_PBL;
writel(value, ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
/* Mask interrupts by writing to CSR7 */
writel(DMA_CHAN_INTR_DEFAULT_MASK_4_10,
ioaddr + DMA_CHAN_INTR_ENA(dwmac4_addrs, chan));
}
static void dwmac4_dma_init(void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg)
{
u32 value = readl(ioaddr + DMA_SYS_BUS_MODE);
/* Set the Fixed burst mode */
if (dma_cfg->fixed_burst)
value |= DMA_SYS_BUS_FB;
/* Mixed Burst has no effect when fb is set */
if (dma_cfg->mixed_burst)
value |= DMA_SYS_BUS_MB;
if (dma_cfg->aal)
value |= DMA_SYS_BUS_AAL;
if (dma_cfg->eame)
value |= DMA_SYS_BUS_EAME;
writel(value, ioaddr + DMA_SYS_BUS_MODE);
value = readl(ioaddr + DMA_BUS_MODE);
if (dma_cfg->multi_msi_en) {
value &= ~DMA_BUS_MODE_INTM_MASK;
value |= (DMA_BUS_MODE_INTM_MODE1 << DMA_BUS_MODE_INTM_SHIFT);
}
if (dma_cfg->dche)
value |= DMA_BUS_MODE_DCHE;
writel(value, ioaddr + DMA_BUS_MODE);
}
static void _dwmac4_dump_dma_regs(struct stmmac_priv *priv,
void __iomem *ioaddr, u32 channel,
u32 *reg_space)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
const struct dwmac4_addrs *default_addrs = NULL;
/* Purposely save the registers in the "normal" layout, regardless of
* platform modifications, to keep reg_space size constant
*/
reg_space[DMA_CHAN_CONTROL(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_CONTROL(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_CONTROL(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_BASE_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_BASE_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_BASE_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_BASE_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_BASE_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_BASE_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_BASE_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_BASE_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_END_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_END_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_END_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_END_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_RING_LEN(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_RING_LEN(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_RING_LEN(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_RING_LEN(dwmac4_addrs, channel));
reg_space[DMA_CHAN_INTR_ENA(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_INTR_ENA(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_WATCHDOG(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_WATCHDOG(dwmac4_addrs, channel));
reg_space[DMA_CHAN_SLOT_CTRL_STATUS(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_SLOT_CTRL_STATUS(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_TX_DESC(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_TX_DESC(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_DESC(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_DESC(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_TX_BUF_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_TX_BUF_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_BUF_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_BUF_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_STATUS(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_STATUS(dwmac4_addrs, channel));
}
static void dwmac4_dump_dma_regs(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 *reg_space)
{
int i;
for (i = 0; i < DMA_CHANNEL_NB_MAX; i++)
_dwmac4_dump_dma_regs(priv, ioaddr, i, reg_space);
}
static void dwmac4_rx_watchdog(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 riwt, u32 queue)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
writel(riwt, ioaddr + DMA_CHAN_RX_WATCHDOG(dwmac4_addrs, queue));
}
static void dwmac4_dma_rx_chan_op_mode(struct stmmac_priv *priv,
void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
unsigned int rqs = fifosz / 256 - 1;
u32 mtl_rx_op;
mtl_rx_op = readl(ioaddr + MTL_CHAN_RX_OP_MODE(dwmac4_addrs, channel));
if (mode == SF_DMA_MODE) {
pr_debug("GMAC: enable RX store and forward mode\n");
mtl_rx_op |= MTL_OP_MODE_RSF;
} else {
pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode);
mtl_rx_op &= ~MTL_OP_MODE_RSF;
mtl_rx_op &= MTL_OP_MODE_RTC_MASK;
if (mode <= 32)
mtl_rx_op |= MTL_OP_MODE_RTC_32;
else if (mode <= 64)
mtl_rx_op |= MTL_OP_MODE_RTC_64;
else if (mode <= 96)
mtl_rx_op |= MTL_OP_MODE_RTC_96;
else
mtl_rx_op |= MTL_OP_MODE_RTC_128;
}
mtl_rx_op &= ~MTL_OP_MODE_RQS_MASK;
mtl_rx_op |= rqs << MTL_OP_MODE_RQS_SHIFT;
/* Enable flow control only if each channel gets 4 KiB or more FIFO and
* only if channel is not an AVB channel.
