blob: c7165e757842be758b23b70d915fe55b204b7f67 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2019-2020 Realtek Corporation
*/
#include "chan.h"
#include "coex.h"
#include "debug.h"
#include "fw.h"
#include "mac.h"
#include "phy.h"
#include "ps.h"
#include "reg.h"
#include "sar.h"
#include "txrx.h"
#include "util.h"
static u32 rtw89_phy0_phy1_offset(struct rtw89_dev *rtwdev, u32 addr)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
return phy->phy0_phy1_offset(rtwdev, addr);
}
static u16 get_max_amsdu_len(struct rtw89_dev *rtwdev,
const struct rtw89_ra_report *report)
{
u32 bit_rate = report->bit_rate;
/* lower than ofdm, do not aggregate */
if (bit_rate < 550)
return 1;
/* avoid AMSDU for legacy rate */
if (report->might_fallback_legacy)
return 1;
/* lower than 20M vht 2ss mcs8, make it small */
if (bit_rate < 1800)
return 1200;
/* lower than 40M vht 2ss mcs9, make it medium */
if (bit_rate < 4000)
return 2600;
/* not yet 80M vht 2ss mcs8/9, make it twice regular packet size */
if (bit_rate < 7000)
return 3500;
return rtwdev->chip->max_amsdu_limit;
}
static u64 get_mcs_ra_mask(u16 mcs_map, u8 highest_mcs, u8 gap)
{
u64 ra_mask = 0;
u8 mcs_cap;
int i, nss;
for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 12) {
mcs_cap = mcs_map & 0x3;
switch (mcs_cap) {
case 2:
ra_mask |= GENMASK_ULL(highest_mcs, 0) << nss;
break;
case 1:
ra_mask |= GENMASK_ULL(highest_mcs - gap, 0) << nss;
break;
case 0:
ra_mask |= GENMASK_ULL(highest_mcs - gap * 2, 0) << nss;
break;
default:
break;
}
}
return ra_mask;
}
static u64 get_he_ra_mask(struct ieee80211_sta *sta)
{
struct ieee80211_sta_he_cap cap = sta->deflink.he_cap;
u16 mcs_map;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_160:
if (cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
mcs_map = le16_to_cpu(cap.he_mcs_nss_supp.rx_mcs_80p80);
else
mcs_map = le16_to_cpu(cap.he_mcs_nss_supp.rx_mcs_160);
break;
default:
mcs_map = le16_to_cpu(cap.he_mcs_nss_supp.rx_mcs_80);
}
/* MCS11, MCS9, MCS7 */
return get_mcs_ra_mask(mcs_map, 11, 2);
}
static u64 get_eht_mcs_ra_mask(u8 *max_nss, u8 start_mcs, u8 n_nss)
{
u64 nss_mcs_shift;
u64 nss_mcs_val;
u64 mask = 0;
int i, j;
u8 nss;
for (i = 0; i < n_nss; i++) {
nss = u8_get_bits(max_nss[i], IEEE80211_EHT_MCS_NSS_RX);
if (!nss)
continue;
nss_mcs_val = GENMASK_ULL(start_mcs + i * 2, 0);
for (j = 0, nss_mcs_shift = 12; j < nss; j++, nss_mcs_shift += 16)
mask |= nss_mcs_val << nss_mcs_shift;
}
return mask;
}
static u64 get_eht_ra_mask(struct ieee80211_sta *sta)
{
struct ieee80211_sta_eht_cap *eht_cap = &sta->deflink.eht_cap;
struct ieee80211_eht_mcs_nss_supp_20mhz_only *mcs_nss_20mhz;
struct ieee80211_eht_mcs_nss_supp_bw *mcs_nss;
u8 *he_phy_cap = sta->deflink.he_cap.he_cap_elem.phy_cap_info;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_320:
mcs_nss = &eht_cap->eht_mcs_nss_supp.bw._320;
/* MCS 9, 11, 13 */
return get_eht_mcs_ra_mask(mcs_nss->rx_tx_max_nss, 9, 3);
case IEEE80211_STA_RX_BW_160:
mcs_nss = &eht_cap->eht_mcs_nss_supp.bw._160;
/* MCS 9, 11, 13 */
return get_eht_mcs_ra_mask(mcs_nss->rx_tx_max_nss, 9, 3);
case IEEE80211_STA_RX_BW_20:
if (!(he_phy_cap[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) {
mcs_nss_20mhz = &eht_cap->eht_mcs_nss_supp.only_20mhz;
/* MCS 7, 9, 11, 13 */
return get_eht_mcs_ra_mask(mcs_nss_20mhz->rx_tx_max_nss, 7, 4);
}
fallthrough;
case IEEE80211_STA_RX_BW_80:
default:
mcs_nss = &eht_cap->eht_mcs_nss_supp.bw._80;
/* MCS 9, 11, 13 */
return get_eht_mcs_ra_mask(mcs_nss->rx_tx_max_nss, 9, 3);
}
}
#define RA_FLOOR_TABLE_SIZE 7
#define RA_FLOOR_UP_GAP 3
static u64 rtw89_phy_ra_mask_rssi(struct rtw89_dev *rtwdev, u8 rssi,
u8 ratr_state)
{
u8 rssi_lv_t[RA_FLOOR_TABLE_SIZE] = {30, 44, 48, 52, 56, 60, 100};
u8 rssi_lv = 0;
u8 i;
rssi >>= 1;
for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
if (i >= ratr_state)
rssi_lv_t[i] += RA_FLOOR_UP_GAP;
if (rssi < rssi_lv_t[i]) {
rssi_lv = i;
break;
}
}
if (rssi_lv == 0)
return 0xffffffffffffffffULL;
else if (rssi_lv == 1)
return 0xfffffffffffffff0ULL;
else if (rssi_lv == 2)
return 0xffffffffffffefe0ULL;
else if (rssi_lv == 3)
return 0xffffffffffffcfc0ULL;
else if (rssi_lv == 4)
return 0xffffffffffff8f80ULL;
else if (rssi_lv >= 5)
return 0xffffffffffff0f00ULL;
return 0xffffffffffffffffULL;
}
static u64 rtw89_phy_ra_mask_recover(u64 ra_mask, u64 ra_mask_bak)
{
if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
if (ra_mask == 0)
ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
return ra_mask;
}
static u64 rtw89_phy_ra_mask_cfg(struct rtw89_dev *rtwdev, struct rtw89_sta *rtwsta,
const struct rtw89_chan *chan)
{
struct ieee80211_sta *sta = rtwsta_to_sta(rtwsta);
struct cfg80211_bitrate_mask *mask = &rtwsta->mask;
enum nl80211_band band;
u64 cfg_mask;
if (!rtwsta->use_cfg_mask)
return -1;
switch (chan->band_type) {
case RTW89_BAND_2G:
band = NL80211_BAND_2GHZ;
cfg_mask = u64_encode_bits(mask->control[NL80211_BAND_2GHZ].legacy,
RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES);
break;
case RTW89_BAND_5G:
band = NL80211_BAND_5GHZ;
cfg_mask = u64_encode_bits(mask->control[NL80211_BAND_5GHZ].legacy,
RA_MASK_OFDM_RATES);
break;
case RTW89_BAND_6G:
band = NL80211_BAND_6GHZ;
cfg_mask = u64_encode_bits(mask->control[NL80211_BAND_6GHZ].legacy,
RA_MASK_OFDM_RATES);
break;
default:
rtw89_warn(rtwdev, "unhandled band type %d\n", chan->band_type);
return -1;
}
if (sta->deflink.he_cap.has_he) {
cfg_mask |= u64_encode_bits(mask->control[band].he_mcs[0],
RA_MASK_HE_1SS_RATES);
cfg_mask |= u64_encode_bits(mask->control[band].he_mcs[1],
RA_MASK_HE_2SS_RATES);
} else if (sta->deflink.vht_cap.vht_supported) {
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
RA_MASK_VHT_1SS_RATES);
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
RA_MASK_VHT_2SS_RATES);
} else if (sta->deflink.ht_cap.ht_supported) {
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
RA_MASK_HT_1SS_RATES);
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
RA_MASK_HT_2SS_RATES);
}
return cfg_mask;
}
static const u64
rtw89_ra_mask_ht_rates[4] = {RA_MASK_HT_1SS_RATES, RA_MASK_HT_2SS_RATES,
RA_MASK_HT_3SS_RATES, RA_MASK_HT_4SS_RATES};
static const u64
rtw89_ra_mask_vht_rates[4] = {RA_MASK_VHT_1SS_RATES, RA_MASK_VHT_2SS_RATES,
RA_MASK_VHT_3SS_RATES, RA_MASK_VHT_4SS_RATES};
static const u64
rtw89_ra_mask_he_rates[4] = {RA_MASK_HE_1SS_RATES, RA_MASK_HE_2SS_RATES,
RA_MASK_HE_3SS_RATES, RA_MASK_HE_4SS_RATES};
static const u64
rtw89_ra_mask_eht_rates[4] = {RA_MASK_EHT_1SS_RATES, RA_MASK_EHT_2SS_RATES,
RA_MASK_EHT_3SS_RATES, RA_MASK_EHT_4SS_RATES};
static void rtw89_phy_ra_gi_ltf(struct rtw89_dev *rtwdev,
struct rtw89_sta *rtwsta,
const struct rtw89_chan *chan,
bool *fix_giltf_en, u8 *fix_giltf)
{
struct cfg80211_bitrate_mask *mask = &rtwsta->mask;
u8 band = chan->band_type;
enum nl80211_band nl_band = rtw89_hw_to_nl80211_band(band);
u8 he_gi = mask->control[nl_band].he_gi;
u8 he_ltf = mask->control[nl_band].he_ltf;
if (!rtwsta->use_cfg_mask)
return;
if (he_ltf == 2 && he_gi == 2) {
*fix_giltf = RTW89_GILTF_LGI_4XHE32;
} else if (he_ltf == 2 && he_gi == 0) {
*fix_giltf = RTW89_GILTF_SGI_4XHE08;
} else if (he_ltf == 1 && he_gi == 1) {
*fix_giltf = RTW89_GILTF_2XHE16;
} else if (he_ltf == 1 && he_gi == 0) {
*fix_giltf = RTW89_GILTF_2XHE08;
} else if (he_ltf == 0 && he_gi == 1) {
*fix_giltf = RTW89_GILTF_1XHE16;
} else if (he_ltf == 0 && he_gi == 0) {
*fix_giltf = RTW89_GILTF_1XHE08;
} else {
*fix_giltf_en = false;
return;
}
*fix_giltf_en = true;
}
static void rtw89_phy_ra_sta_update(struct rtw89_dev *rtwdev,
struct ieee80211_sta *sta, bool csi)
{
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
struct rtw89_vif *rtwvif = rtwsta->rtwvif;
struct rtw89_phy_rate_pattern *rate_pattern = &rtwvif->rate_pattern;
struct rtw89_ra_info *ra = &rtwsta->ra;
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev,
rtwvif->chanctx_idx);
struct ieee80211_vif *vif = rtwvif_to_vif(rtwsta->rtwvif);
const u64 *high_rate_masks = rtw89_ra_mask_ht_rates;
u8 rssi = ewma_rssi_read(&rtwsta->avg_rssi);
u64 ra_mask = 0;
u64 ra_mask_bak;
u8 mode = 0;
u8 csi_mode = RTW89_RA_RPT_MODE_LEGACY;
u8 bw_mode = 0;
u8 stbc_en = 0;
u8 ldpc_en = 0;
u8 fix_giltf = 0;
u8 i;
bool sgi = false;
bool fix_giltf_en = false;
memset(ra, 0, sizeof(*ra));
/* Set the ra mask from sta's capability */
if (sta->deflink.eht_cap.has_eht) {
mode |= RTW89_RA_MODE_EHT;
ra_mask |= get_eht_ra_mask(sta);
high_rate_masks = rtw89_ra_mask_eht_rates;
} else if (sta->deflink.he_cap.has_he) {
mode |= RTW89_RA_MODE_HE;
csi_mode = RTW89_RA_RPT_MODE_HE;
ra_mask |= get_he_ra_mask(sta);
high_rate_masks = rtw89_ra_mask_he_rates;
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[2] &
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ)
stbc_en = 1;
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[1] &
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD)
ldpc_en = 1;
rtw89_phy_ra_gi_ltf(rtwdev, rtwsta, chan, &fix_giltf_en, &fix_giltf);
} else if (sta->deflink.vht_cap.vht_supported) {
u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
mode |= RTW89_RA_MODE_VHT;
csi_mode = RTW89_RA_RPT_MODE_VHT;
/* MCS9 (non-20MHz), MCS8, MCS7 */
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
ra_mask |= get_mcs_ra_mask(mcs_map, 8, 1);
else
ra_mask |= get_mcs_ra_mask(mcs_map, 9, 1);
high_rate_masks = rtw89_ra_mask_vht_rates;
if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
stbc_en = 1;
if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
ldpc_en = 1;
} else if (sta->deflink.ht_cap.ht_supported) {
mode |= RTW89_RA_MODE_HT;
csi_mode = RTW89_RA_RPT_MODE_HT;
ra_mask |= ((u64)sta->deflink.ht_cap.mcs.rx_mask[3] << 48) |
((u64)sta->deflink.ht_cap.mcs.rx_mask[2] << 36) |
((u64)sta->deflink.ht_cap.mcs.rx_mask[1] << 24) |
((u64)sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
high_rate_masks = rtw89_ra_mask_ht_rates;
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
stbc_en = 1;
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
ldpc_en = 1;
}
switch (chan->band_type) {
case RTW89_BAND_2G:
ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] & 0xf)
mode |= RTW89_RA_MODE_CCK;
if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] & 0xff0)
mode |= RTW89_RA_MODE_OFDM;
break;
case RTW89_BAND_5G:
ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
mode |= RTW89_RA_MODE_OFDM;
break;
case RTW89_BAND_6G:
ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_6GHZ] << 4;
mode |= RTW89_RA_MODE_OFDM;
break;
default:
rtw89_err(rtwdev, "Unknown band type\n");
break;
}
ra_mask_bak = ra_mask;
if (mode >= RTW89_RA_MODE_HT) {
u64 mask = 0;
for (i = 0; i < rtwdev->hal.tx_nss; i++)
mask |= high_rate_masks[i];
if (mode & RTW89_RA_MODE_OFDM)
mask |= RA_MASK_SUBOFDM_RATES;
if (mode & RTW89_RA_MODE_CCK)
mask |= RA_MASK_SUBCCK_RATES;
ra_mask &= mask;
} else if (mode & RTW89_RA_MODE_OFDM) {
ra_mask &= (RA_MASK_OFDM_RATES | RA_MASK_SUBCCK_RATES);
}
if (mode != RTW89_RA_MODE_CCK)
ra_mask &= rtw89_phy_ra_mask_rssi(rtwdev, rssi, 0);
ra_mask = rtw89_phy_ra_mask_recover(ra_mask, ra_mask_bak);
ra_mask &= rtw89_phy_ra_mask_cfg(rtwdev, rtwsta, chan);
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_160:
bw_mode = RTW89_CHANNEL_WIDTH_160;
sgi = sta->deflink.vht_cap.vht_supported &&
(sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_160);
break;
case IEEE80211_STA_RX_BW_80:
bw_mode = RTW89_CHANNEL_WIDTH_80;
sgi = sta->deflink.vht_cap.vht_supported &&
(sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
break;
case IEEE80211_STA_RX_BW_40:
bw_mode = RTW89_CHANNEL_WIDTH_40;
sgi = sta->deflink.ht_cap.ht_supported &&
(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
break;
default:
bw_mode = RTW89_CHANNEL_WIDTH_20;
sgi = sta->deflink.ht_cap.ht_supported &&
(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
break;
}
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[3] &
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM)
ra->dcm_cap = 1;
if (rate_pattern->enable && !vif->p2p) {
ra_mask = rtw89_phy_ra_mask_cfg(rtwdev, rtwsta, chan);
ra_mask &= rate_pattern->ra_mask;
mode = rate_pattern->ra_mode;
}
ra->bw_cap = bw_mode;
ra->er_cap = rtwsta->er_cap;
ra->mode_ctrl = mode;
ra->macid = rtwsta->mac_id;
ra->stbc_cap = stbc_en;
ra->ldpc_cap = ldpc_en;
ra->ss_num = min(sta->deflink.rx_nss, rtwdev->hal.tx_nss) - 1;
ra->en_sgi = sgi;
ra->ra_mask = ra_mask;
ra->fix_giltf_en = fix_giltf_en;
ra->fix_giltf = fix_giltf;
if (!csi)
return;
ra->fixed_csi_rate_en = false;
ra->ra_csi_rate_en = true;
ra->cr_tbl_sel = false;
ra->band_num = rtwvif->phy_idx;
ra->csi_bw = bw_mode;
ra->csi_gi_ltf = RTW89_GILTF_LGI_4XHE32;
ra->csi_mcs_ss_idx = 5;
ra->csi_mode = csi_mode;
}
void rtw89_phy_ra_update_sta(struct rtw89_dev *rtwdev, struct ieee80211_sta *sta,
u32 changed)
{
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
struct rtw89_ra_info *ra = &rtwsta->ra;
rtw89_phy_ra_sta_update(rtwdev, sta, false);
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED)
ra->upd_mask = 1;
if (changed & (IEEE80211_RC_BW_CHANGED | IEEE80211_RC_NSS_CHANGED))
ra->upd_bw_nss_mask = 1;
rtw89_debug(rtwdev, RTW89_DBG_RA,
"ra updat: macid = %d, bw = %d, nss = %d, gi = %d %d",
ra->macid,
ra->bw_cap,
ra->ss_num,
ra->en_sgi,
ra->giltf);
rtw89_fw_h2c_ra(rtwdev, ra, false);
}
static bool __check_rate_pattern(struct rtw89_phy_rate_pattern *next,
u16 rate_base, u64 ra_mask, u8 ra_mode,
u32 rate_ctrl, u32 ctrl_skip, bool force)
{
u8 n, c;
if (rate_ctrl == ctrl_skip)
return true;
n = hweight32(rate_ctrl);
if (n == 0)
return true;
if (force && n != 1)
return false;
if (next->enable)
return false;
c = __fls(rate_ctrl);
next->rate = rate_base + c;
next->ra_mode = ra_mode;
next->ra_mask = ra_mask;
next->enable = true;
return true;
}
#define RTW89_HW_RATE_BY_CHIP_GEN(rate) \
{ \
[RTW89_CHIP_AX] = RTW89_HW_RATE_ ## rate, \
[RTW89_CHIP_BE] = RTW89_HW_RATE_V1_ ## rate, \
}
void rtw89_phy_rate_pattern_vif(struct rtw89_dev *rtwdev,
struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask)
{
struct ieee80211_supported_band *sband;
struct rtw89_vif *rtwvif = (struct rtw89_vif *)vif->drv_priv;
struct rtw89_phy_rate_pattern next_pattern = {0};
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev,
rtwvif->chanctx_idx);
static const u16 hw_rate_he[][RTW89_CHIP_GEN_NUM] = {
RTW89_HW_RATE_BY_CHIP_GEN(HE_NSS1_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(HE_NSS2_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(HE_NSS3_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(HE_NSS4_MCS0),
};
static const u16 hw_rate_vht[][RTW89_CHIP_GEN_NUM] = {
RTW89_HW_RATE_BY_CHIP_GEN(VHT_NSS1_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(VHT_NSS2_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(VHT_NSS3_MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(VHT_NSS4_MCS0),
};
static const u16 hw_rate_ht[][RTW89_CHIP_GEN_NUM] = {
RTW89_HW_RATE_BY_CHIP_GEN(MCS0),
RTW89_HW_RATE_BY_CHIP_GEN(MCS8),
RTW89_HW_RATE_BY_CHIP_GEN(MCS16),
RTW89_HW_RATE_BY_CHIP_GEN(MCS24),
};
u8 band = chan->band_type;
enum nl80211_band nl_band = rtw89_hw_to_nl80211_band(band);
enum rtw89_chip_gen chip_gen = rtwdev->chip->chip_gen;
u8 tx_nss = rtwdev->hal.tx_nss;
u8 i;
for (i = 0; i < tx_nss; i++)
if (!__check_rate_pattern(&next_pattern, hw_rate_he[i][chip_gen],
RA_MASK_HE_RATES, RTW89_RA_MODE_HE,
mask->control[nl_band].he_mcs[i],
0, true))
goto out;
for (i = 0; i < tx_nss; i++)
if (!__check_rate_pattern(&next_pattern, hw_rate_vht[i][chip_gen],
RA_MASK_VHT_RATES, RTW89_RA_MODE_VHT,
mask->control[nl_band].vht_mcs[i],
0, true))
goto out;
for (i = 0; i < tx_nss; i++)
if (!__check_rate_pattern(&next_pattern, hw_rate_ht[i][chip_gen],
RA_MASK_HT_RATES, RTW89_RA_MODE_HT,
mask->control[nl_band].ht_mcs[i],
0, true))
goto out;
/* lagacy cannot be empty for nl80211_parse_tx_bitrate_mask, and
* require at least one basic rate for ieee80211_set_bitrate_mask,
* so the decision just depends on if all bitrates are set or not.