*/
if ((fifosz >= 4096) && (qmode != MTL_QUEUE_AVB)) {
unsigned int rfd, rfa;
mtl_rx_op |= MTL_OP_MODE_EHFC;
/* Set Threshold for Activating Flow Control to min 2 frames,
* i.e. 1500 * 2 = 3000 bytes.
*
* Set Threshold for Deactivating Flow Control to min 1 frame,
* i.e. 1500 bytes.
*/
switch (fifosz) {
case 4096:
/* This violates the above formula because of FIFO size
* limit therefore overflow may occur in spite of this.
*/
rfd = 0x03; /* Full-2.5K */
rfa = 0x01; /* Full-1.5K */
break;
default:
rfd = 0x07; /* Full-4.5K */
rfa = 0x04; /* Full-3K */
break;
}
mtl_rx_op &= ~MTL_OP_MODE_RFD_MASK;
mtl_rx_op |= rfd << MTL_OP_MODE_RFD_SHIFT;
mtl_rx_op &= ~MTL_OP_MODE_RFA_MASK;
mtl_rx_op |= rfa << MTL_OP_MODE_RFA_SHIFT;
}
writel(mtl_rx_op, ioaddr + MTL_CHAN_RX_OP_MODE(dwmac4_addrs, channel));
}
static void dwmac4_dma_tx_chan_op_mode(struct stmmac_priv *priv,
void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(dwmac4_addrs,
channel));
unsigned int tqs = fifosz / 256 - 1;
if (mode == SF_DMA_MODE) {
pr_debug("GMAC: enable TX store and forward mode\n");
/* Transmit COE type 2 cannot be done in cut-through mode. */
mtl_tx_op |= MTL_OP_MODE_TSF;
} else {
pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode);
mtl_tx_op &= ~MTL_OP_MODE_TSF;
mtl_tx_op &= MTL_OP_MODE_TTC_MASK;
/* Set the transmit threshold */
if (mode <= 32)
mtl_tx_op |= MTL_OP_MODE_TTC_32;
else if (mode <= 64)
mtl_tx_op |= MTL_OP_MODE_TTC_64;
else if (mode <= 96)
mtl_tx_op |= MTL_OP_MODE_TTC_96;
else if (mode <= 128)
mtl_tx_op |= MTL_OP_MODE_TTC_128;
else if (mode <= 192)
mtl_tx_op |= MTL_OP_MODE_TTC_192;
else if (mode <= 256)
mtl_tx_op |= MTL_OP_MODE_TTC_256;
else if (mode <= 384)
mtl_tx_op |= MTL_OP_MODE_TTC_384;
else
mtl_tx_op |= MTL_OP_MODE_TTC_512;
}
/* For an IP with DWC_EQOS_NUM_TXQ == 1, the fields TXQEN and TQS are RO
* with reset values: TXQEN on, TQS == DWC_EQOS_TXFIFO_SIZE.
* For an IP with DWC_EQOS_NUM_TXQ > 1, the fields TXQEN and TQS are R/W
* with reset values: TXQEN off, TQS 256 bytes.
*
* TXQEN must be written for multi-channel operation and TQS must
* reflect the available fifo size per queue (total fifo size / number
* of enabled queues).
*/
mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK;
if (qmode != MTL_QUEUE_AVB)
mtl_tx_op |= MTL_OP_MODE_TXQEN;
else
mtl_tx_op |= MTL_OP_MODE_TXQEN_AV;
mtl_tx_op &= ~MTL_OP_MODE_TQS_MASK;
mtl_tx_op |= tqs << MTL_OP_MODE_TQS_SHIFT;
writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(dwmac4_addrs, channel));
}
static int dwmac4_get_hw_feature(void __iomem *ioaddr,
struct dma_features *dma_cap)
{
u32 hw_cap = readl(ioaddr + GMAC_HW_FEATURE0);
/* MAC HW feature0 */
dma_cap->mbps_10_100 = (hw_cap & GMAC_HW_FEAT_MIISEL);
dma_cap->mbps_1000 = (hw_cap & GMAC_HW_FEAT_GMIISEL) >> 1;
dma_cap->half_duplex = (hw_cap & GMAC_HW_FEAT_HDSEL) >> 2;
dma_cap->vlhash = (hw_cap & GMAC_HW_FEAT_VLHASH) >> 4;
dma_cap->multi_addr = (hw_cap & GMAC_HW_FEAT_ADDMAC) >> 18;
dma_cap->pcs = (hw_cap & GMAC_HW_FEAT_PCSSEL) >> 3;
dma_cap->sma_mdio = (hw_cap & GMAC_HW_FEAT_SMASEL) >> 5;
dma_cap->pmt_remote_wake_up = (hw_cap & GMAC_HW_FEAT_RWKSEL) >> 6;
dma_cap->pmt_magic_frame = (hw_cap & GMAC_HW_FEAT_MGKSEL) >> 7;
/* MMC */
dma_cap->rmon = (hw_cap & GMAC_HW_FEAT_MMCSEL) >> 8;
/* IEEE 1588-2008 */
dma_cap->atime_stamp = (hw_cap & GMAC_HW_FEAT_TSSEL) >> 12;
/* 802.3az - Energy-Efficient Ethernet (EEE) */
dma_cap->eee = (hw_cap & GMAC_HW_FEAT_EEESEL) >> 13;
/* TX and RX csum */
dma_cap->tx_coe = (hw_cap & GMAC_HW_FEAT_TXCOSEL) >> 14;
dma_cap->rx_coe = (hw_cap & GMAC_HW_FEAT_RXCOESEL) >> 16;
dma_cap->vlins = (hw_cap & GMAC_HW_FEAT_SAVLANINS) >> 27;
dma_cap->arpoffsel = (hw_cap & GMAC_HW_FEAT_ARPOFFSEL) >> 9;
/* MAC HW feature1 */
hw_cap = readl(ioaddr + GMAC_HW_FEATURE1);
dma_cap->l3l4fnum = (hw_cap & GMAC_HW_FEAT_L3L4FNUM) >> 27;
dma_cap->hash_tb_sz = (hw_cap & GMAC_HW_HASH_TB_SZ) >> 24;
dma_cap->av = (hw_cap & GMAC_HW_FEAT_AVSEL) >> 20;
dma_cap->tsoen = (hw_cap & GMAC_HW_TSOEN) >> 18;
dma_cap->sphen = (hw_cap & GMAC_HW_FEAT_SPHEN) >> 17;
dma_cap->addr64 = (hw_cap & GMAC_HW_ADDR64) >> 14;
switch (dma_cap->addr64) {
case 0:
dma_cap->addr64 = 32;
break;
case 1:
dma_cap->addr64 = 40;
break;
case 2:
dma_cap->addr64 = 48;
break;
default:
dma_cap->addr64 = 32;
break;
}
/* RX and TX FIFO sizes are encoded as log2(n / 128). Undo that by
* shifting and store the sizes in bytes.