*/
sband = rtwdev->hw->wiphy->bands[nl_band];
if (band == RTW89_BAND_2G) {
if (!__check_rate_pattern(&next_pattern, RTW89_HW_RATE_CCK1,
RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES,
RTW89_RA_MODE_CCK | RTW89_RA_MODE_OFDM,
mask->control[nl_band].legacy,
BIT(sband->n_bitrates) - 1, false))
goto out;
} else {
if (!__check_rate_pattern(&next_pattern, RTW89_HW_RATE_OFDM6,
RA_MASK_OFDM_RATES, RTW89_RA_MODE_OFDM,
mask->control[nl_band].legacy,
BIT(sband->n_bitrates) - 1, false))
goto out;
}
if (!next_pattern.enable)
goto out;
rtwvif->rate_pattern = next_pattern;
rtw89_debug(rtwdev, RTW89_DBG_RA,
"configure pattern: rate 0x%x, mask 0x%llx, mode 0x%x\n",
next_pattern.rate,
next_pattern.ra_mask,
next_pattern.ra_mode);
return;
out:
rtwvif->rate_pattern.enable = false;
rtw89_debug(rtwdev, RTW89_DBG_RA, "unset rate pattern\n");
}
static void rtw89_phy_ra_update_sta_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw89_dev *rtwdev = (struct rtw89_dev *)data;
rtw89_phy_ra_update_sta(rtwdev, sta, IEEE80211_RC_SUPP_RATES_CHANGED);
}
void rtw89_phy_ra_update(struct rtw89_dev *rtwdev)
{
ieee80211_iterate_stations_atomic(rtwdev->hw,
rtw89_phy_ra_update_sta_iter,
rtwdev);
}
void rtw89_phy_ra_assoc(struct rtw89_dev *rtwdev, struct ieee80211_sta *sta)
{
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
struct rtw89_ra_info *ra = &rtwsta->ra;
u8 rssi = ewma_rssi_read(&rtwsta->avg_rssi) >> RSSI_FACTOR;
bool csi = rtw89_sta_has_beamformer_cap(sta);
rtw89_phy_ra_sta_update(rtwdev, sta, csi);
if (rssi > 40)
ra->init_rate_lv = 1;
else if (rssi > 20)
ra->init_rate_lv = 2;
else if (rssi > 1)
ra->init_rate_lv = 3;
else
ra->init_rate_lv = 0;
ra->upd_all = 1;
rtw89_debug(rtwdev, RTW89_DBG_RA,
"ra assoc: macid = %d, mode = %d, bw = %d, nss = %d, lv = %d",
ra->macid,
ra->mode_ctrl,
ra->bw_cap,
ra->ss_num,
ra->init_rate_lv);
rtw89_debug(rtwdev, RTW89_DBG_RA,
"ra assoc: dcm = %d, er = %d, ldpc = %d, stbc = %d, gi = %d %d",
ra->dcm_cap,
ra->er_cap,
ra->ldpc_cap,
ra->stbc_cap,
ra->en_sgi,
ra->giltf);
rtw89_fw_h2c_ra(rtwdev, ra, csi);
}
u8 rtw89_phy_get_txsc(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
enum rtw89_bandwidth dbw)
{
enum rtw89_bandwidth cbw = chan->band_width;
u8 pri_ch = chan->primary_channel;
u8 central_ch = chan->channel;
u8 txsc_idx = 0;
u8 tmp = 0;
if (cbw == dbw || cbw == RTW89_CHANNEL_WIDTH_20)
return txsc_idx;
switch (cbw) {
case RTW89_CHANNEL_WIDTH_40:
txsc_idx = pri_ch > central_ch ? 1 : 2;
break;
case RTW89_CHANNEL_WIDTH_80:
if (dbw == RTW89_CHANNEL_WIDTH_20) {
if (pri_ch > central_ch)
txsc_idx = (pri_ch - central_ch) >> 1;
else
txsc_idx = ((central_ch - pri_ch) >> 1) + 1;
} else {
txsc_idx = pri_ch > central_ch ? 9 : 10;
}
break;
case RTW89_CHANNEL_WIDTH_160:
if (pri_ch > central_ch)
tmp = (pri_ch - central_ch) >> 1;
else
tmp = ((central_ch - pri_ch) >> 1) + 1;
if (dbw == RTW89_CHANNEL_WIDTH_20) {
txsc_idx = tmp;
} else if (dbw == RTW89_CHANNEL_WIDTH_40) {
if (tmp == 1 || tmp == 3)
txsc_idx = 9;
else if (tmp == 5 || tmp == 7)
txsc_idx = 11;
else if (tmp == 2 || tmp == 4)
txsc_idx = 10;
else if (tmp == 6 || tmp == 8)
txsc_idx = 12;
else
return 0xff;
} else {
txsc_idx = pri_ch > central_ch ? 13 : 14;
}
break;
case RTW89_CHANNEL_WIDTH_80_80:
if (dbw == RTW89_CHANNEL_WIDTH_20) {
if (pri_ch > central_ch)
txsc_idx = (10 - (pri_ch - central_ch)) >> 1;
else
txsc_idx = ((central_ch - pri_ch) >> 1) + 5;
} else if (dbw == RTW89_CHANNEL_WIDTH_40) {
txsc_idx = pri_ch > central_ch ? 10 : 12;
} else {
txsc_idx = 14;
}
break;
default:
break;
}
return txsc_idx;
}
EXPORT_SYMBOL(rtw89_phy_get_txsc);
u8 rtw89_phy_get_txsb(struct rtw89_dev *rtwdev, const struct rtw89_chan *chan,
enum rtw89_bandwidth dbw)
{
enum rtw89_bandwidth cbw = chan->band_width;
u8 pri_ch = chan->primary_channel;
u8 central_ch = chan->channel;
u8 txsb_idx = 0;
if (cbw == dbw || cbw == RTW89_CHANNEL_WIDTH_20)
return txsb_idx;
switch (cbw) {
case RTW89_CHANNEL_WIDTH_40:
txsb_idx = pri_ch > central_ch ? 1 : 0;
break;
case RTW89_CHANNEL_WIDTH_80:
if (dbw == RTW89_CHANNEL_WIDTH_20)
txsb_idx = (pri_ch - central_ch + 6) / 4;
else
txsb_idx = pri_ch > central_ch ? 1 : 0;
break;
case RTW89_CHANNEL_WIDTH_160:
if (dbw == RTW89_CHANNEL_WIDTH_20)
txsb_idx = (pri_ch - central_ch + 14) / 4;
else if (dbw == RTW89_CHANNEL_WIDTH_40)
txsb_idx = (pri_ch - central_ch + 12) / 8;
else
txsb_idx = pri_ch > central_ch ? 1 : 0;
break;
case RTW89_CHANNEL_WIDTH_320:
if (dbw == RTW89_CHANNEL_WIDTH_20)
txsb_idx = (pri_ch - central_ch + 30) / 4;
else if (dbw == RTW89_CHANNEL_WIDTH_40)
txsb_idx = (pri_ch - central_ch + 28) / 8;
else if (dbw == RTW89_CHANNEL_WIDTH_80)
txsb_idx = (pri_ch - central_ch + 24) / 16;
else
txsb_idx = pri_ch > central_ch ? 1 : 0;
break;
default:
break;
}
return txsb_idx;
}
EXPORT_SYMBOL(rtw89_phy_get_txsb);
static bool rtw89_phy_check_swsi_busy(struct rtw89_dev *rtwdev)
{
return !!rtw89_phy_read32_mask(rtwdev, R_SWSI_V1, B_SWSI_W_BUSY_V1) ||
!!rtw89_phy_read32_mask(rtwdev, R_SWSI_V1, B_SWSI_R_BUSY_V1);
}
u32 rtw89_phy_read_rf(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const u32 *base_addr = chip->rf_base_addr;
u32 val, direct_addr;
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
addr &= 0xff;
direct_addr = base_addr[rf_path] + (addr << 2);
mask &= RFREG_MASK;
val = rtw89_phy_read32_mask(rtwdev, direct_addr, mask);
return val;
}
EXPORT_SYMBOL(rtw89_phy_read_rf);
static u32 rtw89_phy_read_rf_a(struct rtw89_dev *rtwdev,
enum rtw89_rf_path rf_path, u32 addr, u32 mask)
{
bool busy;
bool done;
u32 val;
int ret;
ret = read_poll_timeout_atomic(rtw89_phy_check_swsi_busy, busy, !busy,
1, 30, false, rtwdev);
if (ret) {
rtw89_err(rtwdev, "read rf busy swsi\n");
return INV_RF_DATA;
}
mask &= RFREG_MASK;
val = FIELD_PREP(B_SWSI_READ_ADDR_PATH_V1, rf_path) |
FIELD_PREP(B_SWSI_READ_ADDR_ADDR_V1, addr);
rtw89_phy_write32_mask(rtwdev, R_SWSI_READ_ADDR_V1, B_SWSI_READ_ADDR_V1, val);
udelay(2);
ret = read_poll_timeout_atomic(rtw89_phy_read32_mask, done, done, 1,
30, false, rtwdev, R_SWSI_V1,
B_SWSI_R_DATA_DONE_V1);
if (ret) {
rtw89_err(rtwdev, "read swsi busy\n");
return INV_RF_DATA;
}
return rtw89_phy_read32_mask(rtwdev, R_SWSI_V1, mask);
}
u32 rtw89_phy_read_rf_v1(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask)
{
bool ad_sel = FIELD_GET(RTW89_RF_ADDR_ADSEL_MASK, addr);
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
if (ad_sel)
return rtw89_phy_read_rf(rtwdev, rf_path, addr, mask);
else
return rtw89_phy_read_rf_a(rtwdev, rf_path, addr, mask);
}
EXPORT_SYMBOL(rtw89_phy_read_rf_v1);
static u32 rtw89_phy_read_full_rf_v2_a(struct rtw89_dev *rtwdev,
enum rtw89_rf_path rf_path, u32 addr)
{
static const u16 r_addr_ofst[2] = {0x2C24, 0x2D24};
static const u16 addr_ofst[2] = {0x2ADC, 0x2BDC};
bool busy, done;
int ret;
u32 val;
rtw89_phy_write32_mask(rtwdev, addr_ofst[rf_path], B_HWSI_ADD_CTL_MASK, 0x1);
ret = read_poll_timeout_atomic(rtw89_phy_read32_mask, busy, !busy,
1, 3800, false,
rtwdev, r_addr_ofst[rf_path], B_HWSI_VAL_BUSY);
if (ret) {
rtw89_warn(rtwdev, "poll HWSI is busy\n");
return INV_RF_DATA;
}
rtw89_phy_write32_mask(rtwdev, addr_ofst[rf_path], B_HWSI_ADD_MASK, addr);
rtw89_phy_write32_mask(rtwdev, addr_ofst[rf_path], B_HWSI_ADD_RD, 0x1);
udelay(2);
ret = read_poll_timeout_atomic(rtw89_phy_read32_mask, done, done,
1, 3800, false,
rtwdev, r_addr_ofst[rf_path], B_HWSI_VAL_RDONE);
if (ret) {
rtw89_warn(rtwdev, "read HWSI is busy\n");
val = INV_RF_DATA;
goto out;
}
val = rtw89_phy_read32_mask(rtwdev, r_addr_ofst[rf_path], RFREG_MASK);
out:
rtw89_phy_write32_mask(rtwdev, addr_ofst[rf_path], B_HWSI_ADD_POLL_MASK, 0);
return val;
}
static u32 rtw89_phy_read_rf_v2_a(struct rtw89_dev *rtwdev,
enum rtw89_rf_path rf_path, u32 addr, u32 mask)
{
u32 val;
val = rtw89_phy_read_full_rf_v2_a(rtwdev, rf_path, addr);
return (val & mask) >> __ffs(mask);
}
u32 rtw89_phy_read_rf_v2(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask)
{
bool ad_sel = u32_get_bits(addr, RTW89_RF_ADDR_ADSEL_MASK);
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
if (ad_sel)
return rtw89_phy_read_rf(rtwdev, rf_path, addr, mask);
else
return rtw89_phy_read_rf_v2_a(rtwdev, rf_path, addr, mask);
}
EXPORT_SYMBOL(rtw89_phy_read_rf_v2);
bool rtw89_phy_write_rf(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const u32 *base_addr = chip->rf_base_addr;
u32 direct_addr;
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return false;
}
addr &= 0xff;
direct_addr = base_addr[rf_path] + (addr << 2);
mask &= RFREG_MASK;
rtw89_phy_write32_mask(rtwdev, direct_addr, mask, data);
/* delay to ensure writing properly */
udelay(1);
return true;
}
EXPORT_SYMBOL(rtw89_phy_write_rf);
static bool rtw89_phy_write_rf_a(struct rtw89_dev *rtwdev,
enum rtw89_rf_path rf_path, u32 addr, u32 mask,
u32 data)
{
u8 bit_shift;
u32 val;
bool busy, b_msk_en = false;
int ret;
ret = read_poll_timeout_atomic(rtw89_phy_check_swsi_busy, busy, !busy,
1, 30, false, rtwdev);
if (ret) {
rtw89_err(rtwdev, "write rf busy swsi\n");
return false;
}
data &= RFREG_MASK;
mask &= RFREG_MASK;
if (mask != RFREG_MASK) {
b_msk_en = true;
rtw89_phy_write32_mask(rtwdev, R_SWSI_BIT_MASK_V1, RFREG_MASK,
mask);
bit_shift = __ffs(mask);
data = (data << bit_shift) & RFREG_MASK;
}
val = FIELD_PREP(B_SWSI_DATA_BIT_MASK_EN_V1, b_msk_en) |
FIELD_PREP(B_SWSI_DATA_PATH_V1, rf_path) |
FIELD_PREP(B_SWSI_DATA_ADDR_V1, addr) |
FIELD_PREP(B_SWSI_DATA_VAL_V1, data);
rtw89_phy_write32_mask(rtwdev, R_SWSI_DATA_V1, MASKDWORD, val);
return true;
}
bool rtw89_phy_write_rf_v1(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
bool ad_sel = FIELD_GET(RTW89_RF_ADDR_ADSEL_MASK, addr);
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return false;
}
if (ad_sel)
return rtw89_phy_write_rf(rtwdev, rf_path, addr, mask, data);
else
return rtw89_phy_write_rf_a(rtwdev, rf_path, addr, mask, data);
}
EXPORT_SYMBOL(rtw89_phy_write_rf_v1);
static
bool rtw89_phy_write_full_rf_v2_a(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 data)
{
static const u32 addr_is_idle[2] = {0x2C24, 0x2D24};
static const u32 addr_ofst[2] = {0x2AE0, 0x2BE0};
bool busy;
u32 val;
int ret;
ret = read_poll_timeout_atomic(rtw89_phy_read32_mask, busy, !busy,
1, 3800, false,
rtwdev, addr_is_idle[rf_path], BIT(29));
if (ret) {
rtw89_warn(rtwdev, "[%s] HWSI is busy\n", __func__);
return false;
}
val = u32_encode_bits(addr, B_HWSI_DATA_ADDR) |
u32_encode_bits(data, B_HWSI_DATA_VAL);
rtw89_phy_write32(rtwdev, addr_ofst[rf_path], val);
return true;
}
static
bool rtw89_phy_write_rf_a_v2(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
u32 val;
if (mask == RFREG_MASK) {
val = data;
} else {
val = rtw89_phy_read_full_rf_v2_a(rtwdev, rf_path, addr);
val &= ~mask;
val |= (data << __ffs(mask)) & mask;
}
return rtw89_phy_write_full_rf_v2_a(rtwdev, rf_path, addr, val);
}
bool rtw89_phy_write_rf_v2(struct rtw89_dev *rtwdev, enum rtw89_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
bool ad_sel = u32_get_bits(addr, RTW89_RF_ADDR_ADSEL_MASK);
if (rf_path >= rtwdev->chip->rf_path_num) {
rtw89_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
if (ad_sel)
return rtw89_phy_write_rf(rtwdev, rf_path, addr, mask, data);
else
return rtw89_phy_write_rf_a_v2(rtwdev, rf_path, addr, mask, data);
}
EXPORT_SYMBOL(rtw89_phy_write_rf_v2);
static bool rtw89_chip_rf_v1(struct rtw89_dev *rtwdev)
{
return rtwdev->chip->ops->write_rf == rtw89_phy_write_rf_v1;
}
static void rtw89_phy_bb_reset(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
chip->ops->bb_reset(rtwdev, phy_idx);
}
static void rtw89_phy_config_bb_reg(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *extra_data)
{
u32 addr;
if (reg->addr == 0xfe) {
mdelay(50);
} else if (reg->addr == 0xfd) {
mdelay(5);
} else if (reg->addr == 0xfc) {
mdelay(1);
} else if (reg->addr == 0xfb) {
udelay(50);
} else if (reg->addr == 0xfa) {
udelay(5);
} else if (reg->addr == 0xf9) {
udelay(1);
} else if (reg->data == BYPASS_CR_DATA) {
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK, "Bypass CR 0x%x\n", reg->addr);
} else {
addr = reg->addr;
if ((uintptr_t)extra_data == RTW89_PHY_1)
addr += rtw89_phy0_phy1_offset(rtwdev, reg->addr);
rtw89_phy_write32(rtwdev, addr, reg->data);
}
}
union rtw89_phy_bb_gain_arg {
u32 addr;
struct {
union {
u8 type;
struct {
u8 rxsc_start:4;
u8 bw:4;
};
};
u8 path;
u8 gain_band;
u8 cfg_type;
};
} __packed;
static void
rtw89_phy_cfg_bb_gain_error(struct rtw89_dev *rtwdev,
union rtw89_phy_bb_gain_arg arg, u32 data)
{
struct rtw89_phy_bb_gain_info *gain = &rtwdev->bb_gain.ax;
u8 type = arg.type;
u8 path = arg.path;
u8 gband = arg.gain_band;
int i;
switch (type) {
case 0:
for (i = 0; i < 4; i++, data >>= 8)
gain->lna_gain[gband][path][i] = data & 0xff;
break;
case 1:
for (i = 4; i < 7; i++, data >>= 8)
gain->lna_gain[gband][path][i] = data & 0xff;
break;
case 2:
for (i = 0; i < 2; i++, data >>= 8)
gain->tia_gain[gband][path][i] = data & 0xff;
break;
default:
rtw89_warn(rtwdev,
"bb gain error {0x%x:0x%x} with unknown type: %d\n",
arg.addr, data, type);
break;
}
}
enum rtw89_phy_bb_rxsc_start_idx {
RTW89_BB_RXSC_START_IDX_FULL = 0,
RTW89_BB_RXSC_START_IDX_20 = 1,
RTW89_BB_RXSC_START_IDX_20_1 = 5,
RTW89_BB_RXSC_START_IDX_40 = 9,
RTW89_BB_RXSC_START_IDX_80 = 13,
};
static void
rtw89_phy_cfg_bb_rpl_ofst(struct rtw89_dev *rtwdev,
union rtw89_phy_bb_gain_arg arg, u32 data)
{
struct rtw89_phy_bb_gain_info *gain = &rtwdev->bb_gain.ax;
u8 rxsc_start = arg.rxsc_start;
u8 bw = arg.bw;
u8 path = arg.path;
u8 gband = arg.gain_band;
u8 rxsc;
s8 ofst;
int i;
switch (bw) {
case RTW89_CHANNEL_WIDTH_20:
gain->rpl_ofst_20[gband][path] = (s8)data;
break;
case RTW89_CHANNEL_WIDTH_40:
if (rxsc_start == RTW89_BB_RXSC_START_IDX_FULL) {
gain->rpl_ofst_40[gband][path][0] = (s8)data;
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_20) {
for (i = 0; i < 2; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_20 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_40[gband][path][rxsc] = ofst;
}
}
break;
case RTW89_CHANNEL_WIDTH_80:
if (rxsc_start == RTW89_BB_RXSC_START_IDX_FULL) {
gain->rpl_ofst_80[gband][path][0] = (s8)data;
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_20) {
for (i = 0; i < 4; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_20 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_80[gband][path][rxsc] = ofst;
}
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_40) {
for (i = 0; i < 2; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_40 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_80[gband][path][rxsc] = ofst;
}
}
break;
case RTW89_CHANNEL_WIDTH_160:
if (rxsc_start == RTW89_BB_RXSC_START_IDX_FULL) {
gain->rpl_ofst_160[gband][path][0] = (s8)data;
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_20) {
for (i = 0; i < 4; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_20 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_160[gband][path][rxsc] = ofst;
}
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_20_1) {
for (i = 0; i < 4; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_20_1 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_160[gband][path][rxsc] = ofst;
}
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_40) {
for (i = 0; i < 4; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_40 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_160[gband][path][rxsc] = ofst;
}
} else if (rxsc_start == RTW89_BB_RXSC_START_IDX_80) {
for (i = 0; i < 2; i++, data >>= 8) {
rxsc = RTW89_BB_RXSC_START_IDX_80 + i;
ofst = (s8)(data & 0xff);
gain->rpl_ofst_160[gband][path][rxsc] = ofst;
}
}
break;
default:
rtw89_warn(rtwdev,
"bb rpl ofst {0x%x:0x%x} with unknown bw: %d\n",
arg.addr, data, bw);
break;
}
}
static void
rtw89_phy_cfg_bb_gain_bypass(struct rtw89_dev *rtwdev,
union rtw89_phy_bb_gain_arg arg, u32 data)
{
struct rtw89_phy_bb_gain_info *gain = &rtwdev->bb_gain.ax;
u8 type = arg.type;
u8 path = arg.path;
u8 gband = arg.gain_band;
int i;
switch (type) {
case 0:
for (i = 0; i < 4; i++, data >>= 8)
gain->lna_gain_bypass[gband][path][i] = data & 0xff;
break;
case 1:
for (i = 4; i < 7; i++, data >>= 8)
gain->lna_gain_bypass[gband][path][i] = data & 0xff;
break;
default:
rtw89_warn(rtwdev,
"bb gain bypass {0x%x:0x%x} with unknown type: %d\n",
arg.addr, data, type);
break;
}
}
static void
rtw89_phy_cfg_bb_gain_op1db(struct rtw89_dev *rtwdev,
union rtw89_phy_bb_gain_arg arg, u32 data)
{
struct rtw89_phy_bb_gain_info *gain = &rtwdev->bb_gain.ax;
u8 type = arg.type;
u8 path = arg.path;
u8 gband = arg.gain_band;
int i;
switch (type) {
case 0:
for (i = 0; i < 4; i++, data >>= 8)
gain->lna_op1db[gband][path][i] = data & 0xff;
break;
case 1:
for (i = 4; i < 7; i++, data >>= 8)
gain->lna_op1db[gband][path][i] = data & 0xff;
break;
case 2:
for (i = 0; i < 4; i++, data >>= 8)
gain->tia_lna_op1db[gband][path][i] = data & 0xff;
break;
case 3:
for (i = 4; i < 8; i++, data >>= 8)
gain->tia_lna_op1db[gband][path][i] = data & 0xff;
break;
default:
rtw89_warn(rtwdev,
"bb gain op1db {0x%x:0x%x} with unknown type: %d\n",
arg.addr, data, type);
break;
}
}
static void rtw89_phy_config_bb_gain_ax(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *extra_data)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
union rtw89_phy_bb_gain_arg arg = { .addr = reg->addr };
struct rtw89_efuse *efuse = &rtwdev->efuse;
if (arg.gain_band >= RTW89_BB_GAIN_BAND_NR)
return;
if (arg.path >= chip->rf_path_num)
return;
if (arg.addr >= 0xf9 && arg.addr <= 0xfe) {
rtw89_warn(rtwdev, "bb gain table with flow ctrl\n");
return;
}
switch (arg.cfg_type) {
case 0:
rtw89_phy_cfg_bb_gain_error(rtwdev, arg, reg->data);
break;
case 1:
rtw89_phy_cfg_bb_rpl_ofst(rtwdev, arg, reg->data);
break;
case 2:
rtw89_phy_cfg_bb_gain_bypass(rtwdev, arg, reg->data);
break;
case 3:
rtw89_phy_cfg_bb_gain_op1db(rtwdev, arg, reg->data);
break;
case 4:
/* This cfg_type is only used by rfe_type >= 50 with eFEM */
if (efuse->rfe_type < 50)
break;
fallthrough;
default:
rtw89_warn(rtwdev,
"bb gain {0x%x:0x%x} with unknown cfg type: %d\n",
arg.addr, reg->data, arg.cfg_type);
break;
}
}
static void
rtw89_phy_cofig_rf_reg_store(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
struct rtw89_fw_h2c_rf_reg_info *info)
{
u16 idx = info->curr_idx % RTW89_H2C_RF_PAGE_SIZE;
u8 page = info->curr_idx / RTW89_H2C_RF_PAGE_SIZE;
if (page >= RTW89_H2C_RF_PAGE_NUM) {
rtw89_warn(rtwdev, "RF parameters exceed size. path=%d, idx=%d",
rf_path, info->curr_idx);
return;
}
info->rtw89_phy_config_rf_h2c[page][idx] =
cpu_to_le32((reg->addr << 20) | reg->data);
info->curr_idx++;
}
static int rtw89_phy_config_rf_reg_fw(struct rtw89_dev *rtwdev,
struct rtw89_fw_h2c_rf_reg_info *info)
{
u16 remain = info->curr_idx;
u16 len = 0;
u8 i;
int ret = 0;
if (remain > RTW89_H2C_RF_PAGE_NUM * RTW89_H2C_RF_PAGE_SIZE) {
rtw89_warn(rtwdev,
"rf reg h2c total len %d larger than %d\n",
remain, RTW89_H2C_RF_PAGE_NUM * RTW89_H2C_RF_PAGE_SIZE);
ret = -EINVAL;
goto out;
}
for (i = 0; i < RTW89_H2C_RF_PAGE_NUM && remain; i++, remain -= len) {
len = remain > RTW89_H2C_RF_PAGE_SIZE ? RTW89_H2C_RF_PAGE_SIZE : remain;
ret = rtw89_fw_h2c_rf_reg(rtwdev, info, len * 4, i);
if (ret)
goto out;
}
out:
info->curr_idx = 0;
return ret;
}
static void rtw89_phy_config_rf_reg_noio(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *extra_data)
{
u32 addr = reg->addr;
if (addr == 0xfe || addr == 0xfd || addr == 0xfc || addr == 0xfb ||
addr == 0xfa || addr == 0xf9)
return;
if (rtw89_chip_rf_v1(rtwdev) && addr < 0x100)
return;
rtw89_phy_cofig_rf_reg_store(rtwdev, reg, rf_path,
(struct rtw89_fw_h2c_rf_reg_info *)extra_data);
}
static void rtw89_phy_config_rf_reg(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *extra_data)
{
if (reg->addr == 0xfe) {
mdelay(50);
} else if (reg->addr == 0xfd) {
mdelay(5);
} else if (reg->addr == 0xfc) {
mdelay(1);
} else if (reg->addr == 0xfb) {
udelay(50);
} else if (reg->addr == 0xfa) {
udelay(5);
} else if (reg->addr == 0xf9) {
udelay(1);
} else {
rtw89_write_rf(rtwdev, rf_path, reg->addr, 0xfffff, reg->data);
rtw89_phy_cofig_rf_reg_store(rtwdev, reg, rf_path,
(struct rtw89_fw_h2c_rf_reg_info *)extra_data);
}
}
void rtw89_phy_config_rf_reg_v1(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *extra_data)
{
rtw89_write_rf(rtwdev, rf_path, reg->addr, RFREG_MASK, reg->data);
if (reg->addr < 0x100)
return;
rtw89_phy_cofig_rf_reg_store(rtwdev, reg, rf_path,
(struct rtw89_fw_h2c_rf_reg_info *)extra_data);
}
EXPORT_SYMBOL(rtw89_phy_config_rf_reg_v1);
static int rtw89_phy_sel_headline(struct rtw89_dev *rtwdev,
const struct rtw89_phy_table *table,
u32 *headline_size, u32 *headline_idx,
u8 rfe, u8 cv)
{
const struct rtw89_reg2_def *reg;
u32 headline;
u32 compare, target;
u8 rfe_para, cv_para;
u8 cv_max = 0;
bool case_matched = false;
u32 i;
for (i = 0; i < table->n_regs; i++) {
reg = &table->regs[i];
headline = get_phy_headline(reg->addr);
if (headline != PHY_HEADLINE_VALID)
break;
}
*headline_size = i;
if (*headline_size == 0)
return 0;
/* case 1: RFE match, CV match */
compare = get_phy_compare(rfe, cv);
for (i = 0; i < *headline_size; i++) {
reg = &table->regs[i];
target = get_phy_target(reg->addr);
if (target == compare) {
*headline_idx = i;
return 0;
}
}
/* case 2: RFE match, CV don't care */
compare = get_phy_compare(rfe, PHY_COND_DONT_CARE);
for (i = 0; i < *headline_size; i++) {
reg = &table->regs[i];
target = get_phy_target(reg->addr);
if (target == compare) {
*headline_idx = i;
return 0;
}
}
/* case 3: RFE match, CV max in table */
for (i = 0; i < *headline_size; i++) {
reg = &table->regs[i];
rfe_para = get_phy_cond_rfe(reg->addr);
cv_para = get_phy_cond_cv(reg->addr);
if (rfe_para == rfe) {
if (cv_para >= cv_max) {
cv_max = cv_para;
*headline_idx = i;
case_matched = true;
}
}
}
if (case_matched)
return 0;
/* case 4: RFE don't care, CV max in table */
for (i = 0; i < *headline_size; i++) {
reg = &table->regs[i];
rfe_para = get_phy_cond_rfe(reg->addr);
cv_para = get_phy_cond_cv(reg->addr);
if (rfe_para == PHY_COND_DONT_CARE) {
if (cv_para >= cv_max) {
cv_max = cv_para;
*headline_idx = i;
case_matched = true;
}
}
}
if (case_matched)
return 0;
return -EINVAL;
}
static void rtw89_phy_init_reg(struct rtw89_dev *rtwdev,
const struct rtw89_phy_table *table,
void (*config)(struct rtw89_dev *rtwdev,
const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path,
void *data),
void *extra_data)
{
const struct rtw89_reg2_def *reg;
enum rtw89_rf_path rf_path = table->rf_path;
u8 rfe = rtwdev->efuse.rfe_type;
u8 cv = rtwdev->hal.cv;
u32 i;
u32 headline_size = 0, headline_idx = 0;
u32 target = 0, cfg_target;
u8 cond;
bool is_matched = true;
bool target_found = false;
int ret;
ret = rtw89_phy_sel_headline(rtwdev, table, &headline_size,
&headline_idx, rfe, cv);
if (ret) {
rtw89_err(rtwdev, "invalid PHY package: %d/%d\n", rfe, cv);
return;
}
cfg_target = get_phy_target(table->regs[headline_idx].addr);
for (i = headline_size; i < table->n_regs; i++) {
reg = &table->regs[i];
cond = get_phy_cond(reg->addr);
switch (cond) {
case PHY_COND_BRANCH_IF:
case PHY_COND_BRANCH_ELIF:
target = get_phy_target(reg->addr);
break;
case PHY_COND_BRANCH_ELSE:
is_matched = false;
if (!target_found) {
rtw89_warn(rtwdev, "failed to load CR %x/%x\n",
reg->addr, reg->data);
return;
}
break;
case PHY_COND_BRANCH_END:
is_matched = true;
target_found = false;
break;
case PHY_COND_CHECK:
if (target_found) {
is_matched = false;
break;
}
if (target == cfg_target) {
is_matched = true;
target_found = true;
} else {
is_matched = false;
target_found = false;
}
break;
default:
if (is_matched)
config(rtwdev, reg, rf_path, extra_data);
break;
}
}
}
void rtw89_phy_init_bb_reg(struct rtw89_dev *rtwdev)
{
struct rtw89_fw_elm_info *elm_info = &rtwdev->fw.elm_info;
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_phy_table *bb_table;
const struct rtw89_phy_table *bb_gain_table;
bb_table = elm_info->bb_tbl ? elm_info->bb_tbl : chip->bb_table;
rtw89_phy_init_reg(rtwdev, bb_table, rtw89_phy_config_bb_reg, NULL);
if (rtwdev->dbcc_en)
rtw89_phy_init_reg(rtwdev, bb_table, rtw89_phy_config_bb_reg,
(void *)RTW89_PHY_1);
rtw89_chip_init_txpwr_unit(rtwdev, RTW89_PHY_0);
bb_gain_table = elm_info->bb_gain ? elm_info->bb_gain : chip->bb_gain_table;
if (bb_gain_table)
rtw89_phy_init_reg(rtwdev, bb_gain_table,
chip->phy_def->config_bb_gain, NULL);
rtw89_phy_bb_reset(rtwdev, RTW89_PHY_0);
}
static u32 rtw89_phy_nctl_poll(struct rtw89_dev *rtwdev)
{
rtw89_phy_write32(rtwdev, 0x8080, 0x4);
udelay(1);
return rtw89_phy_read32(rtwdev, 0x8080);
}
void rtw89_phy_init_rf_reg(struct rtw89_dev *rtwdev, bool noio)
{
void (*config)(struct rtw89_dev *rtwdev, const struct rtw89_reg2_def *reg,
enum rtw89_rf_path rf_path, void *data);
struct rtw89_fw_elm_info *elm_info = &rtwdev->fw.elm_info;
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_phy_table *rf_table;
struct rtw89_fw_h2c_rf_reg_info *rf_reg_info;
u8 path;
rf_reg_info = kzalloc(sizeof(*rf_reg_info), GFP_KERNEL);
if (!rf_reg_info)
return;
for (path = RF_PATH_A; path < chip->rf_path_num; path++) {
rf_table = elm_info->rf_radio[path] ?