*/
dma_cap->tx_fifo_size = 128 << ((hw_cap & GMAC_HW_TXFIFOSIZE) >> 6);
dma_cap->rx_fifo_size = 128 << ((hw_cap & GMAC_HW_RXFIFOSIZE) >> 0);
/* MAC HW feature2 */
hw_cap = readl(ioaddr + GMAC_HW_FEATURE2);
/* TX and RX number of channels */
dma_cap->number_rx_channel =
((hw_cap & GMAC_HW_FEAT_RXCHCNT) >> 12) + 1;
dma_cap->number_tx_channel =
((hw_cap & GMAC_HW_FEAT_TXCHCNT) >> 18) + 1;
/* TX and RX number of queues */
dma_cap->number_rx_queues =
((hw_cap & GMAC_HW_FEAT_RXQCNT) >> 0) + 1;
dma_cap->number_tx_queues =
((hw_cap & GMAC_HW_FEAT_TXQCNT) >> 6) + 1;
/* PPS output */
dma_cap->pps_out_num = (hw_cap & GMAC_HW_FEAT_PPSOUTNUM) >> 24;
/* IEEE 1588-2002 */
dma_cap->time_stamp = 0;
/* Number of Auxiliary Snapshot Inputs */
dma_cap->aux_snapshot_n = (hw_cap & GMAC_HW_FEAT_AUXSNAPNUM) >> 28;
/* MAC HW feature3 */
hw_cap = readl(ioaddr + GMAC_HW_FEATURE3);
/* 5.10 Features */
dma_cap->asp = (hw_cap & GMAC_HW_FEAT_ASP) >> 28;
dma_cap->tbssel = (hw_cap & GMAC_HW_FEAT_TBSSEL) >> 27;
dma_cap->fpesel = (hw_cap & GMAC_HW_FEAT_FPESEL) >> 26;
dma_cap->estwid = (hw_cap & GMAC_HW_FEAT_ESTWID) >> 20;
dma_cap->estdep = (hw_cap & GMAC_HW_FEAT_ESTDEP) >> 17;
dma_cap->estsel = (hw_cap & GMAC_HW_FEAT_ESTSEL) >> 16;
dma_cap->frpes = (hw_cap & GMAC_HW_FEAT_FRPES) >> 13;
dma_cap->frpbs = (hw_cap & GMAC_HW_FEAT_FRPBS) >> 11;
dma_cap->frpsel = (hw_cap & GMAC_HW_FEAT_FRPSEL) >> 10;
dma_cap->dvlan = (hw_cap & GMAC_HW_FEAT_DVLAN) >> 5;
return 0;
}
/* Enable/disable TSO feature and set MSS */
static void dwmac4_enable_tso(struct stmmac_priv *priv, void __iomem *ioaddr,
bool en, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value;
if (en) {
/* enable TSO */
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
writel(value | DMA_CONTROL_TSE,
ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
} else {
/* enable TSO */
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
writel(value & ~DMA_CONTROL_TSE,
ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
}
}
static void dwmac4_qmode(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 channel, u8 qmode)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(dwmac4_addrs,
channel));
mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK;
if (qmode != MTL_QUEUE_AVB)
mtl_tx_op |= MTL_OP_MODE_TXQEN;
else
mtl_tx_op |= MTL_OP_MODE_TXQEN_AV;
writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(dwmac4_addrs, channel));
}
static void dwmac4_set_bfsize(struct stmmac_priv *priv, void __iomem *ioaddr,
int bfsize, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value = readl(ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, chan));
value &= ~DMA_RBSZ_MASK;
value |= (bfsize << DMA_RBSZ_SHIFT) & DMA_RBSZ_MASK;
writel(value, ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, chan));
}
static void dwmac4_enable_sph(struct stmmac_priv *priv, void __iomem *ioaddr,
bool en, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value = readl(ioaddr + GMAC_EXT_CONFIG);