elm_info->rf_radio[path] : chip->rf_table[path];
rf_reg_info->rf_path = rf_table->rf_path;
if (noio)
config = rtw89_phy_config_rf_reg_noio;
else
config = rf_table->config ? rf_table->config :
rtw89_phy_config_rf_reg;
rtw89_phy_init_reg(rtwdev, rf_table, config, (void *)rf_reg_info);
if (rtw89_phy_config_rf_reg_fw(rtwdev, rf_reg_info))
rtw89_warn(rtwdev, "rf path %d reg h2c config failed\n",
rf_reg_info->rf_path);
}
kfree(rf_reg_info);
}
static void rtw89_phy_preinit_rf_nctl_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
u32 val;
int ret;
/* IQK/DPK clock & reset */
rtw89_phy_write32_set(rtwdev, R_IOQ_IQK_DPK, 0x3);
rtw89_phy_write32_set(rtwdev, R_GNT_BT_WGT_EN, 0x1);
rtw89_phy_write32_set(rtwdev, R_P0_PATH_RST, 0x8000000);
if (chip->chip_id != RTL8851B)
rtw89_phy_write32_set(rtwdev, R_P1_PATH_RST, 0x8000000);
if (chip->chip_id == RTL8852B || chip->chip_id == RTL8852BT)
rtw89_phy_write32_set(rtwdev, R_IOQ_IQK_DPK, 0x2);
/* check 0x8080 */
rtw89_phy_write32(rtwdev, R_NCTL_CFG, 0x8);
ret = read_poll_timeout(rtw89_phy_nctl_poll, val, val == 0x4, 10,
1000, false, rtwdev);
if (ret)
rtw89_err(rtwdev, "failed to poll nctl block\n");
}
static void rtw89_phy_init_rf_nctl(struct rtw89_dev *rtwdev)
{
struct rtw89_fw_elm_info *elm_info = &rtwdev->fw.elm_info;
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_phy_table *nctl_table;
rtw89_phy_preinit_rf_nctl(rtwdev);
nctl_table = elm_info->rf_nctl ? elm_info->rf_nctl : chip->nctl_table;
rtw89_phy_init_reg(rtwdev, nctl_table, rtw89_phy_config_bb_reg, NULL);
if (chip->nctl_post_table)
rtw89_rfk_parser(rtwdev, chip->nctl_post_table);
}
static u32 rtw89_phy0_phy1_offset_ax(struct rtw89_dev *rtwdev, u32 addr)
{
u32 phy_page = addr >> 8;
u32 ofst = 0;
switch (phy_page) {
case 0x6:
case 0x7:
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0x19:
case 0x1a:
case 0x1b:
ofst = 0x2000;
break;
default:
/* warning case */
ofst = 0;
break;
}
if (phy_page >= 0x40 && phy_page <= 0x4f)
ofst = 0x2000;
return ofst;
}
void rtw89_phy_write32_idx(struct rtw89_dev *rtwdev, u32 addr, u32 mask,
u32 data, enum rtw89_phy_idx phy_idx)
{
if (rtwdev->dbcc_en && phy_idx == RTW89_PHY_1)
addr += rtw89_phy0_phy1_offset(rtwdev, addr);
rtw89_phy_write32_mask(rtwdev, addr, mask, data);
}
EXPORT_SYMBOL(rtw89_phy_write32_idx);
u32 rtw89_phy_read32_idx(struct rtw89_dev *rtwdev, u32 addr, u32 mask,
enum rtw89_phy_idx phy_idx)
{
if (rtwdev->dbcc_en && phy_idx == RTW89_PHY_1)
addr += rtw89_phy0_phy1_offset(rtwdev, addr);
return rtw89_phy_read32_mask(rtwdev, addr, mask);
}
EXPORT_SYMBOL(rtw89_phy_read32_idx);
void rtw89_phy_set_phy_regs(struct rtw89_dev *rtwdev, u32 addr, u32 mask,
u32 val)
{
rtw89_phy_write32_idx(rtwdev, addr, mask, val, RTW89_PHY_0);
if (!rtwdev->dbcc_en)
return;
rtw89_phy_write32_idx(rtwdev, addr, mask, val, RTW89_PHY_1);
}
EXPORT_SYMBOL(rtw89_phy_set_phy_regs);
void rtw89_phy_write_reg3_tbl(struct rtw89_dev *rtwdev,
const struct rtw89_phy_reg3_tbl *tbl)
{
const struct rtw89_reg3_def *reg3;
int i;
for (i = 0; i < tbl->size; i++) {
reg3 = &tbl->reg3[i];
rtw89_phy_write32_mask(rtwdev, reg3->addr, reg3->mask, reg3->data);
}
}
EXPORT_SYMBOL(rtw89_phy_write_reg3_tbl);
static const u8 rtw89_rs_idx_num_ax[] = {
[RTW89_RS_CCK] = RTW89_RATE_CCK_NUM,
[RTW89_RS_OFDM] = RTW89_RATE_OFDM_NUM,
[RTW89_RS_MCS] = RTW89_RATE_MCS_NUM_AX,
[RTW89_RS_HEDCM] = RTW89_RATE_HEDCM_NUM,
[RTW89_RS_OFFSET] = RTW89_RATE_OFFSET_NUM_AX,
};
static const u8 rtw89_rs_nss_num_ax[] = {
[RTW89_RS_CCK] = 1,
[RTW89_RS_OFDM] = 1,
[RTW89_RS_MCS] = RTW89_NSS_NUM,
[RTW89_RS_HEDCM] = RTW89_NSS_HEDCM_NUM,
[RTW89_RS_OFFSET] = 1,
};
s8 *rtw89_phy_raw_byr_seek(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_byrate *head,
const struct rtw89_rate_desc *desc)
{
switch (desc->rs) {
case RTW89_RS_CCK:
return &head->cck[desc->idx];
case RTW89_RS_OFDM:
return &head->ofdm[desc->idx];
case RTW89_RS_MCS:
return &head->mcs[desc->ofdma][desc->nss][desc->idx];
case RTW89_RS_HEDCM:
return &head->hedcm[desc->ofdma][desc->nss][desc->idx];
case RTW89_RS_OFFSET:
return &head->offset[desc->idx];
default:
rtw89_warn(rtwdev, "unrecognized byr rs: %d\n", desc->rs);
return &head->trap;
}
}
void rtw89_phy_load_txpwr_byrate(struct rtw89_dev *rtwdev,
const struct rtw89_txpwr_table *tbl)
{
const struct rtw89_txpwr_byrate_cfg *cfg = tbl->data;
const struct rtw89_txpwr_byrate_cfg *end = cfg + tbl->size;
struct rtw89_txpwr_byrate *byr_head;
struct rtw89_rate_desc desc = {};
s8 *byr;
u32 data;
u8 i;
for (; cfg < end; cfg++) {
byr_head = &rtwdev->byr[cfg->band][0];
desc.rs = cfg->rs;
desc.nss = cfg->nss;
data = cfg->data;
for (i = 0; i < cfg->len; i++, data >>= 8) {
desc.idx = cfg->shf + i;
byr = rtw89_phy_raw_byr_seek(rtwdev, byr_head, &desc);
*byr = data & 0xff;
}
}
}
EXPORT_SYMBOL(rtw89_phy_load_txpwr_byrate);
static s8 rtw89_phy_txpwr_rf_to_mac(struct rtw89_dev *rtwdev, s8 txpwr_rf)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
return txpwr_rf >> (chip->txpwr_factor_rf - chip->txpwr_factor_mac);
}
static s8 rtw89_phy_txpwr_dbm_to_mac(struct rtw89_dev *rtwdev, s8 dbm)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
return clamp_t(s16, dbm << chip->txpwr_factor_mac, -64, 63);
}
static s8 rtw89_phy_txpwr_dbm_without_tolerance(s8 dbm)
{
const u8 tssi_deviation_point = 0;
const u8 tssi_max_deviation = 2;
if (dbm <= tssi_deviation_point)
dbm -= tssi_max_deviation;
return dbm;
}
static s8 rtw89_phy_get_tpe_constraint(struct rtw89_dev *rtwdev, u8 band)
{
struct rtw89_regulatory_info *regulatory = &rtwdev->regulatory;
const struct rtw89_reg_6ghz_tpe *tpe = &regulatory->reg_6ghz_tpe;
s8 cstr = S8_MAX;
if (band == RTW89_BAND_6G && tpe->valid)
cstr = rtw89_phy_txpwr_dbm_without_tolerance(tpe->constraint);
return rtw89_phy_txpwr_dbm_to_mac(rtwdev, cstr);
}
s8 rtw89_phy_read_txpwr_byrate(struct rtw89_dev *rtwdev, u8 band, u8 bw,
const struct rtw89_rate_desc *rate_desc)
{
struct rtw89_txpwr_byrate *byr_head;
s8 *byr;
if (rate_desc->rs == RTW89_RS_CCK)
band = RTW89_BAND_2G;
byr_head = &rtwdev->byr[band][bw];
byr = rtw89_phy_raw_byr_seek(rtwdev, byr_head, rate_desc);
return rtw89_phy_txpwr_rf_to_mac(rtwdev, *byr);
}
static u8 rtw89_channel_6g_to_idx(struct rtw89_dev *rtwdev, u8 channel_6g)
{
switch (channel_6g) {
case 1 ... 29:
return (channel_6g - 1) / 2;
case 33 ... 61:
return (channel_6g - 3) / 2;
case 65 ... 93:
return (channel_6g - 5) / 2;
case 97 ... 125:
return (channel_6g - 7) / 2;
case 129 ... 157:
return (channel_6g - 9) / 2;
case 161 ... 189:
return (channel_6g - 11) / 2;
case 193 ... 221:
return (channel_6g - 13) / 2;
case 225 ... 253:
return (channel_6g - 15) / 2;
default:
rtw89_warn(rtwdev, "unknown 6g channel: %d\n", channel_6g);
return 0;
}
}
static u8 rtw89_channel_to_idx(struct rtw89_dev *rtwdev, u8 band, u8 channel)
{
if (band == RTW89_BAND_6G)
return rtw89_channel_6g_to_idx(rtwdev, channel);
switch (channel) {
case 1 ... 14:
return channel - 1;
case 36 ... 64:
return (channel - 36) / 2;
case 100 ... 144:
return ((channel - 100) / 2) + 15;
case 149 ... 177:
return ((channel - 149) / 2) + 38;
default:
rtw89_warn(rtwdev, "unknown channel: %d\n", channel);
return 0;
}
}
s8 rtw89_phy_read_txpwr_limit(struct rtw89_dev *rtwdev, u8 band,
u8 bw, u8 ntx, u8 rs, u8 bf, u8 ch)
{
const struct rtw89_rfe_parms *rfe_parms = rtwdev->rfe_parms;
const struct rtw89_txpwr_rule_2ghz *rule_2ghz = &rfe_parms->rule_2ghz;
const struct rtw89_txpwr_rule_5ghz *rule_5ghz = &rfe_parms->rule_5ghz;
const struct rtw89_txpwr_rule_6ghz *rule_6ghz = &rfe_parms->rule_6ghz;
struct rtw89_regulatory_info *regulatory = &rtwdev->regulatory;
enum nl80211_band nl_band = rtw89_hw_to_nl80211_band(band);
u32 freq = ieee80211_channel_to_frequency(ch, nl_band);
u8 ch_idx = rtw89_channel_to_idx(rtwdev, band, ch);
u8 regd = rtw89_regd_get(rtwdev, band);
u8 reg6 = regulatory->reg_6ghz_power;
s8 lmt = 0, sar;
s8 cstr;
switch (band) {
case RTW89_BAND_2G:
lmt = (*rule_2ghz->lmt)[bw][ntx][rs][bf][regd][ch_idx];
if (lmt)
break;
lmt = (*rule_2ghz->lmt)[bw][ntx][rs][bf][RTW89_WW][ch_idx];
break;
case RTW89_BAND_5G:
lmt = (*rule_5ghz->lmt)[bw][ntx][rs][bf][regd][ch_idx];
if (lmt)
break;
lmt = (*rule_5ghz->lmt)[bw][ntx][rs][bf][RTW89_WW][ch_idx];
break;
case RTW89_BAND_6G:
lmt = (*rule_6ghz->lmt)[bw][ntx][rs][bf][regd][reg6][ch_idx];
if (lmt)
break;
lmt = (*rule_6ghz->lmt)[bw][ntx][rs][bf][RTW89_WW]
[RTW89_REG_6GHZ_POWER_DFLT]
[ch_idx];
break;
default:
rtw89_warn(rtwdev, "unknown band type: %d\n", band);
return 0;
}
lmt = rtw89_phy_txpwr_rf_to_mac(rtwdev, lmt);
sar = rtw89_query_sar(rtwdev, freq);
cstr = rtw89_phy_get_tpe_constraint(rtwdev, band);
return min3(lmt, sar, cstr);
}
EXPORT_SYMBOL(rtw89_phy_read_txpwr_limit);
#define __fill_txpwr_limit_nonbf_bf(ptr, band, bw, ntx, rs, ch) \
do { \
u8 __i; \
for (__i = 0; __i < RTW89_BF_NUM; __i++) \
ptr[__i] = rtw89_phy_read_txpwr_limit(rtwdev, \
band, \
bw, ntx, \
rs, __i, \
(ch)); \
} while (0)
static void rtw89_phy_fill_txpwr_limit_20m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ax *lmt,
u8 band, u8 ntx, u8 ch)
{
__fill_txpwr_limit_nonbf_bf(lmt->cck_20m, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_CCK, ch);
__fill_txpwr_limit_nonbf_bf(lmt->cck_40m, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_CCK, ch);
__fill_txpwr_limit_nonbf_bf(lmt->ofdm, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_OFDM, ch);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[0], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch);
}
static void rtw89_phy_fill_txpwr_limit_40m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ax *lmt,
u8 band, u8 ntx, u8 ch, u8 pri_ch)
{
__fill_txpwr_limit_nonbf_bf(lmt->cck_20m, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_CCK, ch - 2);
__fill_txpwr_limit_nonbf_bf(lmt->cck_40m, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_CCK, ch);
__fill_txpwr_limit_nonbf_bf(lmt->ofdm, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_OFDM, pri_ch);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[0], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[1], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[0], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch);
}
static void rtw89_phy_fill_txpwr_limit_80m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ax *lmt,
u8 band, u8 ntx, u8 ch, u8 pri_ch)
{
s8 val_0p5_n[RTW89_BF_NUM];
s8 val_0p5_p[RTW89_BF_NUM];
u8 i;
__fill_txpwr_limit_nonbf_bf(lmt->ofdm, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_OFDM, pri_ch);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[0], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 6);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[1], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[2], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[3], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 6);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[0], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 4);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[1], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 4);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_80m[0], band,
RTW89_CHANNEL_WIDTH_80,
ntx, RTW89_RS_MCS, ch);
__fill_txpwr_limit_nonbf_bf(val_0p5_n, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 4);
__fill_txpwr_limit_nonbf_bf(val_0p5_p, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 4);
for (i = 0; i < RTW89_BF_NUM; i++)
lmt->mcs_40m_0p5[i] = min_t(s8, val_0p5_n[i], val_0p5_p[i]);
}
static void rtw89_phy_fill_txpwr_limit_160m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ax *lmt,
u8 band, u8 ntx, u8 ch, u8 pri_ch)
{
s8 val_0p5_n[RTW89_BF_NUM];
s8 val_0p5_p[RTW89_BF_NUM];
s8 val_2p5_n[RTW89_BF_NUM];
s8 val_2p5_p[RTW89_BF_NUM];
u8 i;
/* fill ofdm section */
__fill_txpwr_limit_nonbf_bf(lmt->ofdm, band, RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_OFDM, pri_ch);
/* fill mcs 20m section */
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[0], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 14);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[1], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 10);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[2], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 6);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[3], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch - 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[4], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 2);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[5], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 6);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[6], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 10);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_20m[7], band,
RTW89_CHANNEL_WIDTH_20,
ntx, RTW89_RS_MCS, ch + 14);
/* fill mcs 40m section */
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[0], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 12);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[1], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 4);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[2], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 4);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_40m[3], band,
RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 12);
/* fill mcs 80m section */
__fill_txpwr_limit_nonbf_bf(lmt->mcs_80m[0], band,
RTW89_CHANNEL_WIDTH_80,
ntx, RTW89_RS_MCS, ch - 8);
__fill_txpwr_limit_nonbf_bf(lmt->mcs_80m[1], band,
RTW89_CHANNEL_WIDTH_80,
ntx, RTW89_RS_MCS, ch + 8);
/* fill mcs 160m section */
__fill_txpwr_limit_nonbf_bf(lmt->mcs_160m, band,
RTW89_CHANNEL_WIDTH_160,
ntx, RTW89_RS_MCS, ch);
/* fill mcs 40m 0p5 section */
__fill_txpwr_limit_nonbf_bf(val_0p5_n, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 4);
__fill_txpwr_limit_nonbf_bf(val_0p5_p, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 4);
for (i = 0; i < RTW89_BF_NUM; i++)
lmt->mcs_40m_0p5[i] = min_t(s8, val_0p5_n[i], val_0p5_p[i]);
/* fill mcs 40m 2p5 section */
__fill_txpwr_limit_nonbf_bf(val_2p5_n, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch - 8);
__fill_txpwr_limit_nonbf_bf(val_2p5_p, band, RTW89_CHANNEL_WIDTH_40,
ntx, RTW89_RS_MCS, ch + 8);
for (i = 0; i < RTW89_BF_NUM; i++)
lmt->mcs_40m_2p5[i] = min_t(s8, val_2p5_n[i], val_2p5_p[i]);
}
static
void rtw89_phy_fill_txpwr_limit_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
struct rtw89_txpwr_limit_ax *lmt,
u8 ntx)
{
u8 band = chan->band_type;
u8 pri_ch = chan->primary_channel;
u8 ch = chan->channel;
u8 bw = chan->band_width;
memset(lmt, 0, sizeof(*lmt));
switch (bw) {
case RTW89_CHANNEL_WIDTH_20:
rtw89_phy_fill_txpwr_limit_20m_ax(rtwdev, lmt, band, ntx, ch);
break;
case RTW89_CHANNEL_WIDTH_40:
rtw89_phy_fill_txpwr_limit_40m_ax(rtwdev, lmt, band, ntx, ch,
pri_ch);
break;
case RTW89_CHANNEL_WIDTH_80:
rtw89_phy_fill_txpwr_limit_80m_ax(rtwdev, lmt, band, ntx, ch,
pri_ch);
break;
case RTW89_CHANNEL_WIDTH_160:
rtw89_phy_fill_txpwr_limit_160m_ax(rtwdev, lmt, band, ntx, ch,
pri_ch);
break;
}
}
s8 rtw89_phy_read_txpwr_limit_ru(struct rtw89_dev *rtwdev, u8 band,
u8 ru, u8 ntx, u8 ch)
{
const struct rtw89_rfe_parms *rfe_parms = rtwdev->rfe_parms;
const struct rtw89_txpwr_rule_2ghz *rule_2ghz = &rfe_parms->rule_2ghz;
const struct rtw89_txpwr_rule_5ghz *rule_5ghz = &rfe_parms->rule_5ghz;
const struct rtw89_txpwr_rule_6ghz *rule_6ghz = &rfe_parms->rule_6ghz;
struct rtw89_regulatory_info *regulatory = &rtwdev->regulatory;
enum nl80211_band nl_band = rtw89_hw_to_nl80211_band(band);
u32 freq = ieee80211_channel_to_frequency(ch, nl_band);
u8 ch_idx = rtw89_channel_to_idx(rtwdev, band, ch);
u8 regd = rtw89_regd_get(rtwdev, band);
u8 reg6 = regulatory->reg_6ghz_power;
s8 lmt_ru = 0, sar;
s8 cstr;
switch (band) {
case RTW89_BAND_2G:
lmt_ru = (*rule_2ghz->lmt_ru)[ru][ntx][regd][ch_idx];
if (lmt_ru)
break;
lmt_ru = (*rule_2ghz->lmt_ru)[ru][ntx][RTW89_WW][ch_idx];
break;
case RTW89_BAND_5G:
lmt_ru = (*rule_5ghz->lmt_ru)[ru][ntx][regd][ch_idx];
if (lmt_ru)
break;
lmt_ru = (*rule_5ghz->lmt_ru)[ru][ntx][RTW89_WW][ch_idx];
break;
case RTW89_BAND_6G:
lmt_ru = (*rule_6ghz->lmt_ru)[ru][ntx][regd][reg6][ch_idx];
if (lmt_ru)
break;
lmt_ru = (*rule_6ghz->lmt_ru)[ru][ntx][RTW89_WW]
[RTW89_REG_6GHZ_POWER_DFLT]
[ch_idx];
break;
default:
rtw89_warn(rtwdev, "unknown band type: %d\n", band);
return 0;
}
lmt_ru = rtw89_phy_txpwr_rf_to_mac(rtwdev, lmt_ru);
sar = rtw89_query_sar(rtwdev, freq);
cstr = rtw89_phy_get_tpe_constraint(rtwdev, band);
return min3(lmt_ru, sar, cstr);
}
static void
rtw89_phy_fill_txpwr_limit_ru_20m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ru_ax *lmt_ru,
u8 band, u8 ntx, u8 ch)
{
lmt_ru->ru26[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch);
lmt_ru->ru52[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch);
lmt_ru->ru106[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch);
}
static void
rtw89_phy_fill_txpwr_limit_ru_40m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ru_ax *lmt_ru,
u8 band, u8 ntx, u8 ch)
{
lmt_ru->ru26[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch - 2);
lmt_ru->ru26[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch + 2);
lmt_ru->ru52[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch - 2);
lmt_ru->ru52[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch + 2);
lmt_ru->ru106[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch - 2);
lmt_ru->ru106[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch + 2);
}
static void
rtw89_phy_fill_txpwr_limit_ru_80m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ru_ax *lmt_ru,
u8 band, u8 ntx, u8 ch)
{
lmt_ru->ru26[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch - 6);
lmt_ru->ru26[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch - 2);
lmt_ru->ru26[2] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch + 2);
lmt_ru->ru26[3] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx, ch + 6);
lmt_ru->ru52[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch - 6);
lmt_ru->ru52[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch - 2);
lmt_ru->ru52[2] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch + 2);
lmt_ru->ru52[3] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx, ch + 6);
lmt_ru->ru106[0] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch - 6);
lmt_ru->ru106[1] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch - 2);
lmt_ru->ru106[2] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch + 2);
lmt_ru->ru106[3] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx, ch + 6);
}
static void
rtw89_phy_fill_txpwr_limit_ru_160m_ax(struct rtw89_dev *rtwdev,
struct rtw89_txpwr_limit_ru_ax *lmt_ru,
u8 band, u8 ntx, u8 ch)
{
static const int ofst[] = { -14, -10, -6, -2, 2, 6, 10, 14 };
int i;
static_assert(ARRAY_SIZE(ofst) == RTW89_RU_SEC_NUM_AX);
for (i = 0; i < RTW89_RU_SEC_NUM_AX; i++) {
lmt_ru->ru26[i] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU26,
ntx,
ch + ofst[i]);
lmt_ru->ru52[i] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU52,
ntx,
ch + ofst[i]);
lmt_ru->ru106[i] = rtw89_phy_read_txpwr_limit_ru(rtwdev, band,
RTW89_RU106,
ntx,
ch + ofst[i]);
}
}
static
void rtw89_phy_fill_txpwr_limit_ru_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
struct rtw89_txpwr_limit_ru_ax *lmt_ru,
u8 ntx)
{
u8 band = chan->band_type;
u8 ch = chan->channel;
u8 bw = chan->band_width;
memset(lmt_ru, 0, sizeof(*lmt_ru));
switch (bw) {
case RTW89_CHANNEL_WIDTH_20:
rtw89_phy_fill_txpwr_limit_ru_20m_ax(rtwdev, lmt_ru, band, ntx,
ch);
break;
case RTW89_CHANNEL_WIDTH_40:
rtw89_phy_fill_txpwr_limit_ru_40m_ax(rtwdev, lmt_ru, band, ntx,
ch);
break;
case RTW89_CHANNEL_WIDTH_80:
rtw89_phy_fill_txpwr_limit_ru_80m_ax(rtwdev, lmt_ru, band, ntx,
ch);
break;
case RTW89_CHANNEL_WIDTH_160:
rtw89_phy_fill_txpwr_limit_ru_160m_ax(rtwdev, lmt_ru, band, ntx,
ch);
break;
}
}
static void rtw89_phy_set_txpwr_byrate_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
enum rtw89_phy_idx phy_idx)
{
u8 max_nss_num = rtwdev->chip->rf_path_num;
static const u8 rs[] = {
RTW89_RS_CCK,
RTW89_RS_OFDM,
RTW89_RS_MCS,
RTW89_RS_HEDCM,
};
struct rtw89_rate_desc cur = {};
u8 band = chan->band_type;
u8 ch = chan->channel;
u32 addr, val;
s8 v[4] = {};
u8 i;
rtw89_debug(rtwdev, RTW89_DBG_TXPWR,
"[TXPWR] set txpwr byrate with ch=%d\n", ch);
BUILD_BUG_ON(rtw89_rs_idx_num_ax[RTW89_RS_CCK] % 4);
BUILD_BUG_ON(rtw89_rs_idx_num_ax[RTW89_RS_OFDM] % 4);
BUILD_BUG_ON(rtw89_rs_idx_num_ax[RTW89_RS_MCS] % 4);
BUILD_BUG_ON(rtw89_rs_idx_num_ax[RTW89_RS_HEDCM] % 4);
addr = R_AX_PWR_BY_RATE;
for (cur.nss = 0; cur.nss < max_nss_num; cur.nss++) {
for (i = 0; i < ARRAY_SIZE(rs); i++) {
if (cur.nss >= rtw89_rs_nss_num_ax[rs[i]])
continue;
cur.rs = rs[i];
for (cur.idx = 0; cur.idx < rtw89_rs_idx_num_ax[rs[i]];
cur.idx++) {
v[cur.idx % 4] =
rtw89_phy_read_txpwr_byrate(rtwdev,
band, 0,
&cur);
if ((cur.idx + 1) % 4)
continue;
val = FIELD_PREP(GENMASK(7, 0), v[0]) |
FIELD_PREP(GENMASK(15, 8), v[1]) |
FIELD_PREP(GENMASK(23, 16), v[2]) |
FIELD_PREP(GENMASK(31, 24), v[3]);
rtw89_mac_txpwr_write32(rtwdev, phy_idx, addr,
val);
addr += 4;
}
}
}
}
static
void rtw89_phy_set_txpwr_offset_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
enum rtw89_phy_idx phy_idx)
{
struct rtw89_rate_desc desc = {
.nss = RTW89_NSS_1,
.rs = RTW89_RS_OFFSET,
};
u8 band = chan->band_type;
s8 v[RTW89_RATE_OFFSET_NUM_AX] = {};
u32 val;
rtw89_debug(rtwdev, RTW89_DBG_TXPWR, "[TXPWR] set txpwr offset\n");
for (desc.idx = 0; desc.idx < RTW89_RATE_OFFSET_NUM_AX; desc.idx++)
v[desc.idx] = rtw89_phy_read_txpwr_byrate(rtwdev, band, 0, &desc);
BUILD_BUG_ON(RTW89_RATE_OFFSET_NUM_AX != 5);
val = FIELD_PREP(GENMASK(3, 0), v[0]) |
FIELD_PREP(GENMASK(7, 4), v[1]) |
FIELD_PREP(GENMASK(11, 8), v[2]) |
FIELD_PREP(GENMASK(15, 12), v[3]) |
FIELD_PREP(GENMASK(19, 16), v[4]);
rtw89_mac_txpwr_write32_mask(rtwdev, phy_idx, R_AX_PWR_RATE_OFST_CTRL,
GENMASK(19, 0), val);
}
static void rtw89_phy_set_txpwr_limit_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
enum rtw89_phy_idx phy_idx)
{
u8 max_ntx_num = rtwdev->chip->rf_path_num;
struct rtw89_txpwr_limit_ax lmt;
u8 ch = chan->channel;
u8 bw = chan->band_width;
const s8 *ptr;
u32 addr, val;
u8 i, j;
rtw89_debug(rtwdev, RTW89_DBG_TXPWR,
"[TXPWR] set txpwr limit with ch=%d bw=%d\n", ch, bw);
BUILD_BUG_ON(sizeof(struct rtw89_txpwr_limit_ax) !=
RTW89_TXPWR_LMT_PAGE_SIZE_AX);
addr = R_AX_PWR_LMT;
for (i = 0; i < max_ntx_num; i++) {
rtw89_phy_fill_txpwr_limit_ax(rtwdev, chan, &lmt, i);
ptr = (s8 *)&lmt;
for (j = 0; j < RTW89_TXPWR_LMT_PAGE_SIZE_AX;
j += 4, addr += 4, ptr += 4) {
val = FIELD_PREP(GENMASK(7, 0), ptr[0]) |
FIELD_PREP(GENMASK(15, 8), ptr[1]) |
FIELD_PREP(GENMASK(23, 16), ptr[2]) |
FIELD_PREP(GENMASK(31, 24), ptr[3]);
rtw89_mac_txpwr_write32(rtwdev, phy_idx, addr, val);
}
}
}
static void rtw89_phy_set_txpwr_limit_ru_ax(struct rtw89_dev *rtwdev,
const struct rtw89_chan *chan,
enum rtw89_phy_idx phy_idx)
{
u8 max_ntx_num = rtwdev->chip->rf_path_num;
struct rtw89_txpwr_limit_ru_ax lmt_ru;
u8 ch = chan->channel;
u8 bw = chan->band_width;
const s8 *ptr;
u32 addr, val;
u8 i, j;
rtw89_debug(rtwdev, RTW89_DBG_TXPWR,
"[TXPWR] set txpwr limit ru with ch=%d bw=%d\n", ch, bw);
BUILD_BUG_ON(sizeof(struct rtw89_txpwr_limit_ru_ax) !=
RTW89_TXPWR_LMT_RU_PAGE_SIZE_AX);
addr = R_AX_PWR_RU_LMT;
for (i = 0; i < max_ntx_num; i++) {
rtw89_phy_fill_txpwr_limit_ru_ax(rtwdev, chan, &lmt_ru, i);
ptr = (s8 *)&lmt_ru;
for (j = 0; j < RTW89_TXPWR_LMT_RU_PAGE_SIZE_AX;
j += 4, addr += 4, ptr += 4) {
val = FIELD_PREP(GENMASK(7, 0), ptr[0]) |
FIELD_PREP(GENMASK(15, 8), ptr[1]) |
FIELD_PREP(GENMASK(23, 16), ptr[2]) |
FIELD_PREP(GENMASK(31, 24), ptr[3]);
rtw89_mac_txpwr_write32(rtwdev, phy_idx, addr, val);
}
}
}
struct rtw89_phy_iter_ra_data {
struct rtw89_dev *rtwdev;
struct sk_buff *c2h;
};
static void rtw89_phy_c2h_ra_rpt_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw89_phy_iter_ra_data *ra_data = (struct rtw89_phy_iter_ra_data *)data;
struct rtw89_dev *rtwdev = ra_data->rtwdev;
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
const struct rtw89_c2h_ra_rpt *c2h =
(const struct rtw89_c2h_ra_rpt *)ra_data->c2h->data;
struct rtw89_ra_report *ra_report = &rtwsta->ra_report;
const struct rtw89_chip_info *chip = rtwdev->chip;
bool format_v1 = chip->chip_gen == RTW89_CHIP_BE;
u8 mode, rate, bw, giltf, mac_id;
u16 legacy_bitrate;
bool valid;
u8 mcs = 0;
u8 t;
mac_id = le32_get_bits(c2h->w2, RTW89_C2H_RA_RPT_W2_MACID);
if (mac_id != rtwsta->mac_id)
return;
rate = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_MCSNSS);
bw = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_BW);
giltf = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_GILTF);
mode = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_MD_SEL);
if (format_v1) {
t = le32_get_bits(c2h->w2, RTW89_C2H_RA_RPT_W2_MCSNSS_B7);
rate |= u8_encode_bits(t, BIT(7));
t = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_BW_B2);
bw |= u8_encode_bits(t, BIT(2));
t = le32_get_bits(c2h->w3, RTW89_C2H_RA_RPT_W3_MD_SEL_B2);
mode |= u8_encode_bits(t, BIT(2));
}
if (mode == RTW89_RA_RPT_MODE_LEGACY) {
valid = rtw89_ra_report_to_bitrate(rtwdev, rate, &legacy_bitrate);
if (!valid)
return;
}
memset(&ra_report->txrate, 0, sizeof(ra_report->txrate));
switch (mode) {
case RTW89_RA_RPT_MODE_LEGACY:
ra_report->txrate.legacy = legacy_bitrate;
break;
case RTW89_RA_RPT_MODE_HT:
ra_report->txrate.flags |= RATE_INFO_FLAGS_MCS;
if (RTW89_CHK_FW_FEATURE(OLD_HT_RA_FORMAT, &rtwdev->fw))
rate = RTW89_MK_HT_RATE(FIELD_GET(RTW89_RA_RATE_MASK_NSS, rate),
FIELD_GET(RTW89_RA_RATE_MASK_MCS, rate));
else
rate = FIELD_GET(RTW89_RA_RATE_MASK_HT_MCS, rate);
ra_report->txrate.mcs = rate;
if (giltf)
ra_report->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
mcs = ra_report->txrate.mcs & 0x07;
break;
case RTW89_RA_RPT_MODE_VHT:
ra_report->txrate.flags |= RATE_INFO_FLAGS_VHT_MCS;
ra_report->txrate.mcs = format_v1 ?
u8_get_bits(rate, RTW89_RA_RATE_MASK_MCS_V1) :
u8_get_bits(rate, RTW89_RA_RATE_MASK_MCS);
ra_report->txrate.nss = format_v1 ?
u8_get_bits(rate, RTW89_RA_RATE_MASK_NSS_V1) + 1 :
u8_get_bits(rate, RTW89_RA_RATE_MASK_NSS) + 1;
if (giltf)
ra_report->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
mcs = ra_report->txrate.mcs;
break;
case RTW89_RA_RPT_MODE_HE:
ra_report->txrate.flags |= RATE_INFO_FLAGS_HE_MCS;
ra_report->txrate.mcs = format_v1 ?
u8_get_bits(rate, RTW89_RA_RATE_MASK_MCS_V1) :
u8_get_bits(rate, RTW89_RA_RATE_MASK_MCS);
ra_report->txrate.nss = format_v1 ?
u8_get_bits(rate, RTW89_RA_RATE_MASK_NSS_V1) + 1 :
u8_get_bits(rate, RTW89_RA_RATE_MASK_NSS) + 1;
if (giltf == RTW89_GILTF_2XHE08 || giltf == RTW89_GILTF_1XHE08)
ra_report->txrate.he_gi = NL80211_RATE_INFO_HE_GI_0_8;
else if (giltf == RTW89_GILTF_2XHE16 || giltf == RTW89_GILTF_1XHE16)
ra_report->txrate.he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
ra_report->txrate.he_gi = NL80211_RATE_INFO_HE_GI_3_2;
mcs = ra_report->txrate.mcs;
break;
case RTW89_RA_RPT_MODE_EHT:
ra_report->txrate.flags |= RATE_INFO_FLAGS_EHT_MCS;
ra_report->txrate.mcs = u8_get_bits(rate, RTW89_RA_RATE_MASK_MCS_V1);
ra_report->txrate.nss = u8_get_bits(rate, RTW89_RA_RATE_MASK_NSS_V1) + 1;
if (giltf == RTW89_GILTF_2XHE08 || giltf == RTW89_GILTF_1XHE08)
ra_report->txrate.eht_gi = NL80211_RATE_INFO_EHT_GI_0_8;
else if (giltf == RTW89_GILTF_2XHE16 || giltf == RTW89_GILTF_1XHE16)
ra_report->txrate.eht_gi = NL80211_RATE_INFO_EHT_GI_1_6;
else
ra_report->txrate.eht_gi = NL80211_RATE_INFO_EHT_GI_3_2;
mcs = ra_report->txrate.mcs;
break;
}
ra_report->txrate.bw = rtw89_hw_to_rate_info_bw(bw);
ra_report->bit_rate = cfg80211_calculate_bitrate(&ra_report->txrate);
ra_report->hw_rate = format_v1 ?
u16_encode_bits(mode, RTW89_HW_RATE_V1_MASK_MOD) |
u16_encode_bits(rate, RTW89_HW_RATE_V1_MASK_VAL) :
u16_encode_bits(mode, RTW89_HW_RATE_MASK_MOD) |
u16_encode_bits(rate, RTW89_HW_RATE_MASK_VAL);
ra_report->might_fallback_legacy = mcs <= 2;
sta->deflink.agg.max_rc_amsdu_len = get_max_amsdu_len(rtwdev, ra_report);
rtwsta->max_agg_wait = sta->deflink.agg.max_rc_amsdu_len / 1500 - 1;
}
static void
rtw89_phy_c2h_ra_rpt(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
struct rtw89_phy_iter_ra_data ra_data;
ra_data.rtwdev = rtwdev;
ra_data.c2h = c2h;
ieee80211_iterate_stations_atomic(rtwdev->hw,
rtw89_phy_c2h_ra_rpt_iter,
&ra_data);
}
static
void (* const rtw89_phy_c2h_ra_handler[])(struct rtw89_dev *rtwdev,
struct sk_buff *c2h, u32 len) = {
[RTW89_PHY_C2H_FUNC_STS_RPT] = rtw89_phy_c2h_ra_rpt,
[RTW89_PHY_C2H_FUNC_MU_GPTBL_RPT] = NULL,
[RTW89_PHY_C2H_FUNC_TXSTS] = NULL,
};
static void rtw89_phy_c2h_rfk_rpt_log(struct rtw89_dev *rtwdev,
enum rtw89_phy_c2h_rfk_log_func func,
void *content, u16 len)
{
struct rtw89_c2h_rf_txgapk_rpt_log *txgapk;
struct rtw89_c2h_rf_rxdck_rpt_log *rxdck;
struct rtw89_c2h_rf_dack_rpt_log *dack;
struct rtw89_c2h_rf_dpk_rpt_log *dpk;
switch (func) {
case RTW89_PHY_C2H_RFK_LOG_FUNC_DPK:
if (len != sizeof(*dpk))
goto out;
dpk = content;
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"DPK ver:%d idx:%2ph band:%2ph bw:%2ph ch:%2ph path:%2ph\n",
dpk->ver, dpk->idx, dpk->band, dpk->bw, dpk->ch, dpk->path_ok);
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"DPK txagc:%2ph ther:%2ph gs:%2ph dc_i:%4ph dc_q:%4ph\n",
dpk->txagc, dpk->ther, dpk->gs, dpk->dc_i, dpk->dc_q);
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"DPK corr_v:%2ph corr_i:%2ph to:%2ph ov:%2ph\n",
dpk->corr_val, dpk->corr_idx, dpk->is_timeout, dpk->rxbb_ov);
return;
case RTW89_PHY_C2H_RFK_LOG_FUNC_DACK:
if (len != sizeof(*dack))
goto out;
dack = content;
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]ver=0x%x 0x%x\n",
dack->fwdack_ver, dack->fwdack_rpt_ver);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 CDACK ic = [0x%x, 0x%x]\n",
dack->cdack_d[0][0][0], dack->cdack_d[0][0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 CDACK qc = [0x%x, 0x%x]\n",
dack->cdack_d[0][1][0], dack->cdack_d[0][1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 CDACK ic = [0x%x, 0x%x]\n",
dack->cdack_d[1][0][0], dack->cdack_d[1][0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 CDACK qc = [0x%x, 0x%x]\n",
dack->cdack_d[1][1][0], dack->cdack_d[1][1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 ADC_DCK ic = [0x%x, 0x%x]\n",
dack->addck2_d[0][0][0], dack->addck2_d[0][0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 ADC_DCK qc = [0x%x, 0x%x]\n",
dack->addck2_d[0][1][0], dack->addck2_d[0][1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 ADC_DCK ic = [0x%x, 0x%x]\n",
dack->addck2_d[1][0][0], dack->addck2_d[1][0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 ADC_DCK qc = [0x%x, 0x%x]\n",
dack->addck2_d[1][1][0], dack->addck2_d[1][1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 ADC_GAINK ic = 0x%x, qc = 0x%x\n",
dack->adgaink_d[0][0], dack->adgaink_d[0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 ADC_GAINK ic = 0x%x, qc = 0x%x\n",
dack->adgaink_d[1][0], dack->adgaink_d[1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 DAC_DCK ic = 0x%x, qc = 0x%x\n",
dack->dadck_d[0][0], dack->dadck_d[0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 DAC_DCK ic = 0x%x, qc = 0x%x\n",
dack->dadck_d[1][0], dack->dadck_d[1][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 biask iqc = 0x%x\n",
dack->biask_d[0][0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 biask iqc = 0x%x\n",
dack->biask_d[1][0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 MSBK ic: %*ph\n",
(int)sizeof(dack->msbk_d[0][0]), dack->msbk_d[0][0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S0 MSBK qc: %*ph\n",
(int)sizeof(dack->msbk_d[0][1]), dack->msbk_d[0][1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 MSBK ic: %*ph\n",
(int)sizeof(dack->msbk_d[1][0]), dack->msbk_d[1][0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[DACK]S1 MSBK qc: %*ph\n",
(int)sizeof(dack->msbk_d[1][1]), dack->msbk_d[1][1]);
return;
case RTW89_PHY_C2H_RFK_LOG_FUNC_RXDCK:
if (len != sizeof(*rxdck))
goto out;
rxdck = content;
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"RXDCK ver:%d band:%2ph bw:%2ph ch:%2ph to:%2ph\n",
rxdck->ver, rxdck->band, rxdck->bw, rxdck->ch,
rxdck->timeout);
return;
case RTW89_PHY_C2H_RFK_LOG_FUNC_TXGAPK:
if (len != sizeof(*txgapk))
goto out;
txgapk = content;
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"[TXGAPK]rpt r0x8010[0]=0x%x, r0x8010[1]=0x%x\n",
le32_to_cpu(txgapk->r0x8010[0]),
le32_to_cpu(txgapk->r0x8010[1]));
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt chk_id = %d\n",
txgapk->chk_id);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt chk_cnt = %d\n",
le32_to_cpu(txgapk->chk_cnt));
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt ver = 0x%x\n",
txgapk->ver);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt rsv1 = %d\n",
txgapk->rsv1);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt track_d[0] = %*ph\n",
(int)sizeof(txgapk->track_d[0]), txgapk->track_d[0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt power_d[0] = %*ph\n",
(int)sizeof(txgapk->power_d[0]), txgapk->power_d[0]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt track_d[1] = %*ph\n",
(int)sizeof(txgapk->track_d[1]), txgapk->track_d[1]);
rtw89_debug(rtwdev, RTW89_DBG_RFK, "[TXGAPK]rpt power_d[1] = %*ph\n",
(int)sizeof(txgapk->power_d[1]), txgapk->power_d[1]);
return;
default:
break;
}
out:
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"unexpected RFK func %d report log with length %d\n", func, len);
}
static bool rtw89_phy_c2h_rfk_run_log(struct rtw89_dev *rtwdev,
enum rtw89_phy_c2h_rfk_log_func func,
void *content, u16 len)
{
struct rtw89_fw_elm_info *elm_info = &rtwdev->fw.elm_info;
const struct rtw89_c2h_rf_run_log *log = content;
const struct rtw89_fw_element_hdr *elm;
u32 fmt_idx;
u16 offset;
if (sizeof(*log) != len)
return false;
if (!elm_info->rfk_log_fmt)
return false;
elm = elm_info->rfk_log_fmt->elm[func];
fmt_idx = le32_to_cpu(log->fmt_idx);
if (!elm || fmt_idx >= elm->u.rfk_log_fmt.nr)
return false;
offset = le16_to_cpu(elm->u.rfk_log_fmt.offset[fmt_idx]);
if (offset == 0)
return false;
rtw89_debug(rtwdev, RTW89_DBG_RFK, &elm->u.common.contents[offset],
le32_to_cpu(log->arg[0]), le32_to_cpu(log->arg[1]),
le32_to_cpu(log->arg[2]), le32_to_cpu(log->arg[3]));
return true;
}
static void rtw89_phy_c2h_rfk_log(struct rtw89_dev *rtwdev, struct sk_buff *c2h,
u32 len, enum rtw89_phy_c2h_rfk_log_func func,
const char *rfk_name)
{
struct rtw89_c2h_hdr *c2h_hdr = (struct rtw89_c2h_hdr *)c2h->data;
struct rtw89_c2h_rf_log_hdr *log_hdr;
void *log_ptr = c2h_hdr;
u16 content_len;
u16 chunk_len;
bool handled;
if (!rtw89_debug_is_enabled(rtwdev, RTW89_DBG_RFK))
return;
log_ptr += sizeof(*c2h_hdr);
len -= sizeof(*c2h_hdr);
while (len > sizeof(*log_hdr)) {
log_hdr = log_ptr;
content_len = le16_to_cpu(log_hdr->len);
chunk_len = content_len + sizeof(*log_hdr);
if (chunk_len > len)
break;
switch (log_hdr->type) {
case RTW89_RF_RUN_LOG:
handled = rtw89_phy_c2h_rfk_run_log(rtwdev, func,
log_hdr->content, content_len);
if (handled)
break;
rtw89_debug(rtwdev, RTW89_DBG_RFK, "%s run: %*ph\n",
rfk_name, content_len, log_hdr->content);
break;
case RTW89_RF_RPT_LOG:
rtw89_phy_c2h_rfk_rpt_log(rtwdev, func,
log_hdr->content, content_len);
break;
default:
return;
}
log_ptr += chunk_len;
len -= chunk_len;
}
}
static void
rtw89_phy_c2h_rfk_log_iqk(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_IQK, "IQK");
}
static void
rtw89_phy_c2h_rfk_log_dpk(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_DPK, "DPK");
}
static void
rtw89_phy_c2h_rfk_log_dack(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_DACK, "DACK");
}
static void
rtw89_phy_c2h_rfk_log_rxdck(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_RXDCK, "RX_DCK");
}
static void
rtw89_phy_c2h_rfk_log_tssi(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_TSSI, "TSSI");
}
static void
rtw89_phy_c2h_rfk_log_txgapk(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
rtw89_phy_c2h_rfk_log(rtwdev, c2h, len,
RTW89_PHY_C2H_RFK_LOG_FUNC_TXGAPK, "TXGAPK");
}
static
void (* const rtw89_phy_c2h_rfk_log_handler[])(struct rtw89_dev *rtwdev,
struct sk_buff *c2h, u32 len) = {
[RTW89_PHY_C2H_RFK_LOG_FUNC_IQK] = rtw89_phy_c2h_rfk_log_iqk,
[RTW89_PHY_C2H_RFK_LOG_FUNC_DPK] = rtw89_phy_c2h_rfk_log_dpk,
[RTW89_PHY_C2H_RFK_LOG_FUNC_DACK] = rtw89_phy_c2h_rfk_log_dack,
[RTW89_PHY_C2H_RFK_LOG_FUNC_RXDCK] = rtw89_phy_c2h_rfk_log_rxdck,
[RTW89_PHY_C2H_RFK_LOG_FUNC_TSSI] = rtw89_phy_c2h_rfk_log_tssi,
[RTW89_PHY_C2H_RFK_LOG_FUNC_TXGAPK] = rtw89_phy_c2h_rfk_log_txgapk,
};
static
void rtw89_phy_rfk_report_prep(struct rtw89_dev *rtwdev)
{
struct rtw89_rfk_wait_info *wait = &rtwdev->rfk_wait;
wait->state = RTW89_RFK_STATE_START;
wait->start_time = ktime_get();
reinit_completion(&wait->completion);
}
static
int rtw89_phy_rfk_report_wait(struct rtw89_dev *rtwdev, const char *rfk_name,
unsigned int ms)
{
struct rtw89_rfk_wait_info *wait = &rtwdev->rfk_wait;
unsigned long time_left;
/* Since we can't receive C2H event during SER, use a fixed delay. */
if (test_bit(RTW89_FLAG_SER_HANDLING, rtwdev->flags)) {
fsleep(1000 * ms / 2);
goto out;
}
time_left = wait_for_completion_timeout(&wait->completion,
msecs_to_jiffies(ms));
if (time_left == 0) {
rtw89_warn(rtwdev, "failed to wait RF %s\n", rfk_name);
return -ETIMEDOUT;
} else if (wait->state != RTW89_RFK_STATE_OK) {
rtw89_warn(rtwdev, "failed to do RF %s result from state %d\n",
rfk_name, wait->state);
return -EFAULT;
}
out:
rtw89_debug(rtwdev, RTW89_DBG_RFK, "RF %s takes %lld ms to complete\n",
rfk_name, ktime_ms_delta(ktime_get(), wait->start_time));
return 0;
}
static void
rtw89_phy_c2h_rfk_report_state(struct rtw89_dev *rtwdev, struct sk_buff *c2h, u32 len)
{
const struct rtw89_c2h_rfk_report *report =
(const struct rtw89_c2h_rfk_report *)c2h->data;
struct rtw89_rfk_wait_info *wait = &rtwdev->rfk_wait;
wait->state = report->state;
wait->version = report->version;
complete(&wait->completion);
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"RFK report state %d with version %d (%*ph)\n",
wait->state, wait->version,
(int)(len - sizeof(report->hdr)), &report->state);
}
static
void (* const rtw89_phy_c2h_rfk_report_handler[])(struct rtw89_dev *rtwdev,
struct sk_buff *c2h, u32 len) = {
[RTW89_PHY_C2H_RFK_REPORT_FUNC_STATE] = rtw89_phy_c2h_rfk_report_state,
};
bool rtw89_phy_c2h_chk_atomic(struct rtw89_dev *rtwdev, u8 class, u8 func)
{
switch (class) {
case RTW89_PHY_C2H_RFK_LOG:
switch (func) {
case RTW89_PHY_C2H_RFK_LOG_FUNC_IQK:
case RTW89_PHY_C2H_RFK_LOG_FUNC_DPK:
case RTW89_PHY_C2H_RFK_LOG_FUNC_DACK:
case RTW89_PHY_C2H_RFK_LOG_FUNC_RXDCK:
case RTW89_PHY_C2H_RFK_LOG_FUNC_TSSI:
case RTW89_PHY_C2H_RFK_LOG_FUNC_TXGAPK:
return true;
default:
return false;
}
case RTW89_PHY_C2H_RFK_REPORT:
switch (func) {
case RTW89_PHY_C2H_RFK_REPORT_FUNC_STATE:
return true;
default:
return false;
}
default:
return false;
}
}
void rtw89_phy_c2h_handle(struct rtw89_dev *rtwdev, struct sk_buff *skb,
u32 len, u8 class, u8 func)
{
void (*handler)(struct rtw89_dev *rtwdev,
struct sk_buff *c2h, u32 len) = NULL;
switch (class) {
case RTW89_PHY_C2H_CLASS_RA:
if (func < RTW89_PHY_C2H_FUNC_RA_MAX)
handler = rtw89_phy_c2h_ra_handler[func];
break;
case RTW89_PHY_C2H_RFK_LOG:
if (func < ARRAY_SIZE(rtw89_phy_c2h_rfk_log_handler))
handler = rtw89_phy_c2h_rfk_log_handler[func];
break;
case RTW89_PHY_C2H_RFK_REPORT:
if (func < ARRAY_SIZE(rtw89_phy_c2h_rfk_report_handler))
handler = rtw89_phy_c2h_rfk_report_handler[func];
break;
case RTW89_PHY_C2H_CLASS_DM:
if (func == RTW89_PHY_C2H_DM_FUNC_LOWRT_RTY)
return;
fallthrough;
default:
rtw89_info(rtwdev, "c2h class %d not support\n", class);
return;
}
if (!handler) {
rtw89_info(rtwdev, "c2h class %d func %d not support\n", class,
func);
return;
}
handler(rtwdev, skb, len);
}
int rtw89_phy_rfk_pre_ntfy_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_pre_ntfy(rtwdev, phy_idx);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "PRE_NTFY", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_pre_ntfy_and_wait);
int rtw89_phy_rfk_tssi_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
enum rtw89_tssi_mode tssi_mode,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_tssi(rtwdev, phy_idx, chan, tssi_mode);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "TSSI", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_tssi_and_wait);
int rtw89_phy_rfk_iqk_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_iqk(rtwdev, phy_idx, chan);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "IQK", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_iqk_and_wait);
int rtw89_phy_rfk_dpk_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_dpk(rtwdev, phy_idx, chan);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "DPK", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_dpk_and_wait);
int rtw89_phy_rfk_txgapk_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_txgapk(rtwdev, phy_idx, chan);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "TXGAPK", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_txgapk_and_wait);
int rtw89_phy_rfk_dack_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_dack(rtwdev, phy_idx, chan);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "DACK", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_dack_and_wait);
int rtw89_phy_rfk_rxdck_and_wait(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx,
const struct rtw89_chan *chan,
unsigned int ms)
{
int ret;
rtw89_phy_rfk_report_prep(rtwdev);
ret = rtw89_fw_h2c_rf_rxdck(rtwdev, phy_idx, chan);
if (ret)
return ret;
return rtw89_phy_rfk_report_wait(rtwdev, "RX_DCK", ms);
}
EXPORT_SYMBOL(rtw89_phy_rfk_rxdck_and_wait);
static u32 phy_tssi_get_cck_group(u8 ch)
{
switch (ch) {
case 1 ... 2:
return 0;
case 3 ... 5:
return 1;
case 6 ... 8:
return 2;
case 9 ... 11:
return 3;
case 12 ... 13:
return 4;
case 14:
return 5;
}
return 0;
}
#define PHY_TSSI_EXTRA_GROUP_BIT BIT(31)
#define PHY_TSSI_EXTRA_GROUP(idx) (PHY_TSSI_EXTRA_GROUP_BIT | (idx))
#define PHY_IS_TSSI_EXTRA_GROUP(group) ((group) & PHY_TSSI_EXTRA_GROUP_BIT)
#define PHY_TSSI_EXTRA_GET_GROUP_IDX1(group) \
((group) & ~PHY_TSSI_EXTRA_GROUP_BIT)
#define PHY_TSSI_EXTRA_GET_GROUP_IDX2(group) \
(PHY_TSSI_EXTRA_GET_GROUP_IDX1(group) + 1)
static u32 phy_tssi_get_ofdm_group(u8 ch)
{
switch (ch) {
case 1 ... 2:
return 0;
case 3 ... 5:
return 1;
case 6 ... 8:
return 2;
case 9 ... 11:
return 3;
case 12 ... 14:
return 4;
case 36 ... 40:
return 5;
case 41 ... 43:
return PHY_TSSI_EXTRA_GROUP(5);
case 44 ... 48:
return 6;
case 49 ... 51:
return PHY_TSSI_EXTRA_GROUP(6);
case 52 ... 56:
return 7;
case 57 ... 59:
return PHY_TSSI_EXTRA_GROUP(7);
case 60 ... 64:
return 8;
case 100 ... 104:
return 9;
case 105 ... 107:
return PHY_TSSI_EXTRA_GROUP(9);
case 108 ... 112:
return 10;
case 113 ... 115:
return PHY_TSSI_EXTRA_GROUP(10);
case 116 ... 120:
return 11;
case 121 ... 123:
return PHY_TSSI_EXTRA_GROUP(11);
case 124 ... 128:
return 12;
case 129 ... 131:
return PHY_TSSI_EXTRA_GROUP(12);
case 132 ... 136:
return 13;
case 137 ... 139:
return PHY_TSSI_EXTRA_GROUP(13);
case 140 ... 144:
return 14;
case 149 ... 153:
return 15;
case 154 ... 156:
return PHY_TSSI_EXTRA_GROUP(15);
case 157 ... 161:
return 16;
case 162 ... 164:
return PHY_TSSI_EXTRA_GROUP(16);
case 165 ... 169:
return 17;
case 170 ... 172:
return PHY_TSSI_EXTRA_GROUP(17);
case 173 ... 177:
return 18;
}
return 0;
}
static u32 phy_tssi_get_6g_ofdm_group(u8 ch)
{
switch (ch) {
case 1 ... 5:
return 0;
case 6 ... 8:
return PHY_TSSI_EXTRA_GROUP(0);
case 9 ... 13:
return 1;
case 14 ... 16:
return PHY_TSSI_EXTRA_GROUP(1);
case 17 ... 21:
return 2;
case 22 ... 24:
return PHY_TSSI_EXTRA_GROUP(2);
case 25 ... 29:
return 3;
case 33 ... 37:
return 4;
case 38 ... 40:
return PHY_TSSI_EXTRA_GROUP(4);
case 41 ... 45:
return 5;
case 46 ... 48:
return PHY_TSSI_EXTRA_GROUP(5);
case 49 ... 53:
return 6;
case 54 ... 56:
return PHY_TSSI_EXTRA_GROUP(6);
case 57 ... 61:
return 7;
case 65 ... 69:
return 8;
case 70 ... 72:
return PHY_TSSI_EXTRA_GROUP(8);
case 73 ... 77:
return 9;
case 78 ... 80:
return PHY_TSSI_EXTRA_GROUP(9);
case 81 ... 85:
return 10;
case 86 ... 88:
return PHY_TSSI_EXTRA_GROUP(10);
case 89 ... 93:
return 11;
case 97 ... 101:
return 12;
case 102 ... 104:
return PHY_TSSI_EXTRA_GROUP(12);
case 105 ... 109:
return 13;
case 110 ... 112:
return PHY_TSSI_EXTRA_GROUP(13);
case 113 ... 117:
return 14;
case 118 ... 120:
return PHY_TSSI_EXTRA_GROUP(14);
case 121 ... 125:
return 15;
case 129 ... 133:
return 16;
case 134 ... 136:
return PHY_TSSI_EXTRA_GROUP(16);
case 137 ... 141:
return 17;
case 142 ... 144:
return PHY_TSSI_EXTRA_GROUP(17);
case 145 ... 149:
return 18;
case 150 ... 152:
return PHY_TSSI_EXTRA_GROUP(18);
case 153 ... 157:
return 19;
case 161 ... 165:
return 20;
case 166 ... 168:
return PHY_TSSI_EXTRA_GROUP(20);
case 169 ... 173:
return 21;
case 174 ... 176:
return PHY_TSSI_EXTRA_GROUP(21);
case 177 ... 181:
return 22;
case 182 ... 184:
return PHY_TSSI_EXTRA_GROUP(22);
case 185 ... 189:
return 23;
case 193 ... 197:
return 24;
case 198 ... 200:
return PHY_TSSI_EXTRA_GROUP(24);
case 201 ... 205:
return 25;
case 206 ... 208:
return PHY_TSSI_EXTRA_GROUP(25);
case 209 ... 213:
return 26;
case 214 ... 216:
return PHY_TSSI_EXTRA_GROUP(26);
case 217 ... 221:
return 27;
case 225 ... 229:
return 28;
case 230 ... 232:
return PHY_TSSI_EXTRA_GROUP(28);
case 233 ... 237:
return 29;
case 238 ... 240:
return PHY_TSSI_EXTRA_GROUP(29);
case 241 ... 245:
return 30;
case 246 ... 248:
return PHY_TSSI_EXTRA_GROUP(30);
case 249 ... 253:
return 31;
}
return 0;
}
static u32 phy_tssi_get_trim_group(u8 ch)
{
switch (ch) {
case 1 ... 8:
return 0;
case 9 ... 14:
return 1;
case 36 ... 48:
return 2;
case 49 ... 51:
return PHY_TSSI_EXTRA_GROUP(2);
case 52 ... 64:
return 3;
case 100 ... 112:
return 4;
case 113 ... 115:
return PHY_TSSI_EXTRA_GROUP(4);
case 116 ... 128:
return 5;
case 132 ... 144:
return 6;
case 149 ... 177:
return 7;
}
return 0;
}
static u32 phy_tssi_get_6g_trim_group(u8 ch)
{
switch (ch) {
case 1 ... 13:
return 0;
case 14 ... 16:
return PHY_TSSI_EXTRA_GROUP(0);
case 17 ... 29:
return 1;
case 33 ... 45:
return 2;
case 46 ... 48:
return PHY_TSSI_EXTRA_GROUP(2);
case 49 ... 61:
return 3;
case 65 ... 77:
return 4;
case 78 ... 80:
return PHY_TSSI_EXTRA_GROUP(4);
case 81 ... 93:
return 5;
case 97 ... 109:
return 6;
case 110 ... 112:
return PHY_TSSI_EXTRA_GROUP(6);
case 113 ... 125:
return 7;
case 129 ... 141:
return 8;
case 142 ... 144:
return PHY_TSSI_EXTRA_GROUP(8);
case 145 ... 157:
return 9;
case 161 ... 173:
return 10;
case 174 ... 176:
return PHY_TSSI_EXTRA_GROUP(10);
case 177 ... 189:
return 11;
case 193 ... 205:
return 12;
case 206 ... 208:
return PHY_TSSI_EXTRA_GROUP(12);
case 209 ... 221:
return 13;
case 225 ... 237:
return 14;
case 238 ... 240:
return PHY_TSSI_EXTRA_GROUP(14);
case 241 ... 253:
return 15;
}
return 0;
}
static s8 phy_tssi_get_ofdm_de(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy,
const struct rtw89_chan *chan,
enum rtw89_rf_path path)
{
struct rtw89_tssi_info *tssi_info = &rtwdev->tssi;
enum rtw89_band band = chan->band_type;
u8 ch = chan->channel;
u32 gidx_1st;
u32 gidx_2nd;
s8 de_1st;
s8 de_2nd;
u32 gidx;
s8 val;
if (band == RTW89_BAND_6G)
goto calc_6g;
gidx = phy_tssi_get_ofdm_group(ch);
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs group_idx=0x%x\n",
path, gidx);
if (PHY_IS_TSSI_EXTRA_GROUP(gidx)) {
gidx_1st = PHY_TSSI_EXTRA_GET_GROUP_IDX1(gidx);
gidx_2nd = PHY_TSSI_EXTRA_GET_GROUP_IDX2(gidx);
de_1st = tssi_info->tssi_mcs[path][gidx_1st];
de_2nd = tssi_info->tssi_mcs[path][gidx_2nd];
val = (de_1st + de_2nd) / 2;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs de=%d 1st=%d 2nd=%d\n",
path, val, de_1st, de_2nd);
} else {
val = tssi_info->tssi_mcs[path][gidx];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs de=%d\n", path, val);
}
return val;
calc_6g:
gidx = phy_tssi_get_6g_ofdm_group(ch);
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs group_idx=0x%x\n",
path, gidx);
if (PHY_IS_TSSI_EXTRA_GROUP(gidx)) {
gidx_1st = PHY_TSSI_EXTRA_GET_GROUP_IDX1(gidx);
gidx_2nd = PHY_TSSI_EXTRA_GET_GROUP_IDX2(gidx);
de_1st = tssi_info->tssi_6g_mcs[path][gidx_1st];
de_2nd = tssi_info->tssi_6g_mcs[path][gidx_2nd];
val = (de_1st + de_2nd) / 2;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs de=%d 1st=%d 2nd=%d\n",
path, val, de_1st, de_2nd);
} else {
val = tssi_info->tssi_6g_mcs[path][gidx];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs de=%d\n", path, val);
}
return val;
}
static s8 phy_tssi_get_ofdm_trim_de(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy,
const struct rtw89_chan *chan,
enum rtw89_rf_path path)
{
struct rtw89_tssi_info *tssi_info = &rtwdev->tssi;
enum rtw89_band band = chan->band_type;
u8 ch = chan->channel;
u32 tgidx_1st;
u32 tgidx_2nd;
s8 tde_1st;
s8 tde_2nd;
u32 tgidx;
s8 val;
if (band == RTW89_BAND_6G)
goto calc_6g;
tgidx = phy_tssi_get_trim_group(ch);
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_group_idx=0x%x\n",
path, tgidx);
if (PHY_IS_TSSI_EXTRA_GROUP(tgidx)) {
tgidx_1st = PHY_TSSI_EXTRA_GET_GROUP_IDX1(tgidx);
tgidx_2nd = PHY_TSSI_EXTRA_GET_GROUP_IDX2(tgidx);
tde_1st = tssi_info->tssi_trim[path][tgidx_1st];
tde_2nd = tssi_info->tssi_trim[path][tgidx_2nd];
val = (tde_1st + tde_2nd) / 2;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_de=%d 1st=%d 2nd=%d\n",
path, val, tde_1st, tde_2nd);
} else {
val = tssi_info->tssi_trim[path][tgidx];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_de=%d\n",
path, val);
}
return val;
calc_6g:
tgidx = phy_tssi_get_6g_trim_group(ch);
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_group_idx=0x%x\n",
path, tgidx);
if (PHY_IS_TSSI_EXTRA_GROUP(tgidx)) {
tgidx_1st = PHY_TSSI_EXTRA_GET_GROUP_IDX1(tgidx);
tgidx_2nd = PHY_TSSI_EXTRA_GET_GROUP_IDX2(tgidx);
tde_1st = tssi_info->tssi_trim_6g[path][tgidx_1st];
tde_2nd = tssi_info->tssi_trim_6g[path][tgidx_2nd];
val = (tde_1st + tde_2nd) / 2;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_de=%d 1st=%d 2nd=%d\n",
path, val, tde_1st, tde_2nd);
} else {
val = tssi_info->tssi_trim_6g[path][tgidx];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d mcs trim_de=%d\n",
path, val);
}
return val;
}
void rtw89_phy_rfk_tssi_fill_fwcmd_efuse_to_de(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy,
const struct rtw89_chan *chan,
struct rtw89_h2c_rf_tssi *h2c)
{
struct rtw89_tssi_info *tssi_info = &rtwdev->tssi;
u8 ch = chan->channel;
s8 trim_de;
s8 ofdm_de;
s8 cck_de;
u8 gidx;
s8 val;
int i;
rtw89_debug(rtwdev, RTW89_DBG_TSSI, "[TSSI][TRIM]: phy=%d ch=%d\n",
phy, ch);
for (i = RF_PATH_A; i <= RF_PATH_B; i++) {
trim_de = phy_tssi_get_ofdm_trim_de(rtwdev, phy, chan, i);
h2c->curr_tssi_trim_de[i] = trim_de;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d trim_de=0x%x\n", i, trim_de);
gidx = phy_tssi_get_cck_group(ch);
cck_de = tssi_info->tssi_cck[i][gidx];
val = u32_get_bits(cck_de + trim_de, 0xff);
h2c->curr_tssi_cck_de[i] = 0x0;
h2c->curr_tssi_cck_de_20m[i] = val;
h2c->curr_tssi_cck_de_40m[i] = val;
h2c->curr_tssi_efuse_cck_de[i] = cck_de;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d cck_de=0x%x\n", i, cck_de);
ofdm_de = phy_tssi_get_ofdm_de(rtwdev, phy, chan, i);
val = u32_get_bits(ofdm_de + trim_de, 0xff);
h2c->curr_tssi_ofdm_de[i] = 0x0;
h2c->curr_tssi_ofdm_de_20m[i] = val;
h2c->curr_tssi_ofdm_de_40m[i] = val;
h2c->curr_tssi_ofdm_de_80m[i] = val;
h2c->curr_tssi_ofdm_de_160m[i] = val;
h2c->curr_tssi_ofdm_de_320m[i] = val;
h2c->curr_tssi_efuse_ofdm_de[i] = ofdm_de;
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI][TRIM]: path=%d ofdm_de=0x%x\n", i, ofdm_de);
}
}
void rtw89_phy_rfk_tssi_fill_fwcmd_tmeter_tbl(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy,
const struct rtw89_chan *chan,
struct rtw89_h2c_rf_tssi *h2c)
{
struct rtw89_fw_txpwr_track_cfg *trk = rtwdev->fw.elm_info.txpwr_trk;
struct rtw89_tssi_info *tssi_info = &rtwdev->tssi;
const s8 *thm_up[RF_PATH_B + 1] = {};
const s8 *thm_down[RF_PATH_B + 1] = {};
u8 subband = chan->subband_type;
s8 thm_ofst[128] = {0};
u8 thermal;
u8 path;
u8 i, j;
switch (subband) {
default:
case RTW89_CH_2G:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_2GA_P][0];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_2GA_N][0];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_2GB_P][0];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_2GB_N][0];
break;
case RTW89_CH_5G_BAND_1:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_P][0];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_N][0];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_P][0];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_N][0];
break;
case RTW89_CH_5G_BAND_3:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_P][1];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_N][1];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_P][1];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_N][1];
break;
case RTW89_CH_5G_BAND_4:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_P][2];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GA_N][2];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_P][2];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_5GB_N][2];
break;
case RTW89_CH_6G_BAND_IDX0:
case RTW89_CH_6G_BAND_IDX1:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_P][0];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_N][0];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_P][0];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_N][0];
break;
case RTW89_CH_6G_BAND_IDX2:
case RTW89_CH_6G_BAND_IDX3:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_P][1];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_N][1];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_P][1];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_N][1];
break;
case RTW89_CH_6G_BAND_IDX4:
case RTW89_CH_6G_BAND_IDX5:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_P][2];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_N][2];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_P][2];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_N][2];
break;
case RTW89_CH_6G_BAND_IDX6:
case RTW89_CH_6G_BAND_IDX7:
thm_up[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_P][3];
thm_down[RF_PATH_A] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GA_N][3];
thm_up[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_P][3];
thm_down[RF_PATH_B] = trk->delta[RTW89_FW_TXPWR_TRK_TYPE_6GB_N][3];
break;
}
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"[TSSI] tmeter tbl on subband: %u\n", subband);
for (path = RF_PATH_A; path <= RF_PATH_B; path++) {
thermal = tssi_info->thermal[path];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"path: %u, pg thermal: 0x%x\n", path, thermal);
if (thermal == 0xff) {
h2c->pg_thermal[path] = 0x38;
memset(h2c->ftable[path], 0, sizeof(h2c->ftable[path]));
continue;
}
h2c->pg_thermal[path] = thermal;
i = 0;
for (j = 0; j < 64; j++)
thm_ofst[j] = i < DELTA_SWINGIDX_SIZE ?