value &= ~GMAC_CONFIG_HDSMS;
value |= GMAC_CONFIG_HDSMS_256; /* Segment max 256 bytes */
writel(value, ioaddr + GMAC_EXT_CONFIG);
value = readl(ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
if (en)
value |= DMA_CONTROL_SPH;
else
value &= ~DMA_CONTROL_SPH;
writel(value, ioaddr + DMA_CHAN_CONTROL(dwmac4_addrs, chan));
}
static int dwmac4_enable_tbs(struct stmmac_priv *priv, void __iomem *ioaddr,
bool en, u32 chan)
{
const struct dwmac4_addrs *dwmac4_addrs = priv->plat->dwmac4_addrs;
u32 value = readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
if (en)
value |= DMA_CONTROL_EDSE;
else
value &= ~DMA_CONTROL_EDSE;
writel(value, ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, chan));
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs,
chan)) & DMA_CONTROL_EDSE;
if (en && !value)
return -EIO;
writel(DMA_TBS_DEF_FTOS, ioaddr + DMA_TBS_CTRL);
return 0;
}
const struct stmmac_dma_ops dwmac4_dma_ops = {
.reset = dwmac4_dma_reset,
.init = dwmac4_dma_init,
.init_chan = dwmac4_dma_init_channel,
.init_rx_chan = dwmac4_dma_init_rx_chan,
.init_tx_chan = dwmac4_dma_init_tx_chan,
.axi = dwmac4_dma_axi,
.dump_regs = dwmac4_dump_dma_regs,
.dma_rx_mode = dwmac4_dma_rx_chan_op_mode,
.dma_tx_mode = dwmac4_dma_tx_chan_op_mode,
.enable_dma_irq = dwmac4_enable_dma_irq,
.disable_dma_irq = dwmac4_disable_dma_irq,
.start_tx = dwmac4_dma_start_tx,
.stop_tx = dwmac4_dma_stop_tx,
.start_rx = dwmac4_dma_start_rx,
.stop_rx = dwmac4_dma_stop_rx,
.dma_interrupt = dwmac4_dma_interrupt,
.get_hw_feature = dwmac4_get_hw_feature,
.rx_watchdog = dwmac4_rx_watchdog,
.set_rx_ring_len = dwmac4_set_rx_ring_len,
.set_tx_ring_len = dwmac4_set_tx_ring_len,
.set_rx_tail_ptr = dwmac4_set_rx_tail_ptr,
.set_tx_tail_ptr = dwmac4_set_tx_tail_ptr,
.enable_tso = dwmac4_enable_tso,
.qmode = dwmac4_qmode,
.set_bfsize = dwmac4_set_bfsize,
.enable_sph = dwmac4_enable_sph,
};
const struct stmmac_dma_ops dwmac410_dma_ops = {
.reset = dwmac4_dma_reset,
.init = dwmac4_dma_init,
.init_chan = dwmac410_dma_init_channel,
.init_rx_chan = dwmac4_dma_init_rx_chan,
.init_tx_chan = dwmac4_dma_init_tx_chan,
.axi = dwmac4_dma_axi,
.dump_regs = dwmac4_dump_dma_regs,
.dma_rx_mode = dwmac4_dma_rx_chan_op_mode,
.dma_tx_mode = dwmac4_dma_tx_chan_op_mode,
.enable_dma_irq = dwmac410_enable_dma_irq,
.disable_dma_irq = dwmac4_disable_dma_irq,
.start_tx = dwmac4_dma_start_tx,
.stop_tx = dwmac4_dma_stop_tx,
.start_rx = dwmac4_dma_start_rx,
.stop_rx = dwmac4_dma_stop_rx,
.dma_interrupt = dwmac4_dma_interrupt,
.get_hw_feature = dwmac4_get_hw_feature,
.rx_watchdog = dwmac4_rx_watchdog,
.set_rx_ring_len = dwmac4_set_rx_ring_len,
.set_tx_ring_len = dwmac4_set_tx_ring_len,
.set_rx_tail_ptr = dwmac4_set_rx_tail_ptr,
.set_tx_tail_ptr = dwmac4_set_tx_tail_ptr,
.enable_tso = dwmac4_enable_tso,
.qmode = dwmac4_qmode,
.set_bfsize = dwmac4_set_bfsize,
.enable_sph = dwmac4_enable_sph,
.enable_tbs = dwmac4_enable_tbs,
};