thm_up[path][i++] :
thm_up[path][DELTA_SWINGIDX_SIZE - 1];
i = 1;
for (j = 127; j >= 64; j--)
thm_ofst[j] = i < DELTA_SWINGIDX_SIZE ?
-thm_down[path][i++] :
-thm_down[path][DELTA_SWINGIDX_SIZE - 1];
for (i = 0; i < 128; i += 4) {
h2c->ftable[path][i + 0] = thm_ofst[i + 3];
h2c->ftable[path][i + 1] = thm_ofst[i + 2];
h2c->ftable[path][i + 2] = thm_ofst[i + 1];
h2c->ftable[path][i + 3] = thm_ofst[i + 0];
rtw89_debug(rtwdev, RTW89_DBG_TSSI,
"thm ofst [%x]: %02x %02x %02x %02x\n",
i, thm_ofst[i], thm_ofst[i + 1],
thm_ofst[i + 2], thm_ofst[i + 3]);
}
}
}
static u8 rtw89_phy_cfo_get_xcap_reg(struct rtw89_dev *rtwdev, bool sc_xo)
{
const struct rtw89_xtal_info *xtal = rtwdev->chip->xtal_info;
u32 reg_mask;
if (sc_xo)
reg_mask = xtal->sc_xo_mask;
else
reg_mask = xtal->sc_xi_mask;
return (u8)rtw89_read32_mask(rtwdev, xtal->xcap_reg, reg_mask);
}
static void rtw89_phy_cfo_set_xcap_reg(struct rtw89_dev *rtwdev, bool sc_xo,
u8 val)
{
const struct rtw89_xtal_info *xtal = rtwdev->chip->xtal_info;
u32 reg_mask;
if (sc_xo)
reg_mask = xtal->sc_xo_mask;
else
reg_mask = xtal->sc_xi_mask;
rtw89_write32_mask(rtwdev, xtal->xcap_reg, reg_mask, val);
}
static void rtw89_phy_cfo_set_crystal_cap(struct rtw89_dev *rtwdev,
u8 crystal_cap, bool force)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
const struct rtw89_chip_info *chip = rtwdev->chip;
u8 sc_xi_val, sc_xo_val;
if (!force && cfo->crystal_cap == crystal_cap)
return;
crystal_cap = clamp_t(u8, crystal_cap, 0, 127);
if (chip->chip_id == RTL8852A || chip->chip_id == RTL8851B) {
rtw89_phy_cfo_set_xcap_reg(rtwdev, true, crystal_cap);
rtw89_phy_cfo_set_xcap_reg(rtwdev, false, crystal_cap);
sc_xo_val = rtw89_phy_cfo_get_xcap_reg(rtwdev, true);
sc_xi_val = rtw89_phy_cfo_get_xcap_reg(rtwdev, false);
} else {
rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_XTAL_SC_XO,
crystal_cap, XTAL_SC_XO_MASK);
rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_XTAL_SC_XI,
crystal_cap, XTAL_SC_XI_MASK);
rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_XTAL_SC_XO, &sc_xo_val);
rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_XTAL_SC_XI, &sc_xi_val);
}
cfo->crystal_cap = sc_xi_val;
cfo->x_cap_ofst = (s8)((int)cfo->crystal_cap - cfo->def_x_cap);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Set sc_xi=0x%x\n", sc_xi_val);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Set sc_xo=0x%x\n", sc_xo_val);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Get xcap_ofst=%d\n",
cfo->x_cap_ofst);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Set xcap OK\n");
}
static void rtw89_phy_cfo_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
u8 cap;
cfo->def_x_cap = cfo->crystal_cap_default & B_AX_XTAL_SC_MASK;
cfo->is_adjust = false;
if (cfo->crystal_cap == cfo->def_x_cap)
return;
cap = cfo->crystal_cap;
cap += (cap > cfo->def_x_cap ? -1 : 1);
rtw89_phy_cfo_set_crystal_cap(rtwdev, cap, false);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"(0x%x) approach to dflt_val=(0x%x)\n", cfo->crystal_cap,
cfo->def_x_cap);
}
static void rtw89_dcfo_comp(struct rtw89_dev *rtwdev, s32 curr_cfo)
{
const struct rtw89_reg_def *dcfo_comp = rtwdev->chip->dcfo_comp;
bool is_linked = rtwdev->total_sta_assoc > 0;
s32 cfo_avg_312;
s32 dcfo_comp_val;
int sign;
if (rtwdev->chip->chip_id == RTL8922A)
return;
if (!is_linked) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "DCFO: is_linked=%d\n",
is_linked);
return;
}
rtw89_debug(rtwdev, RTW89_DBG_CFO, "DCFO: curr_cfo=%d\n", curr_cfo);
if (curr_cfo == 0)
return;
dcfo_comp_val = rtw89_phy_read32_mask(rtwdev, R_DCFO, B_DCFO);
sign = curr_cfo > 0 ? 1 : -1;
cfo_avg_312 = curr_cfo / 625 + sign * dcfo_comp_val;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "avg_cfo_312=%d step\n", cfo_avg_312);
if (rtwdev->chip->chip_id == RTL8852A && rtwdev->hal.cv == CHIP_CBV)
cfo_avg_312 = -cfo_avg_312;
rtw89_phy_set_phy_regs(rtwdev, dcfo_comp->addr, dcfo_comp->mask,
cfo_avg_312);
}
static void rtw89_dcfo_comp_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_cfo_regs *cfo = phy->cfo;
rtw89_phy_set_phy_regs(rtwdev, cfo->comp_seg0, cfo->valid_0_mask, 1);
rtw89_phy_set_phy_regs(rtwdev, cfo->comp, cfo->weighting_mask, 8);
if (chip->chip_gen == RTW89_CHIP_AX) {
if (chip->cfo_hw_comp) {
rtw89_write32_mask(rtwdev, R_AX_PWR_UL_CTRL2,
B_AX_PWR_UL_CFO_MASK, 0x6);
} else {
rtw89_phy_set_phy_regs(rtwdev, R_DCFO, B_DCFO, 1);
rtw89_write32_clr(rtwdev, R_AX_PWR_UL_CTRL2,
B_AX_PWR_UL_CFO_MASK);
}
}
}
static void rtw89_phy_cfo_init(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
struct rtw89_efuse *efuse = &rtwdev->efuse;
cfo->crystal_cap_default = efuse->xtal_cap & B_AX_XTAL_SC_MASK;
cfo->crystal_cap = cfo->crystal_cap_default;
cfo->def_x_cap = cfo->crystal_cap;
cfo->x_cap_ub = min_t(int, cfo->def_x_cap + CFO_BOUND, 0x7f);
cfo->x_cap_lb = max_t(int, cfo->def_x_cap - CFO_BOUND, 0x1);
cfo->is_adjust = false;
cfo->divergence_lock_en = false;
cfo->x_cap_ofst = 0;
cfo->lock_cnt = 0;
cfo->rtw89_multi_cfo_mode = RTW89_TP_BASED_AVG_MODE;
cfo->apply_compensation = false;
cfo->residual_cfo_acc = 0;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Default xcap=%0x\n",
cfo->crystal_cap_default);
rtw89_phy_cfo_set_crystal_cap(rtwdev, cfo->crystal_cap_default, true);
rtw89_dcfo_comp_init(rtwdev);
cfo->cfo_timer_ms = 2000;
cfo->cfo_trig_by_timer_en = false;
cfo->phy_cfo_trk_cnt = 0;
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_NORMAL;
cfo->cfo_ul_ofdma_acc_mode = RTW89_CFO_UL_OFDMA_ACC_ENABLE;
}
static void rtw89_phy_cfo_crystal_cap_adjust(struct rtw89_dev *rtwdev,
s32 curr_cfo)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
s8 crystal_cap = cfo->crystal_cap;
s32 cfo_abs = abs(curr_cfo);
int sign;
if (curr_cfo == 0) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "curr_cfo=0\n");
return;
}
if (!cfo->is_adjust) {
if (cfo_abs > CFO_TRK_ENABLE_TH)
cfo->is_adjust = true;
} else {
if (cfo_abs <= CFO_TRK_STOP_TH)
cfo->is_adjust = false;
}
if (!cfo->is_adjust) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Stop CFO tracking\n");
return;
}
sign = curr_cfo > 0 ? 1 : -1;
if (cfo_abs > CFO_TRK_STOP_TH_4)
crystal_cap += 7 * sign;
else if (cfo_abs > CFO_TRK_STOP_TH_3)
crystal_cap += 5 * sign;
else if (cfo_abs > CFO_TRK_STOP_TH_2)
crystal_cap += 3 * sign;
else if (cfo_abs > CFO_TRK_STOP_TH_1)
crystal_cap += 1 * sign;
else
return;
rtw89_phy_cfo_set_crystal_cap(rtwdev, (u8)crystal_cap, false);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"X_cap{Curr,Default}={0x%x,0x%x}\n",
cfo->crystal_cap, cfo->def_x_cap);
}
static s32 rtw89_phy_average_cfo_calc(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
s32 cfo_khz_all = 0;
s32 cfo_cnt_all = 0;
s32 cfo_all_avg = 0;
u8 i;
if (rtwdev->total_sta_assoc != 1)
return 0;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "one_entry_only\n");
for (i = 0; i < CFO_TRACK_MAX_USER; i++) {
if (cfo->cfo_cnt[i] == 0)
continue;
cfo_khz_all += cfo->cfo_tail[i];
cfo_cnt_all += cfo->cfo_cnt[i];
cfo_all_avg = phy_div(cfo_khz_all, cfo_cnt_all);
cfo->pre_cfo_avg[i] = cfo->cfo_avg[i];
cfo->dcfo_avg = phy_div(cfo_khz_all << chip->dcfo_comp_sft,
cfo_cnt_all);
}
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"CFO track for macid = %d\n", i);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"Total cfo=%dK, pkt_cnt=%d, avg_cfo=%dK\n",
cfo_khz_all, cfo_cnt_all, cfo_all_avg);
return cfo_all_avg;
}
static s32 rtw89_phy_multi_sta_cfo_calc(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
struct rtw89_traffic_stats *stats = &rtwdev->stats;
s32 target_cfo = 0;
s32 cfo_khz_all = 0;
s32 cfo_khz_all_tp_wgt = 0;
s32 cfo_avg = 0;
s32 max_cfo_lb = BIT(31);
s32 min_cfo_ub = GENMASK(30, 0);
u16 cfo_cnt_all = 0;
u8 active_entry_cnt = 0;
u8 sta_cnt = 0;
u32 tp_all = 0;
u8 i;
u8 cfo_tol = 0;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Multi entry cfo_trk\n");
if (cfo->rtw89_multi_cfo_mode == RTW89_PKT_BASED_AVG_MODE) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Pkt based avg mode\n");
for (i = 0; i < CFO_TRACK_MAX_USER; i++) {
if (cfo->cfo_cnt[i] == 0)
continue;
cfo_khz_all += cfo->cfo_tail[i];
cfo_cnt_all += cfo->cfo_cnt[i];
cfo_avg = phy_div(cfo_khz_all, (s32)cfo_cnt_all);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"Msta cfo=%d, pkt_cnt=%d, avg_cfo=%d\n",
cfo_khz_all, cfo_cnt_all, cfo_avg);
target_cfo = cfo_avg;
}
} else if (cfo->rtw89_multi_cfo_mode == RTW89_ENTRY_BASED_AVG_MODE) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Entry based avg mode\n");
for (i = 0; i < CFO_TRACK_MAX_USER; i++) {
if (cfo->cfo_cnt[i] == 0)
continue;
cfo->cfo_avg[i] = phy_div(cfo->cfo_tail[i],
(s32)cfo->cfo_cnt[i]);
cfo_khz_all += cfo->cfo_avg[i];
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"Macid=%d, cfo_avg=%d\n", i,
cfo->cfo_avg[i]);
}
sta_cnt = rtwdev->total_sta_assoc;
cfo_avg = phy_div(cfo_khz_all, (s32)sta_cnt);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"Msta cfo_acc=%d, ent_cnt=%d, avg_cfo=%d\n",
cfo_khz_all, sta_cnt, cfo_avg);
target_cfo = cfo_avg;
} else if (cfo->rtw89_multi_cfo_mode == RTW89_TP_BASED_AVG_MODE) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "TP based avg mode\n");
cfo_tol = cfo->sta_cfo_tolerance;
for (i = 0; i < CFO_TRACK_MAX_USER; i++) {
sta_cnt++;
if (cfo->cfo_cnt[i] != 0) {
cfo->cfo_avg[i] = phy_div(cfo->cfo_tail[i],
(s32)cfo->cfo_cnt[i]);
active_entry_cnt++;
} else {
cfo->cfo_avg[i] = cfo->pre_cfo_avg[i];
}
max_cfo_lb = max(cfo->cfo_avg[i] - cfo_tol, max_cfo_lb);
min_cfo_ub = min(cfo->cfo_avg[i] + cfo_tol, min_cfo_ub);
cfo_khz_all += cfo->cfo_avg[i];
/* need tp for each entry */
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"[%d] cfo_avg=%d, tp=tbd\n",
i, cfo->cfo_avg[i]);
if (sta_cnt >= rtwdev->total_sta_assoc)
break;
}
tp_all = stats->rx_throughput; /* need tp for each entry */
cfo_avg = phy_div(cfo_khz_all_tp_wgt, (s32)tp_all);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Assoc sta cnt=%d\n",
sta_cnt);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Active sta cnt=%d\n",
active_entry_cnt);
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"Msta cfo with tp_wgt=%d, avg_cfo=%d\n",
cfo_khz_all_tp_wgt, cfo_avg);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "cfo_lb=%d,cfo_ub=%d\n",
max_cfo_lb, min_cfo_ub);
if (max_cfo_lb <= min_cfo_ub) {
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"cfo win_size=%d\n",
min_cfo_ub - max_cfo_lb);
target_cfo = clamp(cfo_avg, max_cfo_lb, min_cfo_ub);
} else {
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"No intersection of cfo tolerance windows\n");
target_cfo = phy_div(cfo_khz_all, (s32)sta_cnt);
}
for (i = 0; i < CFO_TRACK_MAX_USER; i++)
cfo->pre_cfo_avg[i] = cfo->cfo_avg[i];
}
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Target cfo=%d\n", target_cfo);
return target_cfo;
}
static void rtw89_phy_cfo_statistics_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
memset(&cfo->cfo_tail, 0, sizeof(cfo->cfo_tail));
memset(&cfo->cfo_cnt, 0, sizeof(cfo->cfo_cnt));
cfo->packet_count = 0;
cfo->packet_count_pre = 0;
cfo->cfo_avg_pre = 0;
}
static void rtw89_phy_cfo_dm(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
s32 new_cfo = 0;
bool x_cap_update = false;
u8 pre_x_cap = cfo->crystal_cap;
u8 dcfo_comp_sft = rtwdev->chip->dcfo_comp_sft;
cfo->dcfo_avg = 0;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "CFO:total_sta_assoc=%d\n",
rtwdev->total_sta_assoc);
if (rtwdev->total_sta_assoc == 0) {
rtw89_phy_cfo_reset(rtwdev);
return;
}
if (cfo->packet_count == 0) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Pkt cnt = 0\n");
return;
}
if (cfo->packet_count == cfo->packet_count_pre) {
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Pkt cnt doesn't change\n");
return;
}
if (rtwdev->total_sta_assoc == 1)
new_cfo = rtw89_phy_average_cfo_calc(rtwdev);
else
new_cfo = rtw89_phy_multi_sta_cfo_calc(rtwdev);
if (cfo->divergence_lock_en) {
cfo->lock_cnt++;
if (cfo->lock_cnt > CFO_PERIOD_CNT) {
cfo->divergence_lock_en = false;
cfo->lock_cnt = 0;
} else {
rtw89_phy_cfo_reset(rtwdev);
}
return;
}
if (cfo->crystal_cap >= cfo->x_cap_ub ||
cfo->crystal_cap <= cfo->x_cap_lb) {
cfo->divergence_lock_en = true;
rtw89_phy_cfo_reset(rtwdev);
return;
}
rtw89_phy_cfo_crystal_cap_adjust(rtwdev, new_cfo);
cfo->cfo_avg_pre = new_cfo;
cfo->dcfo_avg_pre = cfo->dcfo_avg;
x_cap_update = cfo->crystal_cap != pre_x_cap;
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Xcap_up=%d\n", x_cap_update);
rtw89_debug(rtwdev, RTW89_DBG_CFO, "Xcap: D:%x C:%x->%x, ofst=%d\n",
cfo->def_x_cap, pre_x_cap, cfo->crystal_cap,
cfo->x_cap_ofst);
if (x_cap_update) {
if (cfo->dcfo_avg > 0)
cfo->dcfo_avg -= CFO_SW_COMP_FINE_TUNE << dcfo_comp_sft;
else
cfo->dcfo_avg += CFO_SW_COMP_FINE_TUNE << dcfo_comp_sft;
}
rtw89_dcfo_comp(rtwdev, cfo->dcfo_avg);
rtw89_phy_cfo_statistics_reset(rtwdev);
}
void rtw89_phy_cfo_track_work(struct work_struct *work)
{
struct rtw89_dev *rtwdev = container_of(work, struct rtw89_dev,
cfo_track_work.work);
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
mutex_lock(&rtwdev->mutex);
if (!cfo->cfo_trig_by_timer_en)
goto out;
rtw89_leave_ps_mode(rtwdev);
rtw89_phy_cfo_dm(rtwdev);
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->cfo_track_work,
msecs_to_jiffies(cfo->cfo_timer_ms));
out:
mutex_unlock(&rtwdev->mutex);
}
static void rtw89_phy_cfo_start_work(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->cfo_track_work,
msecs_to_jiffies(cfo->cfo_timer_ms));
}
void rtw89_phy_cfo_track(struct rtw89_dev *rtwdev)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
struct rtw89_traffic_stats *stats = &rtwdev->stats;
bool is_ul_ofdma = false, ofdma_acc_en = false;
if (stats->rx_tf_periodic > CFO_TF_CNT_TH)
is_ul_ofdma = true;
if (cfo->cfo_ul_ofdma_acc_mode == RTW89_CFO_UL_OFDMA_ACC_ENABLE &&
is_ul_ofdma)
ofdma_acc_en = true;
switch (cfo->phy_cfo_status) {
case RTW89_PHY_DCFO_STATE_NORMAL:
if (stats->tx_throughput >= CFO_TP_UPPER) {
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_ENHANCE;
cfo->cfo_trig_by_timer_en = true;
cfo->cfo_timer_ms = CFO_COMP_PERIOD;
rtw89_phy_cfo_start_work(rtwdev);
}
break;
case RTW89_PHY_DCFO_STATE_ENHANCE:
if (stats->tx_throughput <= CFO_TP_LOWER)
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_NORMAL;
else if (ofdma_acc_en &&
cfo->phy_cfo_trk_cnt >= CFO_PERIOD_CNT)
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_HOLD;
else
cfo->phy_cfo_trk_cnt++;
if (cfo->phy_cfo_status == RTW89_PHY_DCFO_STATE_NORMAL) {
cfo->phy_cfo_trk_cnt = 0;
cfo->cfo_trig_by_timer_en = false;
}
break;
case RTW89_PHY_DCFO_STATE_HOLD:
if (stats->tx_throughput <= CFO_TP_LOWER) {
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_NORMAL;
cfo->phy_cfo_trk_cnt = 0;
cfo->cfo_trig_by_timer_en = false;
} else {
cfo->phy_cfo_trk_cnt++;
}
break;
default:
cfo->phy_cfo_status = RTW89_PHY_DCFO_STATE_NORMAL;
cfo->phy_cfo_trk_cnt = 0;
break;
}
rtw89_debug(rtwdev, RTW89_DBG_CFO,
"[CFO]WatchDog tp=%d,state=%d,timer_en=%d,trk_cnt=%d,thermal=%ld\n",
stats->tx_throughput, cfo->phy_cfo_status,
cfo->cfo_trig_by_timer_en, cfo->phy_cfo_trk_cnt,
ewma_thermal_read(&rtwdev->phystat.avg_thermal[0]));
if (cfo->cfo_trig_by_timer_en)
return;
rtw89_phy_cfo_dm(rtwdev);
}
void rtw89_phy_cfo_parse(struct rtw89_dev *rtwdev, s16 cfo_val,
struct rtw89_rx_phy_ppdu *phy_ppdu)
{
struct rtw89_cfo_tracking_info *cfo = &rtwdev->cfo_tracking;
u8 macid = phy_ppdu->mac_id;
if (macid >= CFO_TRACK_MAX_USER) {
rtw89_warn(rtwdev, "mac_id %d is out of range\n", macid);
return;
}
cfo->cfo_tail[macid] += cfo_val;
cfo->cfo_cnt[macid]++;
cfo->packet_count++;
}
void rtw89_phy_ul_tb_assoc(struct rtw89_dev *rtwdev, struct rtw89_vif *rtwvif)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev,
rtwvif->chanctx_idx);
struct rtw89_phy_ul_tb_info *ul_tb_info = &rtwdev->ul_tb_info;
if (!chip->ul_tb_waveform_ctrl)
return;
rtwvif->def_tri_idx =
rtw89_phy_read32_mask(rtwdev, R_DCFO_OPT, B_TXSHAPE_TRIANGULAR_CFG);
if (chip->chip_id == RTL8852B && rtwdev->hal.cv > CHIP_CBV)
rtwvif->dyn_tb_bedge_en = false;
else if (chan->band_type >= RTW89_BAND_5G &&
chan->band_width >= RTW89_CHANNEL_WIDTH_40)
rtwvif->dyn_tb_bedge_en = true;
else
rtwvif->dyn_tb_bedge_en = false;
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] def_if_bandedge=%d, def_tri_idx=%d\n",
ul_tb_info->def_if_bandedge, rtwvif->def_tri_idx);
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] dyn_tb_begde_en=%d, dyn_tb_tri_en=%d\n",
rtwvif->dyn_tb_bedge_en, ul_tb_info->dyn_tb_tri_en);
}
struct rtw89_phy_ul_tb_check_data {
bool valid;
bool high_tf_client;
bool low_tf_client;
bool dyn_tb_bedge_en;
u8 def_tri_idx;
};
struct rtw89_phy_power_diff {
u32 q_00;
u32 q_11;
u32 q_matrix_en;
u32 ultb_1t_norm_160;
u32 ultb_2t_norm_160;
u32 com1_norm_1sts;
u32 com2_resp_1sts_path;
};
static void rtw89_phy_ofdma_power_diff(struct rtw89_dev *rtwdev,
struct rtw89_vif *rtwvif)
{
static const struct rtw89_phy_power_diff table[2] = {
{0x0, 0x0, 0x0, 0x0, 0xf4, 0x3, 0x3},
{0xb50, 0xb50, 0x1, 0xc, 0x0, 0x1, 0x1},
};
const struct rtw89_phy_power_diff *param;
u32 reg;
if (!rtwdev->chip->ul_tb_pwr_diff)
return;
if (rtwvif->pwr_diff_en == rtwvif->pre_pwr_diff_en) {
rtwvif->pwr_diff_en = false;
return;
}
rtwvif->pre_pwr_diff_en = rtwvif->pwr_diff_en;
param = &table[rtwvif->pwr_diff_en];
rtw89_phy_write32_mask(rtwdev, R_Q_MATRIX_00, B_Q_MATRIX_00_REAL,
param->q_00);
rtw89_phy_write32_mask(rtwdev, R_Q_MATRIX_11, B_Q_MATRIX_11_REAL,
param->q_11);
rtw89_phy_write32_mask(rtwdev, R_CUSTOMIZE_Q_MATRIX,
B_CUSTOMIZE_Q_MATRIX_EN, param->q_matrix_en);
reg = rtw89_mac_reg_by_idx(rtwdev, R_AX_PWR_UL_TB_1T, rtwvif->mac_idx);
rtw89_write32_mask(rtwdev, reg, B_AX_PWR_UL_TB_1T_NORM_BW160,
param->ultb_1t_norm_160);
reg = rtw89_mac_reg_by_idx(rtwdev, R_AX_PWR_UL_TB_2T, rtwvif->mac_idx);
rtw89_write32_mask(rtwdev, reg, B_AX_PWR_UL_TB_2T_NORM_BW160,
param->ultb_2t_norm_160);
reg = rtw89_mac_reg_by_idx(rtwdev, R_AX_PATH_COM1, rtwvif->mac_idx);
rtw89_write32_mask(rtwdev, reg, B_AX_PATH_COM1_NORM_1STS,
param->com1_norm_1sts);
reg = rtw89_mac_reg_by_idx(rtwdev, R_AX_PATH_COM2, rtwvif->mac_idx);
rtw89_write32_mask(rtwdev, reg, B_AX_PATH_COM2_RESP_1STS_PATH,
param->com2_resp_1sts_path);
}
static
void rtw89_phy_ul_tb_ctrl_check(struct rtw89_dev *rtwdev,
struct rtw89_vif *rtwvif,
struct rtw89_phy_ul_tb_check_data *ul_tb_data)
{
struct rtw89_traffic_stats *stats = &rtwdev->stats;
struct ieee80211_vif *vif = rtwvif_to_vif(rtwvif);
if (rtwvif->wifi_role != RTW89_WIFI_ROLE_STATION)
return;
if (!vif->cfg.assoc)
return;
if (rtwdev->chip->ul_tb_waveform_ctrl) {
if (stats->rx_tf_periodic > UL_TB_TF_CNT_L2H_TH)
ul_tb_data->high_tf_client = true;
else if (stats->rx_tf_periodic < UL_TB_TF_CNT_H2L_TH)
ul_tb_data->low_tf_client = true;
ul_tb_data->valid = true;
ul_tb_data->def_tri_idx = rtwvif->def_tri_idx;
ul_tb_data->dyn_tb_bedge_en = rtwvif->dyn_tb_bedge_en;
}
rtw89_phy_ofdma_power_diff(rtwdev, rtwvif);
}
static void rtw89_phy_ul_tb_waveform_ctrl(struct rtw89_dev *rtwdev,
struct rtw89_phy_ul_tb_check_data *ul_tb_data)
{
struct rtw89_phy_ul_tb_info *ul_tb_info = &rtwdev->ul_tb_info;
if (!rtwdev->chip->ul_tb_waveform_ctrl)
return;
if (ul_tb_data->dyn_tb_bedge_en) {
if (ul_tb_data->high_tf_client) {
rtw89_phy_write32_mask(rtwdev, R_BANDEDGE, B_BANDEDGE_EN, 0);
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] Turn off if_bandedge\n");
} else if (ul_tb_data->low_tf_client) {
rtw89_phy_write32_mask(rtwdev, R_BANDEDGE, B_BANDEDGE_EN,
ul_tb_info->def_if_bandedge);
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] Set to default if_bandedge = %d\n",
ul_tb_info->def_if_bandedge);
}
}
if (ul_tb_info->dyn_tb_tri_en) {
if (ul_tb_data->high_tf_client) {
rtw89_phy_write32_mask(rtwdev, R_DCFO_OPT,
B_TXSHAPE_TRIANGULAR_CFG, 0);
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] Turn off Tx triangle\n");
} else if (ul_tb_data->low_tf_client) {
rtw89_phy_write32_mask(rtwdev, R_DCFO_OPT,
B_TXSHAPE_TRIANGULAR_CFG,
ul_tb_data->def_tri_idx);
rtw89_debug(rtwdev, RTW89_DBG_UL_TB,
"[ULTB] Set to default tx_shap_idx = %d\n",
ul_tb_data->def_tri_idx);
}
}
}
void rtw89_phy_ul_tb_ctrl_track(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_phy_ul_tb_check_data ul_tb_data = {};
struct rtw89_vif *rtwvif;
if (!chip->ul_tb_waveform_ctrl && !chip->ul_tb_pwr_diff)
return;
if (rtwdev->total_sta_assoc != 1)
return;
rtw89_for_each_rtwvif(rtwdev, rtwvif)
rtw89_phy_ul_tb_ctrl_check(rtwdev, rtwvif, &ul_tb_data);
if (!ul_tb_data.valid)
return;
rtw89_phy_ul_tb_waveform_ctrl(rtwdev, &ul_tb_data);
}
static void rtw89_phy_ul_tb_info_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_phy_ul_tb_info *ul_tb_info = &rtwdev->ul_tb_info;
if (!chip->ul_tb_waveform_ctrl)
return;
ul_tb_info->dyn_tb_tri_en = true;
ul_tb_info->def_if_bandedge =
rtw89_phy_read32_mask(rtwdev, R_BANDEDGE, B_BANDEDGE_EN);
}
static
void rtw89_phy_antdiv_sts_instance_reset(struct rtw89_antdiv_stats *antdiv_sts)
{
ewma_rssi_init(&antdiv_sts->cck_rssi_avg);
ewma_rssi_init(&antdiv_sts->ofdm_rssi_avg);
ewma_rssi_init(&antdiv_sts->non_legacy_rssi_avg);
antdiv_sts->pkt_cnt_cck = 0;
antdiv_sts->pkt_cnt_ofdm = 0;
antdiv_sts->pkt_cnt_non_legacy = 0;
antdiv_sts->evm = 0;
}
static void rtw89_phy_antdiv_sts_instance_add(struct rtw89_dev *rtwdev,
struct rtw89_rx_phy_ppdu *phy_ppdu,
struct rtw89_antdiv_stats *stats)
{
if (rtw89_get_data_rate_mode(rtwdev, phy_ppdu->rate) == DATA_RATE_MODE_NON_HT) {
if (phy_ppdu->rate < RTW89_HW_RATE_OFDM6) {
ewma_rssi_add(&stats->cck_rssi_avg, phy_ppdu->rssi_avg);
stats->pkt_cnt_cck++;
} else {
ewma_rssi_add(&stats->ofdm_rssi_avg, phy_ppdu->rssi_avg);
stats->pkt_cnt_ofdm++;
stats->evm += phy_ppdu->ofdm.evm_min;
}
} else {
ewma_rssi_add(&stats->non_legacy_rssi_avg, phy_ppdu->rssi_avg);
stats->pkt_cnt_non_legacy++;
stats->evm += phy_ppdu->ofdm.evm_min;
}
}
static u8 rtw89_phy_antdiv_sts_instance_get_rssi(struct rtw89_antdiv_stats *stats)
{
if (stats->pkt_cnt_non_legacy >= stats->pkt_cnt_cck &&
stats->pkt_cnt_non_legacy >= stats->pkt_cnt_ofdm)
return ewma_rssi_read(&stats->non_legacy_rssi_avg);
else if (stats->pkt_cnt_ofdm >= stats->pkt_cnt_cck &&
stats->pkt_cnt_ofdm >= stats->pkt_cnt_non_legacy)
return ewma_rssi_read(&stats->ofdm_rssi_avg);
else
return ewma_rssi_read(&stats->cck_rssi_avg);
}
static u8 rtw89_phy_antdiv_sts_instance_get_evm(struct rtw89_antdiv_stats *stats)
{
return phy_div(stats->evm, stats->pkt_cnt_non_legacy + stats->pkt_cnt_ofdm);
}
void rtw89_phy_antdiv_parse(struct rtw89_dev *rtwdev,
struct rtw89_rx_phy_ppdu *phy_ppdu)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
struct rtw89_hal *hal = &rtwdev->hal;
if (!hal->ant_diversity || hal->ant_diversity_fixed)
return;
rtw89_phy_antdiv_sts_instance_add(rtwdev, phy_ppdu, &antdiv->target_stats);
if (!antdiv->get_stats)
return;
if (hal->antenna_rx == RF_A)
rtw89_phy_antdiv_sts_instance_add(rtwdev, phy_ppdu, &antdiv->main_stats);
else if (hal->antenna_rx == RF_B)
rtw89_phy_antdiv_sts_instance_add(rtwdev, phy_ppdu, &antdiv->aux_stats);
}
static void rtw89_phy_antdiv_reg_init(struct rtw89_dev *rtwdev)
{
rtw89_phy_write32_idx(rtwdev, R_P0_TRSW, B_P0_ANT_TRAIN_EN,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_TRSW, B_P0_TX_ANT_SEL,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANT_SW, B_P0_TRSW_TX_EXTEND,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANT_SW, B_P0_HW_ANTSW_DIS_BY_GNT_BT,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_TRSW, B_P0_BT_FORCE_ANTIDX_EN,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_RFSW_CTRL_ANT0_BASE, B_RFSW_CTRL_ANT_MAPPING,
0x0100, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_BTG_TRX,
0x1, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_HW_CTRL,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_SW_2G,
0x0, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_SW_5G,
0x0, RTW89_PHY_0);
}
static void rtw89_phy_antdiv_sts_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
rtw89_phy_antdiv_sts_instance_reset(&antdiv->target_stats);
rtw89_phy_antdiv_sts_instance_reset(&antdiv->main_stats);
rtw89_phy_antdiv_sts_instance_reset(&antdiv->aux_stats);
}
static void rtw89_phy_antdiv_init(struct rtw89_dev *rtwdev)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
struct rtw89_hal *hal = &rtwdev->hal;
if (!hal->ant_diversity)
return;
antdiv->get_stats = false;
antdiv->rssi_pre = 0;
rtw89_phy_antdiv_sts_reset(rtwdev);
rtw89_phy_antdiv_reg_init(rtwdev);
}
static void rtw89_phy_stat_thermal_update(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_stat *phystat = &rtwdev->phystat;
int i;
u8 th;
for (i = 0; i < rtwdev->chip->rf_path_num; i++) {
th = rtw89_chip_get_thermal(rtwdev, i);
if (th)
ewma_thermal_add(&phystat->avg_thermal[i], th);
rtw89_debug(rtwdev, RTW89_DBG_RFK_TRACK,
"path(%d) thermal cur=%u avg=%ld", i, th,
ewma_thermal_read(&phystat->avg_thermal[i]));
}
}
struct rtw89_phy_iter_rssi_data {
struct rtw89_dev *rtwdev;
struct rtw89_phy_ch_info *ch_info;
bool rssi_changed;
};
static void rtw89_phy_stat_rssi_update_iter(void *data,
struct ieee80211_sta *sta)
{
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
struct rtw89_phy_iter_rssi_data *rssi_data =
(struct rtw89_phy_iter_rssi_data *)data;
struct rtw89_phy_ch_info *ch_info = rssi_data->ch_info;
unsigned long rssi_curr;
rssi_curr = ewma_rssi_read(&rtwsta->avg_rssi);
if (rssi_curr < ch_info->rssi_min) {
ch_info->rssi_min = rssi_curr;
ch_info->rssi_min_macid = rtwsta->mac_id;
}
if (rtwsta->prev_rssi == 0) {
rtwsta->prev_rssi = rssi_curr;
} else if (abs((int)rtwsta->prev_rssi - (int)rssi_curr) > (3 << RSSI_FACTOR)) {
rtwsta->prev_rssi = rssi_curr;
rssi_data->rssi_changed = true;
}
}
static void rtw89_phy_stat_rssi_update(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_iter_rssi_data rssi_data = {0};
rssi_data.rtwdev = rtwdev;
rssi_data.ch_info = &rtwdev->ch_info;
rssi_data.ch_info->rssi_min = U8_MAX;
ieee80211_iterate_stations_atomic(rtwdev->hw,
rtw89_phy_stat_rssi_update_iter,
&rssi_data);
if (rssi_data.rssi_changed)
rtw89_btc_ntfy_wl_sta(rtwdev);
}
static void rtw89_phy_stat_init(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_stat *phystat = &rtwdev->phystat;
int i;
for (i = 0; i < rtwdev->chip->rf_path_num; i++)
ewma_thermal_init(&phystat->avg_thermal[i]);
rtw89_phy_stat_thermal_update(rtwdev);
memset(&phystat->cur_pkt_stat, 0, sizeof(phystat->cur_pkt_stat));
memset(&phystat->last_pkt_stat, 0, sizeof(phystat->last_pkt_stat));
}
void rtw89_phy_stat_track(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_stat *phystat = &rtwdev->phystat;
rtw89_phy_stat_thermal_update(rtwdev);
rtw89_phy_stat_rssi_update(rtwdev);
phystat->last_pkt_stat = phystat->cur_pkt_stat;
memset(&phystat->cur_pkt_stat, 0, sizeof(phystat->cur_pkt_stat));
}
static u16 rtw89_phy_ccx_us_to_idx(struct rtw89_dev *rtwdev, u32 time_us)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
return time_us >> (ilog2(CCX_US_BASE_RATIO) + env->ccx_unit_idx);
}
static u32 rtw89_phy_ccx_idx_to_us(struct rtw89_dev *rtwdev, u16 idx)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
return idx << (ilog2(CCX_US_BASE_RATIO) + env->ccx_unit_idx);
}
static void rtw89_phy_ccx_top_setting_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
env->ccx_manual_ctrl = false;
env->ccx_ongoing = false;
env->ccx_rac_lv = RTW89_RAC_RELEASE;
env->ccx_period = 0;
env->ccx_unit_idx = RTW89_CCX_32_US;
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->en_mask, 1);
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->trig_opt_mask, 1);
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->measurement_trig_mask, 1);
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->edcca_opt_mask,
RTW89_CCX_EDCCA_BW20_0);
}
static u16 rtw89_phy_ccx_get_report(struct rtw89_dev *rtwdev, u16 report,
u16 score)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
u32 numer = 0;
u16 ret = 0;
numer = report * score + (env->ccx_period >> 1);
if (env->ccx_period)
ret = numer / env->ccx_period;
return ret >= score ? score - 1 : ret;
}
static void rtw89_phy_ccx_ms_to_period_unit(struct rtw89_dev *rtwdev,
u16 time_ms, u32 *period,
u32 *unit_idx)
{
u32 idx;
u8 quotient;
if (time_ms >= CCX_MAX_PERIOD)
time_ms = CCX_MAX_PERIOD;
quotient = CCX_MAX_PERIOD_UNIT * time_ms / CCX_MAX_PERIOD;
if (quotient < 4)
idx = RTW89_CCX_4_US;
else if (quotient < 8)
idx = RTW89_CCX_8_US;
else if (quotient < 16)
idx = RTW89_CCX_16_US;
else
idx = RTW89_CCX_32_US;
*unit_idx = idx;
*period = (time_ms * MS_TO_4US_RATIO) >> idx;
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"[Trigger Time] period:%d, unit_idx:%d\n",
*period, *unit_idx);
}
static void rtw89_phy_ccx_racing_release(struct rtw89_dev *rtwdev)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"lv:(%d)->(0)\n", env->ccx_rac_lv);
env->ccx_ongoing = false;
env->ccx_rac_lv = RTW89_RAC_RELEASE;
env->ifs_clm_app = RTW89_IFS_CLM_BACKGROUND;
}
static bool rtw89_phy_ifs_clm_th_update_check(struct rtw89_dev *rtwdev,
struct rtw89_ccx_para_info *para)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
bool is_update = env->ifs_clm_app != para->ifs_clm_app;
u8 i = 0;
u16 *ifs_th_l = env->ifs_clm_th_l;
u16 *ifs_th_h = env->ifs_clm_th_h;
u32 ifs_th0_us = 0, ifs_th_times = 0;
u32 ifs_th_h_us[RTW89_IFS_CLM_NUM] = {0};
if (!is_update)
goto ifs_update_finished;
switch (para->ifs_clm_app) {
case RTW89_IFS_CLM_INIT:
case RTW89_IFS_CLM_BACKGROUND:
case RTW89_IFS_CLM_ACS:
case RTW89_IFS_CLM_DBG:
case RTW89_IFS_CLM_DIG:
case RTW89_IFS_CLM_TDMA_DIG:
ifs_th0_us = IFS_CLM_TH0_UPPER;
ifs_th_times = IFS_CLM_TH_MUL;
break;
case RTW89_IFS_CLM_DBG_MANUAL:
ifs_th0_us = para->ifs_clm_manual_th0;
ifs_th_times = para->ifs_clm_manual_th_times;
break;
default:
break;
}
/* Set sampling threshold for 4 different regions, unit in idx_cnt.
* low[i] = high[i-1] + 1
* high[i] = high[i-1] * ifs_th_times
*/
ifs_th_l[IFS_CLM_TH_START_IDX] = 0;
ifs_th_h_us[IFS_CLM_TH_START_IDX] = ifs_th0_us;
ifs_th_h[IFS_CLM_TH_START_IDX] = rtw89_phy_ccx_us_to_idx(rtwdev,
ifs_th0_us);
for (i = 1; i < RTW89_IFS_CLM_NUM; i++) {
ifs_th_l[i] = ifs_th_h[i - 1] + 1;
ifs_th_h_us[i] = ifs_th_h_us[i - 1] * ifs_th_times;
ifs_th_h[i] = rtw89_phy_ccx_us_to_idx(rtwdev, ifs_th_h_us[i]);
}
ifs_update_finished:
if (!is_update)
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"No need to update IFS_TH\n");
return is_update;
}
static void rtw89_phy_ifs_clm_set_th_reg(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
u8 i = 0;
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t1_addr, ccx->ifs_t1_th_l_mask,
env->ifs_clm_th_l[0]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t2_addr, ccx->ifs_t2_th_l_mask,
env->ifs_clm_th_l[1]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t3_addr, ccx->ifs_t3_th_l_mask,
env->ifs_clm_th_l[2]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t4_addr, ccx->ifs_t4_th_l_mask,
env->ifs_clm_th_l[3]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t1_addr, ccx->ifs_t1_th_h_mask,
env->ifs_clm_th_h[0]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t2_addr, ccx->ifs_t2_th_h_mask,
env->ifs_clm_th_h[1]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t3_addr, ccx->ifs_t3_th_h_mask,
env->ifs_clm_th_h[2]);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t4_addr, ccx->ifs_t4_th_h_mask,
env->ifs_clm_th_h[3]);
for (i = 0; i < RTW89_IFS_CLM_NUM; i++)
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"Update IFS_T%d_th{low, high} : {%d, %d}\n",
i + 1, env->ifs_clm_th_l[i], env->ifs_clm_th_h[i]);
}
static void rtw89_phy_ifs_clm_setting_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
struct rtw89_ccx_para_info para = {0};
env->ifs_clm_app = RTW89_IFS_CLM_BACKGROUND;
env->ifs_clm_mntr_time = 0;
para.ifs_clm_app = RTW89_IFS_CLM_INIT;
if (rtw89_phy_ifs_clm_th_update_check(rtwdev, &para))
rtw89_phy_ifs_clm_set_th_reg(rtwdev);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_cnt_addr, ccx->ifs_collect_en_mask, true);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t1_addr, ccx->ifs_t1_en_mask, true);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t2_addr, ccx->ifs_t2_en_mask, true);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t3_addr, ccx->ifs_t3_en_mask, true);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_t4_addr, ccx->ifs_t4_en_mask, true);
}
static int rtw89_phy_ccx_racing_ctrl(struct rtw89_dev *rtwdev,
enum rtw89_env_racing_lv level)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
int ret = 0;
if (level >= RTW89_RAC_MAX_NUM) {
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"[WARNING] Wrong LV=%d\n", level);
return -EINVAL;
}
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"ccx_ongoing=%d, level:(%d)->(%d)\n", env->ccx_ongoing,
env->ccx_rac_lv, level);
if (env->ccx_ongoing) {
if (level <= env->ccx_rac_lv)
ret = -EINVAL;
else
env->ccx_ongoing = false;
}
if (ret == 0)
env->ccx_rac_lv = level;
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK, "ccx racing success=%d\n",
!ret);
return ret;
}
static void rtw89_phy_ccx_trigger(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_cnt_addr, ccx->ifs_clm_cnt_clear_mask, 0);
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->measurement_trig_mask, 0);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_cnt_addr, ccx->ifs_clm_cnt_clear_mask, 1);
rtw89_phy_set_phy_regs(rtwdev, ccx->setting_addr, ccx->measurement_trig_mask, 1);
env->ccx_ongoing = true;
}
static void rtw89_phy_ifs_clm_get_utility(struct rtw89_dev *rtwdev)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
u8 i = 0;
u32 res = 0;
env->ifs_clm_tx_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_tx, PERCENT);
env->ifs_clm_edcca_excl_cca_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_edcca_excl_cca,
PERCENT);
env->ifs_clm_cck_fa_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_cckfa, PERCENT);
env->ifs_clm_ofdm_fa_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_ofdmfa, PERCENT);
env->ifs_clm_cck_cca_excl_fa_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_cckcca_excl_fa,
PERCENT);
env->ifs_clm_ofdm_cca_excl_fa_ratio =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_ofdmcca_excl_fa,
PERCENT);
env->ifs_clm_cck_fa_permil =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_cckfa, PERMIL);
env->ifs_clm_ofdm_fa_permil =
rtw89_phy_ccx_get_report(rtwdev, env->ifs_clm_ofdmfa, PERMIL);
for (i = 0; i < RTW89_IFS_CLM_NUM; i++) {
if (env->ifs_clm_his[i] > ENV_MNTR_IFSCLM_HIS_MAX) {
env->ifs_clm_ifs_avg[i] = ENV_MNTR_FAIL_DWORD;
} else {
env->ifs_clm_ifs_avg[i] =
rtw89_phy_ccx_idx_to_us(rtwdev,
env->ifs_clm_avg[i]);
}
res = rtw89_phy_ccx_idx_to_us(rtwdev, env->ifs_clm_cca[i]);
res += env->ifs_clm_his[i] >> 1;
if (env->ifs_clm_his[i])
res /= env->ifs_clm_his[i];
else
res = 0;
env->ifs_clm_cca_avg[i] = res;
}
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM ratio {Tx, EDCCA_exclu_cca} = {%d, %d}\n",
env->ifs_clm_tx_ratio, env->ifs_clm_edcca_excl_cca_ratio);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM FA ratio {CCK, OFDM} = {%d, %d}\n",
env->ifs_clm_cck_fa_ratio, env->ifs_clm_ofdm_fa_ratio);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM FA permil {CCK, OFDM} = {%d, %d}\n",
env->ifs_clm_cck_fa_permil, env->ifs_clm_ofdm_fa_permil);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM CCA_exclu_FA ratio {CCK, OFDM} = {%d, %d}\n",
env->ifs_clm_cck_cca_excl_fa_ratio,
env->ifs_clm_ofdm_cca_excl_fa_ratio);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"Time:[his, ifs_avg(us), cca_avg(us)]\n");
for (i = 0; i < RTW89_IFS_CLM_NUM; i++)
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK, "T%d:[%d, %d, %d]\n",
i + 1, env->ifs_clm_his[i], env->ifs_clm_ifs_avg[i],
env->ifs_clm_cca_avg[i]);
}
static bool rtw89_phy_ifs_clm_get_result(struct rtw89_dev *rtwdev)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
u8 i = 0;
if (rtw89_phy_read32_mask(rtwdev, ccx->ifs_total_addr,
ccx->ifs_cnt_done_mask) == 0) {
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"Get IFS_CLM report Fail\n");
return false;
}
env->ifs_clm_tx =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_tx_cnt_addr,
ccx->ifs_clm_tx_cnt_msk);
env->ifs_clm_edcca_excl_cca =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_tx_cnt_addr,
ccx->ifs_clm_edcca_excl_cca_fa_mask);
env->ifs_clm_cckcca_excl_fa =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_cca_addr,
ccx->ifs_clm_cckcca_excl_fa_mask);
env->ifs_clm_ofdmcca_excl_fa =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_cca_addr,
ccx->ifs_clm_ofdmcca_excl_fa_mask);
env->ifs_clm_cckfa =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_fa_addr,
ccx->ifs_clm_cck_fa_mask);
env->ifs_clm_ofdmfa =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_clm_fa_addr,
ccx->ifs_clm_ofdm_fa_mask);
env->ifs_clm_his[0] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_his_addr,
ccx->ifs_t1_his_mask);
env->ifs_clm_his[1] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_his_addr,
ccx->ifs_t2_his_mask);
env->ifs_clm_his[2] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_his_addr,
ccx->ifs_t3_his_mask);
env->ifs_clm_his[3] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_his_addr,
ccx->ifs_t4_his_mask);
env->ifs_clm_avg[0] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_avg_l_addr,
ccx->ifs_t1_avg_mask);
env->ifs_clm_avg[1] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_avg_l_addr,
ccx->ifs_t2_avg_mask);
env->ifs_clm_avg[2] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_avg_h_addr,
ccx->ifs_t3_avg_mask);
env->ifs_clm_avg[3] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_avg_h_addr,
ccx->ifs_t4_avg_mask);
env->ifs_clm_cca[0] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_cca_l_addr,
ccx->ifs_t1_cca_mask);
env->ifs_clm_cca[1] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_cca_l_addr,
ccx->ifs_t2_cca_mask);
env->ifs_clm_cca[2] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_cca_h_addr,
ccx->ifs_t3_cca_mask);
env->ifs_clm_cca[3] =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_cca_h_addr,
ccx->ifs_t4_cca_mask);
env->ifs_clm_total_ifs =
rtw89_phy_read32_mask(rtwdev, ccx->ifs_total_addr,
ccx->ifs_total_mask);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK, "IFS-CLM total_ifs = %d\n",
env->ifs_clm_total_ifs);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"{Tx, EDCCA_exclu_cca} = {%d, %d}\n",
env->ifs_clm_tx, env->ifs_clm_edcca_excl_cca);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM FA{CCK, OFDM} = {%d, %d}\n",
env->ifs_clm_cckfa, env->ifs_clm_ofdmfa);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"IFS-CLM CCA_exclu_FA{CCK, OFDM} = {%d, %d}\n",
env->ifs_clm_cckcca_excl_fa, env->ifs_clm_ofdmcca_excl_fa);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK, "Time:[his, avg, cca]\n");
for (i = 0; i < RTW89_IFS_CLM_NUM; i++)
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"T%d:[%d, %d, %d]\n", i + 1, env->ifs_clm_his[i],
env->ifs_clm_avg[i], env->ifs_clm_cca[i]);
rtw89_phy_ifs_clm_get_utility(rtwdev);
return true;
}
static int rtw89_phy_ifs_clm_set(struct rtw89_dev *rtwdev,
struct rtw89_ccx_para_info *para)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const struct rtw89_ccx_regs *ccx = phy->ccx;
u32 period = 0;
u32 unit_idx = 0;
if (para->mntr_time == 0) {
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"[WARN] MNTR_TIME is 0\n");
return -EINVAL;
}
if (rtw89_phy_ccx_racing_ctrl(rtwdev, para->rac_lv))
return -EINVAL;
if (para->mntr_time != env->ifs_clm_mntr_time) {
rtw89_phy_ccx_ms_to_period_unit(rtwdev, para->mntr_time,
&period, &unit_idx);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_cnt_addr,
ccx->ifs_clm_period_mask, period);
rtw89_phy_set_phy_regs(rtwdev, ccx->ifs_cnt_addr,
ccx->ifs_clm_cnt_unit_mask,
unit_idx);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"Update IFS-CLM time ((%d)) -> ((%d))\n",
env->ifs_clm_mntr_time, para->mntr_time);
env->ifs_clm_mntr_time = para->mntr_time;
env->ccx_period = (u16)period;
env->ccx_unit_idx = (u8)unit_idx;
}
if (rtw89_phy_ifs_clm_th_update_check(rtwdev, para)) {
env->ifs_clm_app = para->ifs_clm_app;
rtw89_phy_ifs_clm_set_th_reg(rtwdev);
}
return 0;
}
void rtw89_phy_env_monitor_track(struct rtw89_dev *rtwdev)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
struct rtw89_ccx_para_info para = {0};
u8 chk_result = RTW89_PHY_ENV_MON_CCX_FAIL;
env->ccx_watchdog_result = RTW89_PHY_ENV_MON_CCX_FAIL;
if (env->ccx_manual_ctrl) {
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"CCX in manual ctrl\n");
return;
}
/* only ifs_clm for now */
if (rtw89_phy_ifs_clm_get_result(rtwdev))
env->ccx_watchdog_result |= RTW89_PHY_ENV_MON_IFS_CLM;
rtw89_phy_ccx_racing_release(rtwdev);
para.mntr_time = 1900;
para.rac_lv = RTW89_RAC_LV_1;
para.ifs_clm_app = RTW89_IFS_CLM_BACKGROUND;
if (rtw89_phy_ifs_clm_set(rtwdev, &para) == 0)
chk_result |= RTW89_PHY_ENV_MON_IFS_CLM;
if (chk_result)
rtw89_phy_ccx_trigger(rtwdev);
rtw89_debug(rtwdev, RTW89_DBG_PHY_TRACK,
"get_result=0x%x, chk_result:0x%x\n",
env->ccx_watchdog_result, chk_result);
}
static bool rtw89_physts_ie_page_valid(enum rtw89_phy_status_bitmap *ie_page)
{
if (*ie_page >= RTW89_PHYSTS_BITMAP_NUM ||
*ie_page == RTW89_RSVD_9)
return false;
else if (*ie_page > RTW89_RSVD_9)
*ie_page -= 1;
return true;
}
static u32 rtw89_phy_get_ie_bitmap_addr(enum rtw89_phy_status_bitmap ie_page)
{
static const u8 ie_page_shift = 2;
return R_PHY_STS_BITMAP_ADDR_START + (ie_page << ie_page_shift);
}
static u32 rtw89_physts_get_ie_bitmap(struct rtw89_dev *rtwdev,
enum rtw89_phy_status_bitmap ie_page)
{
u32 addr;
if (!rtw89_physts_ie_page_valid(&ie_page))
return 0;
addr = rtw89_phy_get_ie_bitmap_addr(ie_page);
return rtw89_phy_read32(rtwdev, addr);
}
static void rtw89_physts_set_ie_bitmap(struct rtw89_dev *rtwdev,
enum rtw89_phy_status_bitmap ie_page,
u32 val)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
u32 addr;
if (!rtw89_physts_ie_page_valid(&ie_page))
return;
if (chip->chip_id == RTL8852A)
val &= B_PHY_STS_BITMAP_MSK_52A;
addr = rtw89_phy_get_ie_bitmap_addr(ie_page);
rtw89_phy_write32(rtwdev, addr, val);
}
static void rtw89_physts_enable_ie_bitmap(struct rtw89_dev *rtwdev,
enum rtw89_phy_status_bitmap bitmap,
enum rtw89_phy_status_ie_type ie,
bool enable)
{
u32 val = rtw89_physts_get_ie_bitmap(rtwdev, bitmap);
if (enable)
val |= BIT(ie);
else
val &= ~BIT(ie);
rtw89_physts_set_ie_bitmap(rtwdev, bitmap, val);
}
static void rtw89_physts_enable_fail_report(struct rtw89_dev *rtwdev,
bool enable,
enum rtw89_phy_idx phy_idx)
{
const struct rtw89_phy_gen_def *phy = rtwdev->chip->phy_def;
const struct rtw89_physts_regs *physts = phy->physts;
if (enable) {
rtw89_phy_write32_clr(rtwdev, physts->setting_addr,
physts->dis_trigger_fail_mask);
rtw89_phy_write32_clr(rtwdev, physts->setting_addr,
physts->dis_trigger_brk_mask);
} else {
rtw89_phy_write32_set(rtwdev, physts->setting_addr,
physts->dis_trigger_fail_mask);
rtw89_phy_write32_set(rtwdev, physts->setting_addr,
physts->dis_trigger_brk_mask);
}
}
static void rtw89_physts_parsing_init(struct rtw89_dev *rtwdev)
{
u8 i;
rtw89_physts_enable_fail_report(rtwdev, false, RTW89_PHY_0);
for (i = 0; i < RTW89_PHYSTS_BITMAP_NUM; i++) {
if (i >= RTW89_CCK_PKT)
rtw89_physts_enable_ie_bitmap(rtwdev, i,
RTW89_PHYSTS_IE09_FTR_0,
true);
if ((i >= RTW89_CCK_BRK && i <= RTW89_VHT_MU) ||
(i >= RTW89_RSVD_9 && i <= RTW89_CCK_PKT))
continue;
rtw89_physts_enable_ie_bitmap(rtwdev, i,
RTW89_PHYSTS_IE24_OFDM_TD_PATH_A,
true);
}
rtw89_physts_enable_ie_bitmap(rtwdev, RTW89_VHT_PKT,
RTW89_PHYSTS_IE13_DL_MU_DEF, true);
rtw89_physts_enable_ie_bitmap(rtwdev, RTW89_HE_PKT,
RTW89_PHYSTS_IE13_DL_MU_DEF, true);
/* force IE01 for channel index, only channel field is valid */
rtw89_physts_enable_ie_bitmap(rtwdev, RTW89_CCK_PKT,
RTW89_PHYSTS_IE01_CMN_OFDM, true);
}
static void rtw89_phy_dig_read_gain_table(struct rtw89_dev *rtwdev, int type)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_dig_info *dig = &rtwdev->dig;
const struct rtw89_phy_dig_gain_cfg *cfg;
const char *msg;
u8 i;
s8 gain_base;
s8 *gain_arr;
u32 tmp;
switch (type) {
case RTW89_DIG_GAIN_LNA_G:
gain_arr = dig->lna_gain_g;
gain_base = LNA0_GAIN;
cfg = chip->dig_table->cfg_lna_g;
msg = "lna_gain_g";
break;
case RTW89_DIG_GAIN_TIA_G:
gain_arr = dig->tia_gain_g;
gain_base = TIA0_GAIN_G;
cfg = chip->dig_table->cfg_tia_g;
msg = "tia_gain_g";
break;
case RTW89_DIG_GAIN_LNA_A:
gain_arr = dig->lna_gain_a;
gain_base = LNA0_GAIN;
cfg = chip->dig_table->cfg_lna_a;
msg = "lna_gain_a";
break;
case RTW89_DIG_GAIN_TIA_A:
gain_arr = dig->tia_gain_a;
gain_base = TIA0_GAIN_A;
cfg = chip->dig_table->cfg_tia_a;
msg = "tia_gain_a";
break;
default:
return;
}
for (i = 0; i < cfg->size; i++) {
tmp = rtw89_phy_read32_mask(rtwdev, cfg->table[i].addr,
cfg->table[i].mask);
tmp >>= DIG_GAIN_SHIFT;
gain_arr[i] = sign_extend32(tmp, U4_MAX_BIT) + gain_base;
gain_base += DIG_GAIN;
rtw89_debug(rtwdev, RTW89_DBG_DIG, "%s[%d]=%d\n",
msg, i, gain_arr[i]);
}
}
static void rtw89_phy_dig_update_gain_para(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
u32 tmp;
u8 i;
if (!rtwdev->hal.support_igi)
return;
tmp = rtw89_phy_read32_mask(rtwdev, R_PATH0_IB_PKPW,
B_PATH0_IB_PKPW_MSK);
dig->ib_pkpwr = sign_extend32(tmp >> DIG_GAIN_SHIFT, U8_MAX_BIT);
dig->ib_pbk = rtw89_phy_read32_mask(rtwdev, R_PATH0_IB_PBK,
B_PATH0_IB_PBK_MSK);
rtw89_debug(rtwdev, RTW89_DBG_DIG, "ib_pkpwr=%d, ib_pbk=%d\n",
dig->ib_pkpwr, dig->ib_pbk);
for (i = RTW89_DIG_GAIN_LNA_G; i < RTW89_DIG_GAIN_MAX; i++)
rtw89_phy_dig_read_gain_table(rtwdev, i);
}
static const u8 rssi_nolink = 22;
static const u8 igi_rssi_th[IGI_RSSI_TH_NUM] = {68, 84, 90, 98, 104};
static const u16 fa_th_2g[FA_TH_NUM] = {22, 44, 66, 88};
static const u16 fa_th_5g[FA_TH_NUM] = {4, 8, 12, 16};
static const u16 fa_th_nolink[FA_TH_NUM] = {196, 352, 440, 528};
static void rtw89_phy_dig_update_rssi_info(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_ch_info *ch_info = &rtwdev->ch_info;
struct rtw89_dig_info *dig = &rtwdev->dig;
bool is_linked = rtwdev->total_sta_assoc > 0;
if (is_linked) {
dig->igi_rssi = ch_info->rssi_min >> 1;
} else {
rtw89_debug(rtwdev, RTW89_DBG_DIG, "RSSI update : NO Link\n");
dig->igi_rssi = rssi_nolink;
}
}
static void rtw89_phy_dig_update_para(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
bool is_linked = rtwdev->total_sta_assoc > 0;
const u16 *fa_th_src = NULL;
switch (chan->band_type) {
case RTW89_BAND_2G:
dig->lna_gain = dig->lna_gain_g;
dig->tia_gain = dig->tia_gain_g;
fa_th_src = is_linked ? fa_th_2g : fa_th_nolink;
dig->force_gaincode_idx_en = false;
dig->dyn_pd_th_en = true;
break;
case RTW89_BAND_5G:
default:
dig->lna_gain = dig->lna_gain_a;
dig->tia_gain = dig->tia_gain_a;
fa_th_src = is_linked ? fa_th_5g : fa_th_nolink;
dig->force_gaincode_idx_en = true;
dig->dyn_pd_th_en = true;
break;
}
memcpy(dig->fa_th, fa_th_src, sizeof(dig->fa_th));
memcpy(dig->igi_rssi_th, igi_rssi_th, sizeof(dig->igi_rssi_th));
}
static const u8 pd_low_th_offset = 16, dynamic_igi_min = 0x20;
static const u8 igi_max_performance_mode = 0x5a;
static const u8 dynamic_pd_threshold_max;
static void rtw89_phy_dig_para_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
dig->cur_gaincode.lna_idx = LNA_IDX_MAX;
dig->cur_gaincode.tia_idx = TIA_IDX_MAX;
dig->cur_gaincode.rxb_idx = RXB_IDX_MAX;
dig->force_gaincode.lna_idx = LNA_IDX_MAX;
dig->force_gaincode.tia_idx = TIA_IDX_MAX;
dig->force_gaincode.rxb_idx = RXB_IDX_MAX;
dig->dyn_igi_max = igi_max_performance_mode;
dig->dyn_igi_min = dynamic_igi_min;
dig->dyn_pd_th_max = dynamic_pd_threshold_max;
dig->pd_low_th_ofst = pd_low_th_offset;
dig->is_linked_pre = false;
}
static void rtw89_phy_dig_init(struct rtw89_dev *rtwdev)
{
rtw89_phy_dig_update_gain_para(rtwdev);
rtw89_phy_dig_reset(rtwdev);
}
static u8 rtw89_phy_dig_lna_idx_by_rssi(struct rtw89_dev *rtwdev, u8 rssi)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
u8 lna_idx;
if (rssi < dig->igi_rssi_th[0])
lna_idx = RTW89_DIG_GAIN_LNA_IDX6;
else if (rssi < dig->igi_rssi_th[1])
lna_idx = RTW89_DIG_GAIN_LNA_IDX5;
else if (rssi < dig->igi_rssi_th[2])
lna_idx = RTW89_DIG_GAIN_LNA_IDX4;
else if (rssi < dig->igi_rssi_th[3])
lna_idx = RTW89_DIG_GAIN_LNA_IDX3;
else if (rssi < dig->igi_rssi_th[4])
lna_idx = RTW89_DIG_GAIN_LNA_IDX2;
else
lna_idx = RTW89_DIG_GAIN_LNA_IDX1;
return lna_idx;
}
static u8 rtw89_phy_dig_tia_idx_by_rssi(struct rtw89_dev *rtwdev, u8 rssi)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
u8 tia_idx;
if (rssi < dig->igi_rssi_th[0])
tia_idx = RTW89_DIG_GAIN_TIA_IDX1;
else
tia_idx = RTW89_DIG_GAIN_TIA_IDX0;
return tia_idx;
}
#define IB_PBK_BASE 110
#define WB_RSSI_BASE 10
static u8 rtw89_phy_dig_rxb_idx_by_rssi(struct rtw89_dev *rtwdev, u8 rssi,
struct rtw89_agc_gaincode_set *set)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
s8 lna_gain = dig->lna_gain[set->lna_idx];
s8 tia_gain = dig->tia_gain[set->tia_idx];
s32 wb_rssi = rssi + lna_gain + tia_gain;
s32 rxb_idx_tmp = IB_PBK_BASE + WB_RSSI_BASE;
u8 rxb_idx;
rxb_idx_tmp += dig->ib_pkpwr - dig->ib_pbk - wb_rssi;
rxb_idx = clamp_t(s32, rxb_idx_tmp, RXB_IDX_MIN, RXB_IDX_MAX);
rtw89_debug(rtwdev, RTW89_DBG_DIG, "wb_rssi=%03d, rxb_idx_tmp=%03d\n",
wb_rssi, rxb_idx_tmp);
return rxb_idx;
}
static void rtw89_phy_dig_gaincode_by_rssi(struct rtw89_dev *rtwdev, u8 rssi,
struct rtw89_agc_gaincode_set *set)
{
set->lna_idx = rtw89_phy_dig_lna_idx_by_rssi(rtwdev, rssi);
set->tia_idx = rtw89_phy_dig_tia_idx_by_rssi(rtwdev, rssi);
set->rxb_idx = rtw89_phy_dig_rxb_idx_by_rssi(rtwdev, rssi, set);
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"final_rssi=%03d, (lna,tia,rab)=(%d,%d,%02d)\n",
rssi, set->lna_idx, set->tia_idx, set->rxb_idx);
}
#define IGI_OFFSET_MAX 25
#define IGI_OFFSET_MUL 2
static void rtw89_phy_dig_igi_offset_by_env(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
enum rtw89_dig_noisy_level noisy_lv;
u8 igi_offset = dig->fa_rssi_ofst;
u16 fa_ratio = 0;
fa_ratio = env->ifs_clm_cck_fa_permil + env->ifs_clm_ofdm_fa_permil;
if (fa_ratio < dig->fa_th[0])
noisy_lv = RTW89_DIG_NOISY_LEVEL0;
else if (fa_ratio < dig->fa_th[1])
noisy_lv = RTW89_DIG_NOISY_LEVEL1;
else if (fa_ratio < dig->fa_th[2])
noisy_lv = RTW89_DIG_NOISY_LEVEL2;
else if (fa_ratio < dig->fa_th[3])
noisy_lv = RTW89_DIG_NOISY_LEVEL3;
else
noisy_lv = RTW89_DIG_NOISY_LEVEL_MAX;
if (noisy_lv == RTW89_DIG_NOISY_LEVEL0 && igi_offset < 2)
igi_offset = 0;
else
igi_offset += noisy_lv * IGI_OFFSET_MUL;
igi_offset = min_t(u8, igi_offset, IGI_OFFSET_MAX);
dig->fa_rssi_ofst = igi_offset;
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"fa_th: [+6 (%d) +4 (%d) +2 (%d) 0 (%d) -2 ]\n",
dig->fa_th[3], dig->fa_th[2], dig->fa_th[1], dig->fa_th[0]);
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"fa(CCK,OFDM,ALL)=(%d,%d,%d)%%, noisy_lv=%d, ofst=%d\n",
env->ifs_clm_cck_fa_permil, env->ifs_clm_ofdm_fa_permil,
env->ifs_clm_cck_fa_permil + env->ifs_clm_ofdm_fa_permil,
noisy_lv, igi_offset);
}
static void rtw89_phy_dig_set_lna_idx(struct rtw89_dev *rtwdev, u8 lna_idx)
{
const struct rtw89_dig_regs *dig_regs = rtwdev->chip->dig_regs;
rtw89_phy_write32_mask(rtwdev, dig_regs->p0_lna_init.addr,
dig_regs->p0_lna_init.mask, lna_idx);
rtw89_phy_write32_mask(rtwdev, dig_regs->p1_lna_init.addr,
dig_regs->p1_lna_init.mask, lna_idx);
}
static void rtw89_phy_dig_set_tia_idx(struct rtw89_dev *rtwdev, u8 tia_idx)
{
const struct rtw89_dig_regs *dig_regs = rtwdev->chip->dig_regs;
rtw89_phy_write32_mask(rtwdev, dig_regs->p0_tia_init.addr,
dig_regs->p0_tia_init.mask, tia_idx);
rtw89_phy_write32_mask(rtwdev, dig_regs->p1_tia_init.addr,
dig_regs->p1_tia_init.mask, tia_idx);
}
static void rtw89_phy_dig_set_rxb_idx(struct rtw89_dev *rtwdev, u8 rxb_idx)
{
const struct rtw89_dig_regs *dig_regs = rtwdev->chip->dig_regs;
rtw89_phy_write32_mask(rtwdev, dig_regs->p0_rxb_init.addr,
dig_regs->p0_rxb_init.mask, rxb_idx);
rtw89_phy_write32_mask(rtwdev, dig_regs->p1_rxb_init.addr,
dig_regs->p1_rxb_init.mask, rxb_idx);
}
static void rtw89_phy_dig_set_igi_cr(struct rtw89_dev *rtwdev,
const struct rtw89_agc_gaincode_set set)
{
if (!rtwdev->hal.support_igi)
return;
rtw89_phy_dig_set_lna_idx(rtwdev, set.lna_idx);
rtw89_phy_dig_set_tia_idx(rtwdev, set.tia_idx);
rtw89_phy_dig_set_rxb_idx(rtwdev, set.rxb_idx);
rtw89_debug(rtwdev, RTW89_DBG_DIG, "Set (lna,tia,rxb)=((%d,%d,%02d))\n",
set.lna_idx, set.tia_idx, set.rxb_idx);
}
static void rtw89_phy_dig_sdagc_follow_pagc_config(struct rtw89_dev *rtwdev,
bool enable)
{
const struct rtw89_dig_regs *dig_regs = rtwdev->chip->dig_regs;
rtw89_phy_write32_mask(rtwdev, dig_regs->p0_p20_pagcugc_en.addr,
dig_regs->p0_p20_pagcugc_en.mask, enable);
rtw89_phy_write32_mask(rtwdev, dig_regs->p0_s20_pagcugc_en.addr,
dig_regs->p0_s20_pagcugc_en.mask, enable);
rtw89_phy_write32_mask(rtwdev, dig_regs->p1_p20_pagcugc_en.addr,
dig_regs->p1_p20_pagcugc_en.mask, enable);
rtw89_phy_write32_mask(rtwdev, dig_regs->p1_s20_pagcugc_en.addr,
dig_regs->p1_s20_pagcugc_en.mask, enable);
rtw89_debug(rtwdev, RTW89_DBG_DIG, "sdagc_follow_pagc=%d\n", enable);
}
static void rtw89_phy_dig_config_igi(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
if (!rtwdev->hal.support_igi)
return;
if (dig->force_gaincode_idx_en) {
rtw89_phy_dig_set_igi_cr(rtwdev, dig->force_gaincode);
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"Force gaincode index enabled.\n");
} else {
rtw89_phy_dig_gaincode_by_rssi(rtwdev, dig->igi_fa_rssi,
&dig->cur_gaincode);
rtw89_phy_dig_set_igi_cr(rtwdev, dig->cur_gaincode);
}
}
static void rtw89_phy_dig_dyn_pd_th(struct rtw89_dev *rtwdev, u8 rssi,
bool enable)
{
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
const struct rtw89_dig_regs *dig_regs = rtwdev->chip->dig_regs;
enum rtw89_bandwidth cbw = chan->band_width;
struct rtw89_dig_info *dig = &rtwdev->dig;
u8 final_rssi = 0, under_region = dig->pd_low_th_ofst;
u8 ofdm_cca_th;
s8 cck_cca_th;
u32 pd_val = 0;
if (rtwdev->chip->chip_gen == RTW89_CHIP_AX)
under_region += PD_TH_SB_FLTR_CMP_VAL;
switch (cbw) {
case RTW89_CHANNEL_WIDTH_40:
under_region += PD_TH_BW40_CMP_VAL;
break;
case RTW89_CHANNEL_WIDTH_80:
under_region += PD_TH_BW80_CMP_VAL;
break;
case RTW89_CHANNEL_WIDTH_160:
under_region += PD_TH_BW160_CMP_VAL;
break;
case RTW89_CHANNEL_WIDTH_20:
fallthrough;
default:
under_region += PD_TH_BW20_CMP_VAL;
break;
}
dig->dyn_pd_th_max = dig->igi_rssi;
final_rssi = min_t(u8, rssi, dig->igi_rssi);
ofdm_cca_th = clamp_t(u8, final_rssi, PD_TH_MIN_RSSI + under_region,
PD_TH_MAX_RSSI + under_region);
if (enable) {
pd_val = (ofdm_cca_th - under_region - PD_TH_MIN_RSSI) >> 1;
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"igi=%d, ofdm_ccaTH=%d, backoff=%d, PD_low=%d\n",
final_rssi, ofdm_cca_th, under_region, pd_val);
} else {
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"Dynamic PD th disabled, Set PD_low_bd=0\n");
}
rtw89_phy_write32_mask(rtwdev, dig_regs->seg0_pd_reg,
dig_regs->pd_lower_bound_mask, pd_val);
rtw89_phy_write32_mask(rtwdev, dig_regs->seg0_pd_reg,
dig_regs->pd_spatial_reuse_en, enable);
if (!rtwdev->hal.support_cckpd)
return;
cck_cca_th = max_t(s8, final_rssi - under_region, CCKPD_TH_MIN_RSSI);
pd_val = (u32)(cck_cca_th - IGI_RSSI_MAX);
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"igi=%d, cck_ccaTH=%d, backoff=%d, cck_PD_low=((%d))dB\n",
final_rssi, cck_cca_th, under_region, pd_val);
rtw89_phy_write32_mask(rtwdev, dig_regs->bmode_pd_reg,
dig_regs->bmode_cca_rssi_limit_en, enable);
rtw89_phy_write32_mask(rtwdev, dig_regs->bmode_pd_lower_bound_reg,
dig_regs->bmode_rssi_nocca_low_th_mask, pd_val);
}
void rtw89_phy_dig_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
dig->bypass_dig = false;
rtw89_phy_dig_para_reset(rtwdev);
rtw89_phy_dig_set_igi_cr(rtwdev, dig->force_gaincode);
rtw89_phy_dig_dyn_pd_th(rtwdev, rssi_nolink, false);
rtw89_phy_dig_sdagc_follow_pagc_config(rtwdev, false);
rtw89_phy_dig_update_para(rtwdev);
}
#define IGI_RSSI_MIN 10
#define ABS_IGI_MIN 0xc
void rtw89_phy_dig(struct rtw89_dev *rtwdev)
{
struct rtw89_dig_info *dig = &rtwdev->dig;
bool is_linked = rtwdev->total_sta_assoc > 0;
u8 igi_min;
if (unlikely(dig->bypass_dig)) {
dig->bypass_dig = false;
return;
}
rtw89_phy_dig_update_rssi_info(rtwdev);
if (!dig->is_linked_pre && is_linked) {
rtw89_debug(rtwdev, RTW89_DBG_DIG, "First connected\n");
rtw89_phy_dig_update_para(rtwdev);
dig->igi_fa_rssi = dig->igi_rssi;
} else if (dig->is_linked_pre && !is_linked) {
rtw89_debug(rtwdev, RTW89_DBG_DIG, "First disconnected\n");
rtw89_phy_dig_update_para(rtwdev);
dig->igi_fa_rssi = dig->igi_rssi;
}
dig->is_linked_pre = is_linked;
rtw89_phy_dig_igi_offset_by_env(rtwdev);
igi_min = max_t(int, dig->igi_rssi - IGI_RSSI_MIN, 0);
dig->dyn_igi_max = min(igi_min + IGI_OFFSET_MAX, igi_max_performance_mode);
dig->dyn_igi_min = max(igi_min, ABS_IGI_MIN);
if (dig->dyn_igi_max >= dig->dyn_igi_min) {
dig->igi_fa_rssi += dig->fa_rssi_ofst;
dig->igi_fa_rssi = clamp(dig->igi_fa_rssi, dig->dyn_igi_min,
dig->dyn_igi_max);
} else {
dig->igi_fa_rssi = dig->dyn_igi_max;
}
rtw89_debug(rtwdev, RTW89_DBG_DIG,
"rssi=%03d, dyn_joint(max,min)=(%d,%d), final_rssi=%d\n",
dig->igi_rssi, dig->dyn_igi_max, dig->dyn_igi_min,
dig->igi_fa_rssi);
rtw89_phy_dig_config_igi(rtwdev);
rtw89_phy_dig_dyn_pd_th(rtwdev, dig->igi_fa_rssi, dig->dyn_pd_th_en);
if (dig->dyn_pd_th_en && dig->igi_fa_rssi > dig->dyn_pd_th_max)
rtw89_phy_dig_sdagc_follow_pagc_config(rtwdev, true);
else
rtw89_phy_dig_sdagc_follow_pagc_config(rtwdev, false);
}
static void rtw89_phy_tx_path_div_sta_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw89_sta *rtwsta = (struct rtw89_sta *)sta->drv_priv;
struct rtw89_dev *rtwdev = rtwsta->rtwdev;
struct rtw89_vif *rtwvif = rtwsta->rtwvif;
struct rtw89_hal *hal = &rtwdev->hal;
bool *done = data;
u8 rssi_a, rssi_b;
u32 candidate;
if (rtwvif->wifi_role != RTW89_WIFI_ROLE_STATION || sta->tdls)
return;
if (*done)
return;
*done = true;
rssi_a = ewma_rssi_read(&rtwsta->rssi[RF_PATH_A]);
rssi_b = ewma_rssi_read(&rtwsta->rssi[RF_PATH_B]);
if (rssi_a > rssi_b + RTW89_TX_DIV_RSSI_RAW_TH)
candidate = RF_A;
else if (rssi_b > rssi_a + RTW89_TX_DIV_RSSI_RAW_TH)
candidate = RF_B;
else
return;
if (hal->antenna_tx == candidate)
return;
hal->antenna_tx = candidate;
rtw89_fw_h2c_txpath_cmac_tbl(rtwdev, rtwsta);
if (hal->antenna_tx == RF_A) {
rtw89_phy_write32_mask(rtwdev, R_P0_RFMODE, B_P0_RFMODE_MUX, 0x12);
rtw89_phy_write32_mask(rtwdev, R_P1_RFMODE, B_P1_RFMODE_MUX, 0x11);
} else if (hal->antenna_tx == RF_B) {
rtw89_phy_write32_mask(rtwdev, R_P0_RFMODE, B_P0_RFMODE_MUX, 0x11);
rtw89_phy_write32_mask(rtwdev, R_P1_RFMODE, B_P1_RFMODE_MUX, 0x12);
}
}
void rtw89_phy_tx_path_div_track(struct rtw89_dev *rtwdev)
{
struct rtw89_hal *hal = &rtwdev->hal;
bool done = false;
if (!hal->tx_path_diversity)
return;
ieee80211_iterate_stations_atomic(rtwdev->hw,
rtw89_phy_tx_path_div_sta_iter,
&done);
}
#define ANTDIV_MAIN 0
#define ANTDIV_AUX 1
static void rtw89_phy_antdiv_set_ant(struct rtw89_dev *rtwdev)
{
struct rtw89_hal *hal = &rtwdev->hal;
u8 default_ant, optional_ant;
if (!hal->ant_diversity || hal->antenna_tx == 0)
return;
if (hal->antenna_tx == RF_B) {
default_ant = ANTDIV_AUX;
optional_ant = ANTDIV_MAIN;
} else {
default_ant = ANTDIV_MAIN;
optional_ant = ANTDIV_AUX;
}
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_CGCS_CTRL,
default_ant, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_RX_ORI,
default_ant, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_RX_ALT,
optional_ant, RTW89_PHY_0);
rtw89_phy_write32_idx(rtwdev, R_P0_ANTSEL, B_P0_ANTSEL_TX_ORI,
default_ant, RTW89_PHY_0);
}
static void rtw89_phy_swap_hal_antenna(struct rtw89_dev *rtwdev)
{
struct rtw89_hal *hal = &rtwdev->hal;
hal->antenna_rx = hal->antenna_rx == RF_A ? RF_B : RF_A;
hal->antenna_tx = hal->antenna_rx;
}
static void rtw89_phy_antdiv_decision_state(struct rtw89_dev *rtwdev)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
struct rtw89_hal *hal = &rtwdev->hal;
bool no_change = false;
u8 main_rssi, aux_rssi;
u8 main_evm, aux_evm;
u32 candidate;
antdiv->get_stats = false;
antdiv->training_count = 0;
main_rssi = rtw89_phy_antdiv_sts_instance_get_rssi(&antdiv->main_stats);
main_evm = rtw89_phy_antdiv_sts_instance_get_evm(&antdiv->main_stats);
aux_rssi = rtw89_phy_antdiv_sts_instance_get_rssi(&antdiv->aux_stats);
aux_evm = rtw89_phy_antdiv_sts_instance_get_evm(&antdiv->aux_stats);
if (main_evm > aux_evm + ANTDIV_EVM_DIFF_TH)
candidate = RF_A;
else if (aux_evm > main_evm + ANTDIV_EVM_DIFF_TH)
candidate = RF_B;
else if (main_rssi > aux_rssi + RTW89_TX_DIV_RSSI_RAW_TH)
candidate = RF_A;
else if (aux_rssi > main_rssi + RTW89_TX_DIV_RSSI_RAW_TH)
candidate = RF_B;
else
no_change = true;
if (no_change) {
/* swap back from training antenna to original */
rtw89_phy_swap_hal_antenna(rtwdev);
return;
}
hal->antenna_tx = candidate;
hal->antenna_rx = candidate;
}
static void rtw89_phy_antdiv_training_state(struct rtw89_dev *rtwdev)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
u64 state_period;
if (antdiv->training_count % 2 == 0) {
if (antdiv->training_count == 0)
rtw89_phy_antdiv_sts_reset(rtwdev);
antdiv->get_stats = true;
state_period = msecs_to_jiffies(ANTDIV_TRAINNING_INTVL);
} else {
antdiv->get_stats = false;
state_period = msecs_to_jiffies(ANTDIV_DELAY);
rtw89_phy_swap_hal_antenna(rtwdev);
rtw89_phy_antdiv_set_ant(rtwdev);
}
antdiv->training_count++;
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->antdiv_work,
state_period);
}
void rtw89_phy_antdiv_work(struct work_struct *work)
{
struct rtw89_dev *rtwdev = container_of(work, struct rtw89_dev,
antdiv_work.work);
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
mutex_lock(&rtwdev->mutex);
if (antdiv->training_count <= ANTDIV_TRAINNING_CNT) {
rtw89_phy_antdiv_training_state(rtwdev);
} else {
rtw89_phy_antdiv_decision_state(rtwdev);
rtw89_phy_antdiv_set_ant(rtwdev);
}
mutex_unlock(&rtwdev->mutex);
}
void rtw89_phy_antdiv_track(struct rtw89_dev *rtwdev)
{
struct rtw89_antdiv_info *antdiv = &rtwdev->antdiv;
struct rtw89_hal *hal = &rtwdev->hal;
u8 rssi, rssi_pre;
if (!hal->ant_diversity || hal->ant_diversity_fixed)
return;
rssi = rtw89_phy_antdiv_sts_instance_get_rssi(&antdiv->target_stats);
rssi_pre = antdiv->rssi_pre;
antdiv->rssi_pre = rssi;
rtw89_phy_antdiv_sts_instance_reset(&antdiv->target_stats);
if (abs((int)rssi - (int)rssi_pre) < ANTDIV_RSSI_DIFF_TH)
return;
antdiv->training_count = 0;
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->antdiv_work, 0);
}
static void rtw89_phy_env_monitor_init(struct rtw89_dev *rtwdev)
{
rtw89_phy_ccx_top_setting_init(rtwdev);
rtw89_phy_ifs_clm_setting_init(rtwdev);
}
static void rtw89_phy_edcca_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_edcca_regs *edcca_regs = rtwdev->chip->edcca_regs;
struct rtw89_edcca_bak *edcca_bak = &rtwdev->hal.edcca_bak;
memset(edcca_bak, 0, sizeof(*edcca_bak));
if (rtwdev->chip->chip_id == RTL8922A && rtwdev->hal.cv == CHIP_CAV) {
rtw89_phy_set_phy_regs(rtwdev, R_TXGATING, B_TXGATING_EN, 0);
rtw89_phy_set_phy_regs(rtwdev, R_CTLTOP, B_CTLTOP_VAL, 2);
rtw89_phy_set_phy_regs(rtwdev, R_CTLTOP, B_CTLTOP_ON, 1);
rtw89_phy_set_phy_regs(rtwdev, R_SPOOF_CG, B_SPOOF_CG_EN, 0);
rtw89_phy_set_phy_regs(rtwdev, R_DFS_FFT_CG, B_DFS_CG_EN, 0);
rtw89_phy_set_phy_regs(rtwdev, R_DFS_FFT_CG, B_DFS_FFT_EN, 0);
rtw89_phy_set_phy_regs(rtwdev, R_SEGSND, B_SEGSND_EN, 0);
rtw89_phy_set_phy_regs(rtwdev, R_SEGSND, B_SEGSND_EN, 1);
rtw89_phy_set_phy_regs(rtwdev, R_DFS_FFT_CG, B_DFS_FFT_EN, 1);
}
rtw89_phy_write32_mask(rtwdev, edcca_regs->tx_collision_t2r_st,
edcca_regs->tx_collision_t2r_st_mask, 0x29);
}
void rtw89_phy_dm_init(struct rtw89_dev *rtwdev)
{
rtw89_phy_stat_init(rtwdev);
rtw89_chip_bb_sethw(rtwdev);
rtw89_phy_env_monitor_init(rtwdev);
rtw89_physts_parsing_init(rtwdev);
rtw89_phy_dig_init(rtwdev);
rtw89_phy_cfo_init(rtwdev);
rtw89_phy_bb_wrap_init(rtwdev);
rtw89_phy_edcca_init(rtwdev);
rtw89_phy_ch_info_init(rtwdev);
rtw89_phy_ul_tb_info_init(rtwdev);
rtw89_phy_antdiv_init(rtwdev);
rtw89_chip_rfe_gpio(rtwdev);
rtw89_phy_antdiv_set_ant(rtwdev);
rtw89_chip_rfk_hw_init(rtwdev);
rtw89_phy_init_rf_nctl(rtwdev);
rtw89_chip_rfk_init(rtwdev);
rtw89_chip_set_txpwr_ctrl(rtwdev);
rtw89_chip_power_trim(rtwdev);
rtw89_chip_cfg_txrx_path(rtwdev);
}
void rtw89_phy_set_bss_color(struct rtw89_dev *rtwdev, struct ieee80211_vif *vif)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_reg_def *bss_clr_vld = &chip->bss_clr_vld;
enum rtw89_phy_idx phy_idx = RTW89_PHY_0;
u8 bss_color;
if (!vif->bss_conf.he_support || !vif->cfg.assoc)
return;
bss_color = vif->bss_conf.he_bss_color.color;
rtw89_phy_write32_idx(rtwdev, bss_clr_vld->addr, bss_clr_vld->mask, 0x1,
phy_idx);
rtw89_phy_write32_idx(rtwdev, chip->bss_clr_map_reg, B_BSS_CLR_MAP_TGT,
bss_color, phy_idx);
rtw89_phy_write32_idx(rtwdev, chip->bss_clr_map_reg, B_BSS_CLR_MAP_STAID,
vif->cfg.aid, phy_idx);
}
static bool rfk_chan_validate_desc(const struct rtw89_rfk_chan_desc *desc)
{
return desc->ch != 0;
}
static bool rfk_chan_is_equivalent(const struct rtw89_rfk_chan_desc *desc,
const struct rtw89_chan *chan)
{
if (!rfk_chan_validate_desc(desc))
return false;
if (desc->ch != chan->channel)
return false;
if (desc->has_band && desc->band != chan->band_type)
return false;
if (desc->has_bw && desc->bw != chan->band_width)
return false;
return true;
}
struct rfk_chan_iter_data {
const struct rtw89_rfk_chan_desc desc;
unsigned int found;
};
static int rfk_chan_iter_search(const struct rtw89_chan *chan, void *data)
{
struct rfk_chan_iter_data *iter_data = data;
if (rfk_chan_is_equivalent(&iter_data->desc, chan))
iter_data->found++;
return 0;
}
u8 rtw89_rfk_chan_lookup(struct rtw89_dev *rtwdev,
const struct rtw89_rfk_chan_desc *desc, u8 desc_nr,
const struct rtw89_chan *target_chan)
{
int sel = -1;
u8 i;
for (i = 0; i < desc_nr; i++) {
struct rfk_chan_iter_data iter_data = {
.desc = desc[i],
};
if (rfk_chan_is_equivalent(&desc[i], target_chan))
return i;
rtw89_iterate_entity_chan(rtwdev, rfk_chan_iter_search, &iter_data);
if (!iter_data.found && sel == -1)
sel = i;
}
if (sel == -1) {
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"no idle rfk entry; force replace the first\n");
sel = 0;
}
return sel;
}
EXPORT_SYMBOL(rtw89_rfk_chan_lookup);
static void
_rfk_write_rf(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def)
{
rtw89_write_rf(rtwdev, def->path, def->addr, def->mask, def->data);
}
static void
_rfk_write32_mask(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def)
{
rtw89_phy_write32_mask(rtwdev, def->addr, def->mask, def->data);
}
static void
_rfk_write32_set(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def)
{
rtw89_phy_write32_set(rtwdev, def->addr, def->mask);
}
static void
_rfk_write32_clr(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def)
{
rtw89_phy_write32_clr(rtwdev, def->addr, def->mask);
}
static void
_rfk_delay(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def)
{
udelay(def->data);
}
static void
(*_rfk_handler[])(struct rtw89_dev *rtwdev, const struct rtw89_reg5_def *def) = {
[RTW89_RFK_F_WRF] = _rfk_write_rf,
[RTW89_RFK_F_WM] = _rfk_write32_mask,
[RTW89_RFK_F_WS] = _rfk_write32_set,
[RTW89_RFK_F_WC] = _rfk_write32_clr,
[RTW89_RFK_F_DELAY] = _rfk_delay,
};
static_assert(ARRAY_SIZE(_rfk_handler) == RTW89_RFK_F_NUM);
void
rtw89_rfk_parser(struct rtw89_dev *rtwdev, const struct rtw89_rfk_tbl *tbl)
{
const struct rtw89_reg5_def *p = tbl->defs;
const struct rtw89_reg5_def *end = tbl->defs + tbl->size;
for (; p < end; p++)
_rfk_handler[p->flag](rtwdev, p);
}
EXPORT_SYMBOL(rtw89_rfk_parser);
#define RTW89_TSSI_FAST_MODE_NUM 4
static const struct rtw89_reg_def rtw89_tssi_fastmode_regs_flat[RTW89_TSSI_FAST_MODE_NUM] = {
{0xD934, 0xff0000},
{0xD934, 0xff000000},
{0xD938, 0xff},
{0xD934, 0xff00},
};
static const struct rtw89_reg_def rtw89_tssi_fastmode_regs_level[RTW89_TSSI_FAST_MODE_NUM] = {
{0xD930, 0xff0000},
{0xD930, 0xff000000},
{0xD934, 0xff},
{0xD930, 0xff00},
};
static
void rtw89_phy_tssi_ctrl_set_fast_mode_cfg(struct rtw89_dev *rtwdev,
enum rtw89_mac_idx mac_idx,
enum rtw89_tssi_bandedge_cfg bandedge_cfg,
u32 val)
{
const struct rtw89_reg_def *regs;
u32 reg;
int i;
if (bandedge_cfg == RTW89_TSSI_BANDEDGE_FLAT)
regs = rtw89_tssi_fastmode_regs_flat;
else
regs = rtw89_tssi_fastmode_regs_level;
for (i = 0; i < RTW89_TSSI_FAST_MODE_NUM; i++) {
reg = rtw89_mac_reg_by_idx(rtwdev, regs[i].addr, mac_idx);
rtw89_write32_mask(rtwdev, reg, regs[i].mask, val);
}
}
static const struct rtw89_reg_def rtw89_tssi_bandedge_regs_flat[RTW89_TSSI_SBW_NUM] = {
{0xD91C, 0xff000000},
{0xD920, 0xff},
{0xD920, 0xff00},
{0xD920, 0xff0000},
{0xD920, 0xff000000},
{0xD924, 0xff},
{0xD924, 0xff00},
{0xD914, 0xff000000},
{0xD918, 0xff},
{0xD918, 0xff00},
{0xD918, 0xff0000},
{0xD918, 0xff000000},
{0xD91C, 0xff},
{0xD91C, 0xff00},
{0xD91C, 0xff0000},
};
static const struct rtw89_reg_def rtw89_tssi_bandedge_regs_level[RTW89_TSSI_SBW_NUM] = {
{0xD910, 0xff},
{0xD910, 0xff00},
{0xD910, 0xff0000},
{0xD910, 0xff000000},
{0xD914, 0xff},
{0xD914, 0xff00},
{0xD914, 0xff0000},
{0xD908, 0xff},
{0xD908, 0xff00},
{0xD908, 0xff0000},
{0xD908, 0xff000000},
{0xD90C, 0xff},
{0xD90C, 0xff00},
{0xD90C, 0xff0000},
{0xD90C, 0xff000000},
};
void rtw89_phy_tssi_ctrl_set_bandedge_cfg(struct rtw89_dev *rtwdev,
enum rtw89_mac_idx mac_idx,
enum rtw89_tssi_bandedge_cfg bandedge_cfg)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_reg_def *regs;
const u32 *data;
u32 reg;
int i;
if (bandedge_cfg >= RTW89_TSSI_CFG_NUM)
return;
if (bandedge_cfg == RTW89_TSSI_BANDEDGE_FLAT)
regs = rtw89_tssi_bandedge_regs_flat;
else
regs = rtw89_tssi_bandedge_regs_level;
data = chip->tssi_dbw_table->data[bandedge_cfg];
for (i = 0; i < RTW89_TSSI_SBW_NUM; i++) {
reg = rtw89_mac_reg_by_idx(rtwdev, regs[i].addr, mac_idx);
rtw89_write32_mask(rtwdev, reg, regs[i].mask, data[i]);
}
reg = rtw89_mac_reg_by_idx(rtwdev, R_AX_BANDEDGE_CFG, mac_idx);
rtw89_write32_mask(rtwdev, reg, B_AX_BANDEDGE_CFG_IDX_MASK, bandedge_cfg);
rtw89_phy_tssi_ctrl_set_fast_mode_cfg(rtwdev, mac_idx, bandedge_cfg,
data[RTW89_TSSI_SBW20]);
}
EXPORT_SYMBOL(rtw89_phy_tssi_ctrl_set_bandedge_cfg);
static
const u8 rtw89_ch_base_table[16] = {1, 0xff,
36, 100, 132, 149, 0xff,
1, 33, 65, 97, 129, 161, 193, 225, 0xff};
#define RTW89_CH_BASE_IDX_2G 0
#define RTW89_CH_BASE_IDX_5G_FIRST 2
#define RTW89_CH_BASE_IDX_5G_LAST 5
#define RTW89_CH_BASE_IDX_6G_FIRST 7
#define RTW89_CH_BASE_IDX_6G_LAST 14
#define RTW89_CH_BASE_IDX_MASK GENMASK(7, 4)
#define RTW89_CH_OFFSET_MASK GENMASK(3, 0)
u8 rtw89_encode_chan_idx(struct rtw89_dev *rtwdev, u8 central_ch, u8 band)
{
u8 chan_idx;
u8 last, first;
u8 idx;
switch (band) {
case RTW89_BAND_2G:
chan_idx = FIELD_PREP(RTW89_CH_BASE_IDX_MASK, RTW89_CH_BASE_IDX_2G) |
FIELD_PREP(RTW89_CH_OFFSET_MASK, central_ch);
return chan_idx;
case RTW89_BAND_5G:
first = RTW89_CH_BASE_IDX_5G_FIRST;
last = RTW89_CH_BASE_IDX_5G_LAST;
break;
case RTW89_BAND_6G:
first = RTW89_CH_BASE_IDX_6G_FIRST;
last = RTW89_CH_BASE_IDX_6G_LAST;
break;
default:
rtw89_warn(rtwdev, "Unsupported band %d\n", band);
return 0;
}
for (idx = last; idx >= first; idx--)
if (central_ch >= rtw89_ch_base_table[idx])
break;
if (idx < first) {
rtw89_warn(rtwdev, "Unknown band %d channel %d\n", band, central_ch);
return 0;
}
chan_idx = FIELD_PREP(RTW89_CH_BASE_IDX_MASK, idx) |
FIELD_PREP(RTW89_CH_OFFSET_MASK,
(central_ch - rtw89_ch_base_table[idx]) >> 1);
return chan_idx;
}
EXPORT_SYMBOL(rtw89_encode_chan_idx);
void rtw89_decode_chan_idx(struct rtw89_dev *rtwdev, u8 chan_idx,
u8 *ch, enum nl80211_band *band)
{
u8 idx, offset;
idx = FIELD_GET(RTW89_CH_BASE_IDX_MASK, chan_idx);
offset = FIELD_GET(RTW89_CH_OFFSET_MASK, chan_idx);
if (idx == RTW89_CH_BASE_IDX_2G) {
*band = NL80211_BAND_2GHZ;
*ch = offset;
return;
}
*band = idx <= RTW89_CH_BASE_IDX_5G_LAST ? NL80211_BAND_5GHZ : NL80211_BAND_6GHZ;
*ch = rtw89_ch_base_table[idx] + (offset << 1);
}
EXPORT_SYMBOL(rtw89_decode_chan_idx);
void rtw89_phy_config_edcca(struct rtw89_dev *rtwdev, bool scan)
{
const struct rtw89_edcca_regs *edcca_regs = rtwdev->chip->edcca_regs;
struct rtw89_edcca_bak *edcca_bak = &rtwdev->hal.edcca_bak;
if (scan) {
edcca_bak->a =
rtw89_phy_read32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_mask);
edcca_bak->p =
rtw89_phy_read32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_p_mask);
edcca_bak->ppdu =
rtw89_phy_read32_mask(rtwdev, edcca_regs->ppdu_level,
edcca_regs->ppdu_mask);
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_mask, EDCCA_MAX);
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_p_mask, EDCCA_MAX);
rtw89_phy_write32_mask(rtwdev, edcca_regs->ppdu_level,
edcca_regs->ppdu_mask, EDCCA_MAX);
} else {
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_mask,
edcca_bak->a);
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_p_mask,
edcca_bak->p);
rtw89_phy_write32_mask(rtwdev, edcca_regs->ppdu_level,
edcca_regs->ppdu_mask,
edcca_bak->ppdu);
}
}
static void rtw89_phy_edcca_log(struct rtw89_dev *rtwdev)
{
const struct rtw89_edcca_regs *edcca_regs = rtwdev->chip->edcca_regs;
bool flag_fb, flag_p20, flag_s20, flag_s40, flag_s80;
s8 pwdb_fb, pwdb_p20, pwdb_s20, pwdb_s40, pwdb_s80;
u8 path, per20_bitmap;
u8 pwdb[8];
u32 tmp;
if (!rtw89_debug_is_enabled(rtwdev, RTW89_DBG_EDCCA))
return;
if (rtwdev->chip->chip_id == RTL8922A)
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel_be,
edcca_regs->rpt_sel_be_mask, 0);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 0);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_b);
path = u32_get_bits(tmp, B_EDCCA_RPT_B_PATH_MASK);
flag_s80 = u32_get_bits(tmp, B_EDCCA_RPT_B_S80);
flag_s40 = u32_get_bits(tmp, B_EDCCA_RPT_B_S40);
flag_s20 = u32_get_bits(tmp, B_EDCCA_RPT_B_S20);
flag_p20 = u32_get_bits(tmp, B_EDCCA_RPT_B_P20);
flag_fb = u32_get_bits(tmp, B_EDCCA_RPT_B_FB);
pwdb_s20 = u32_get_bits(tmp, MASKBYTE1);
pwdb_p20 = u32_get_bits(tmp, MASKBYTE2);
pwdb_fb = u32_get_bits(tmp, MASKBYTE3);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 4);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_b);
pwdb_s80 = u32_get_bits(tmp, MASKBYTE1);
pwdb_s40 = u32_get_bits(tmp, MASKBYTE2);
per20_bitmap = rtw89_phy_read32_mask(rtwdev, edcca_regs->rpt_a,
MASKBYTE0);
if (rtwdev->chip->chip_id == RTL8922A) {
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel_be,
edcca_regs->rpt_sel_be_mask, 4);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_b);
pwdb[0] = u32_get_bits(tmp, MASKBYTE3);
pwdb[1] = u32_get_bits(tmp, MASKBYTE2);
pwdb[2] = u32_get_bits(tmp, MASKBYTE1);
pwdb[3] = u32_get_bits(tmp, MASKBYTE0);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel_be,
edcca_regs->rpt_sel_be_mask, 5);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_b);
pwdb[4] = u32_get_bits(tmp, MASKBYTE3);
pwdb[5] = u32_get_bits(tmp, MASKBYTE2);
pwdb[6] = u32_get_bits(tmp, MASKBYTE1);
pwdb[7] = u32_get_bits(tmp, MASKBYTE0);
} else {
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 0);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_a);
pwdb[0] = u32_get_bits(tmp, MASKBYTE3);
pwdb[1] = u32_get_bits(tmp, MASKBYTE2);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 1);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_a);
pwdb[2] = u32_get_bits(tmp, MASKBYTE3);
pwdb[3] = u32_get_bits(tmp, MASKBYTE2);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 2);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_a);
pwdb[4] = u32_get_bits(tmp, MASKBYTE3);
pwdb[5] = u32_get_bits(tmp, MASKBYTE2);
rtw89_phy_write32_mask(rtwdev, edcca_regs->rpt_sel,
edcca_regs->rpt_sel_mask, 3);
tmp = rtw89_phy_read32(rtwdev, edcca_regs->rpt_a);
pwdb[6] = u32_get_bits(tmp, MASKBYTE3);
pwdb[7] = u32_get_bits(tmp, MASKBYTE2);
}
rtw89_debug(rtwdev, RTW89_DBG_EDCCA,
"[EDCCA]: edcca_bitmap = %04x\n", per20_bitmap);
rtw89_debug(rtwdev, RTW89_DBG_EDCCA,
"[EDCCA]: pwdb per20{0,1,2,3,4,5,6,7} = {%d,%d,%d,%d,%d,%d,%d,%d}(dBm)\n",
pwdb[0], pwdb[1], pwdb[2], pwdb[3], pwdb[4], pwdb[5],
pwdb[6], pwdb[7]);
rtw89_debug(rtwdev, RTW89_DBG_EDCCA,
"[EDCCA]: path=%d, flag {FB,p20,s20,s40,s80} = {%d,%d,%d,%d,%d}\n",
path, flag_fb, flag_p20, flag_s20, flag_s40, flag_s80);
rtw89_debug(rtwdev, RTW89_DBG_EDCCA,
"[EDCCA]: pwdb {FB,p20,s20,s40,s80} = {%d,%d,%d,%d,%d}(dBm)\n",
pwdb_fb, pwdb_p20, pwdb_s20, pwdb_s40, pwdb_s80);
}
static u8 rtw89_phy_edcca_get_thre_by_rssi(struct rtw89_dev *rtwdev)
{
struct rtw89_phy_ch_info *ch_info = &rtwdev->ch_info;
bool is_linked = rtwdev->total_sta_assoc > 0;
u8 rssi_min = ch_info->rssi_min >> 1;
u8 edcca_thre;
if (!is_linked) {
edcca_thre = EDCCA_MAX;
} else {
edcca_thre = rssi_min - RSSI_UNIT_CONVER + EDCCA_UNIT_CONVER -
EDCCA_TH_REF;
edcca_thre = max_t(u8, edcca_thre, EDCCA_TH_L2H_LB);
}
return edcca_thre;
}
void rtw89_phy_edcca_thre_calc(struct rtw89_dev *rtwdev)
{
const struct rtw89_edcca_regs *edcca_regs = rtwdev->chip->edcca_regs;
struct rtw89_edcca_bak *edcca_bak = &rtwdev->hal.edcca_bak;
u8 th;
th = rtw89_phy_edcca_get_thre_by_rssi(rtwdev);
if (th == edcca_bak->th_old)
return;
edcca_bak->th_old = th;
rtw89_debug(rtwdev, RTW89_DBG_EDCCA,
"[EDCCA]: Normal Mode, EDCCA_th = %d\n", th);
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_mask, th);
rtw89_phy_write32_mask(rtwdev, edcca_regs->edcca_level,
edcca_regs->edcca_p_mask, th);
rtw89_phy_write32_mask(rtwdev, edcca_regs->ppdu_level,
edcca_regs->ppdu_mask, th);
}
void rtw89_phy_edcca_track(struct rtw89_dev *rtwdev)
{
struct rtw89_hal *hal = &rtwdev->hal;
if (hal->disabled_dm_bitmap & BIT(RTW89_DM_DYNAMIC_EDCCA))
return;
rtw89_phy_edcca_thre_calc(rtwdev);
rtw89_phy_edcca_log(rtwdev);
}
enum rtw89_rf_path_bit rtw89_phy_get_kpath(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx)
{
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"[RFK] kpath dbcc_en: 0x%x, mode=0x%x, PHY%d\n",
rtwdev->dbcc_en, rtwdev->mlo_dbcc_mode, phy_idx);
switch (rtwdev->mlo_dbcc_mode) {
case MLO_1_PLUS_1_1RF:
if (phy_idx == RTW89_PHY_0)
return RF_A;
else
return RF_B;
case MLO_1_PLUS_1_2RF:
if (phy_idx == RTW89_PHY_0)
return RF_A;
else
return RF_D;
case MLO_0_PLUS_2_1RF:
case MLO_2_PLUS_0_1RF:
/* for both PHY 0/1 */
return RF_AB;
case MLO_0_PLUS_2_2RF:
case MLO_2_PLUS_0_2RF:
case MLO_2_PLUS_2_2RF:
default:
if (phy_idx == RTW89_PHY_0)
return RF_AB;
else
return RF_CD;
}
}
EXPORT_SYMBOL(rtw89_phy_get_kpath);
enum rtw89_rf_path rtw89_phy_get_syn_sel(struct rtw89_dev *rtwdev,
enum rtw89_phy_idx phy_idx)
{
rtw89_debug(rtwdev, RTW89_DBG_RFK,
"[RFK] kpath dbcc_en: 0x%x, mode=0x%x, PHY%d\n",
rtwdev->dbcc_en, rtwdev->mlo_dbcc_mode, phy_idx);
switch (rtwdev->mlo_dbcc_mode) {
case MLO_1_PLUS_1_1RF:
if (phy_idx == RTW89_PHY_0)
return RF_PATH_A;
else
return RF_PATH_B;
case MLO_1_PLUS_1_2RF:
if (phy_idx == RTW89_PHY_0)
return RF_PATH_A;
else
return RF_PATH_D;
case MLO_0_PLUS_2_1RF:
case MLO_2_PLUS_0_1RF:
if (phy_idx == RTW89_PHY_0)
return RF_PATH_A;
else
return RF_PATH_B;
case MLO_0_PLUS_2_2RF:
case MLO_2_PLUS_0_2RF:
case MLO_2_PLUS_2_2RF:
default:
if (phy_idx == RTW89_PHY_0)
return RF_PATH_A;
else
return RF_PATH_C;
}
}
EXPORT_SYMBOL(rtw89_phy_get_syn_sel);
static const struct rtw89_ccx_regs rtw89_ccx_regs_ax = {
.setting_addr = R_CCX,
.edcca_opt_mask = B_CCX_EDCCA_OPT_MSK,
.measurement_trig_mask = B_MEASUREMENT_TRIG_MSK,
.trig_opt_mask = B_CCX_TRIG_OPT_MSK,
.en_mask = B_CCX_EN_MSK,
.ifs_cnt_addr = R_IFS_COUNTER,
.ifs_clm_period_mask = B_IFS_CLM_PERIOD_MSK,
.ifs_clm_cnt_unit_mask = B_IFS_CLM_COUNTER_UNIT_MSK,
.ifs_clm_cnt_clear_mask = B_IFS_COUNTER_CLR_MSK,
.ifs_collect_en_mask = B_IFS_COLLECT_EN,
.ifs_t1_addr = R_IFS_T1,
.ifs_t1_th_h_mask = B_IFS_T1_TH_HIGH_MSK,
.ifs_t1_en_mask = B_IFS_T1_EN_MSK,
.ifs_t1_th_l_mask = B_IFS_T1_TH_LOW_MSK,
.ifs_t2_addr = R_IFS_T2,
.ifs_t2_th_h_mask = B_IFS_T2_TH_HIGH_MSK,
.ifs_t2_en_mask = B_IFS_T2_EN_MSK,
.ifs_t2_th_l_mask = B_IFS_T2_TH_LOW_MSK,
.ifs_t3_addr = R_IFS_T3,
.ifs_t3_th_h_mask = B_IFS_T3_TH_HIGH_MSK,
.ifs_t3_en_mask = B_IFS_T3_EN_MSK,
.ifs_t3_th_l_mask = B_IFS_T3_TH_LOW_MSK,
.ifs_t4_addr = R_IFS_T4,
.ifs_t4_th_h_mask = B_IFS_T4_TH_HIGH_MSK,
.ifs_t4_en_mask = B_IFS_T4_EN_MSK,
.ifs_t4_th_l_mask = B_IFS_T4_TH_LOW_MSK,
.ifs_clm_tx_cnt_addr = R_IFS_CLM_TX_CNT,
.ifs_clm_edcca_excl_cca_fa_mask = B_IFS_CLM_EDCCA_EXCLUDE_CCA_FA_MSK,
.ifs_clm_tx_cnt_msk = B_IFS_CLM_TX_CNT_MSK,
.ifs_clm_cca_addr = R_IFS_CLM_CCA,
.ifs_clm_ofdmcca_excl_fa_mask = B_IFS_CLM_OFDMCCA_EXCLUDE_FA_MSK,
.ifs_clm_cckcca_excl_fa_mask = B_IFS_CLM_CCKCCA_EXCLUDE_FA_MSK,
.ifs_clm_fa_addr = R_IFS_CLM_FA,
.ifs_clm_ofdm_fa_mask = B_IFS_CLM_OFDM_FA_MSK,
.ifs_clm_cck_fa_mask = B_IFS_CLM_CCK_FA_MSK,
.ifs_his_addr = R_IFS_HIS,
.ifs_t4_his_mask = B_IFS_T4_HIS_MSK,
.ifs_t3_his_mask = B_IFS_T3_HIS_MSK,
.ifs_t2_his_mask = B_IFS_T2_HIS_MSK,
.ifs_t1_his_mask = B_IFS_T1_HIS_MSK,
.ifs_avg_l_addr = R_IFS_AVG_L,
.ifs_t2_avg_mask = B_IFS_T2_AVG_MSK,
.ifs_t1_avg_mask = B_IFS_T1_AVG_MSK,
.ifs_avg_h_addr = R_IFS_AVG_H,
.ifs_t4_avg_mask = B_IFS_T4_AVG_MSK,
.ifs_t3_avg_mask = B_IFS_T3_AVG_MSK,
.ifs_cca_l_addr = R_IFS_CCA_L,
.ifs_t2_cca_mask = B_IFS_T2_CCA_MSK,
.ifs_t1_cca_mask = B_IFS_T1_CCA_MSK,
.ifs_cca_h_addr = R_IFS_CCA_H,
.ifs_t4_cca_mask = B_IFS_T4_CCA_MSK,
.ifs_t3_cca_mask = B_IFS_T3_CCA_MSK,
.ifs_total_addr = R_IFSCNT,
.ifs_cnt_done_mask = B_IFSCNT_DONE_MSK,
.ifs_total_mask = B_IFSCNT_TOTAL_CNT_MSK,
};
static const struct rtw89_physts_regs rtw89_physts_regs_ax = {
.setting_addr = R_PLCP_HISTOGRAM,
.dis_trigger_fail_mask = B_STS_DIS_TRIG_BY_FAIL,
.dis_trigger_brk_mask = B_STS_DIS_TRIG_BY_BRK,
};
static const struct rtw89_cfo_regs rtw89_cfo_regs_ax = {
.comp = R_DCFO_WEIGHT,
.weighting_mask = B_DCFO_WEIGHT_MSK,
.comp_seg0 = R_DCFO_OPT,
.valid_0_mask = B_DCFO_OPT_EN,
};
const struct rtw89_phy_gen_def rtw89_phy_gen_ax = {
.cr_base = 0x10000,
.ccx = &rtw89_ccx_regs_ax,
.physts = &rtw89_physts_regs_ax,
.cfo = &rtw89_cfo_regs_ax,
.phy0_phy1_offset = rtw89_phy0_phy1_offset_ax,
.config_bb_gain = rtw89_phy_config_bb_gain_ax,
.preinit_rf_nctl = rtw89_phy_preinit_rf_nctl_ax,
.bb_wrap_init = NULL,
.ch_info_init = NULL,
.set_txpwr_byrate = rtw89_phy_set_txpwr_byrate_ax,
.set_txpwr_offset = rtw89_phy_set_txpwr_offset_ax,
.set_txpwr_limit = rtw89_phy_set_txpwr_limit_ax,
.set_txpwr_limit_ru = rtw89_phy_set_txpwr_limit_ru_ax,
};
EXPORT_SYMBOL(rtw89_phy_gen_ax);