| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| * Author: Andrey Ryabinin <a.ryabinin@samsung.com> |
| */ |
| |
| #define pr_fmt(fmt) "kasan: test: " fmt |
| |
| #include <kunit/test.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/kasan.h> |
| #include <linux/kernel.h> |
| #include <linux/mempool.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/module.h> |
| #include <linux/printk.h> |
| #include <linux/random.h> |
| #include <linux/set_memory.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/tracepoint.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <trace/events/printk.h> |
| |
| #include <asm/page.h> |
| |
| #include "kasan.h" |
| |
| #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE) |
| |
| static bool multishot; |
| |
| /* Fields set based on lines observed in the console. */ |
| static struct { |
| bool report_found; |
| bool async_fault; |
| } test_status; |
| |
| /* |
| * Some tests use these global variables to store return values from function |
| * calls that could otherwise be eliminated by the compiler as dead code. |
| */ |
| void *kasan_ptr_result; |
| int kasan_int_result; |
| |
| /* Probe for console output: obtains test_status lines of interest. */ |
| static void probe_console(void *ignore, const char *buf, size_t len) |
| { |
| if (strnstr(buf, "BUG: KASAN: ", len)) |
| WRITE_ONCE(test_status.report_found, true); |
| else if (strnstr(buf, "Asynchronous fault: ", len)) |
| WRITE_ONCE(test_status.async_fault, true); |
| } |
| |
| static int kasan_suite_init(struct kunit_suite *suite) |
| { |
| if (!kasan_enabled()) { |
| pr_err("Can't run KASAN tests with KASAN disabled"); |
| return -1; |
| } |
| |
| /* Stop failing KUnit tests on KASAN reports. */ |
| kasan_kunit_test_suite_start(); |
| |
| /* |
| * Temporarily enable multi-shot mode. Otherwise, KASAN would only |
| * report the first detected bug and panic the kernel if panic_on_warn |
| * is enabled. |
| */ |
| multishot = kasan_save_enable_multi_shot(); |
| |
| register_trace_console(probe_console, NULL); |
| return 0; |
| } |
| |
| static void kasan_suite_exit(struct kunit_suite *suite) |
| { |
| kasan_kunit_test_suite_end(); |
| kasan_restore_multi_shot(multishot); |
| unregister_trace_console(probe_console, NULL); |
| tracepoint_synchronize_unregister(); |
| } |
| |
| static void kasan_test_exit(struct kunit *test) |
| { |
| KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); |
| } |
| |
| /** |
| * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a |
| * KASAN report; causes a KUnit test failure otherwise. |
| * |
| * @test: Currently executing KUnit test. |
| * @expression: Expression that must produce a KASAN report. |
| * |
| * For hardware tag-based KASAN, when a synchronous tag fault happens, tag |
| * checking is auto-disabled. When this happens, this test handler reenables |
| * tag checking. As tag checking can be only disabled or enabled per CPU, |
| * this handler disables migration (preemption). |
| * |
| * Since the compiler doesn't see that the expression can change the test_status |
| * fields, it can reorder or optimize away the accesses to those fields. |
| * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the |
| * expression to prevent that. |
| * |
| * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept |
| * as false. This allows detecting KASAN reports that happen outside of the |
| * checks by asserting !test_status.report_found at the start of |
| * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit. |
| */ |
| #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \ |
| if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
| kasan_sync_fault_possible()) \ |
| migrate_disable(); \ |
| KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \ |
| barrier(); \ |
| expression; \ |
| barrier(); \ |
| if (kasan_async_fault_possible()) \ |
| kasan_force_async_fault(); \ |
| if (!READ_ONCE(test_status.report_found)) { \ |
| KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \ |
| "expected in \"" #expression \ |
| "\", but none occurred"); \ |
| } \ |
| if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
| kasan_sync_fault_possible()) { \ |
| if (READ_ONCE(test_status.report_found) && \ |
| !READ_ONCE(test_status.async_fault)) \ |
| kasan_enable_hw_tags(); \ |
| migrate_enable(); \ |
| } \ |
| WRITE_ONCE(test_status.report_found, false); \ |
| WRITE_ONCE(test_status.async_fault, false); \ |
| } while (0) |
| |
| #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \ |
| if (!IS_ENABLED(config)) \ |
| kunit_skip((test), "Test requires " #config "=y"); \ |
| } while (0) |
| |
| #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \ |
| if (IS_ENABLED(config)) \ |
| kunit_skip((test), "Test requires " #config "=n"); \ |
| } while (0) |
| |
| #define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \ |
| if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \ |
| break; /* No compiler instrumentation. */ \ |
| if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \ |
| break; /* Should always be instrumented! */ \ |
| if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \ |
| kunit_skip((test), "Test requires checked mem*()"); \ |
| } while (0) |
| |
| static void kmalloc_oob_right(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| /* |
| * An unaligned access past the requested kmalloc size. |
| * Only generic KASAN can precisely detect these. |
| */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x'); |
| |
| /* |
| * An aligned access into the first out-of-bounds granule that falls |
| * within the aligned kmalloc object. |
| */ |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y'); |
| |
| /* Out-of-bounds access past the aligned kmalloc object. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = |
| ptr[size + KASAN_GRANULE_SIZE + 5]); |
| |
| kfree(ptr); |
| } |
| |
| static void kmalloc_oob_left(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 15; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_node_oob_right(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 4096; |
| |
| ptr = kmalloc_node(size, GFP_KERNEL, 0); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
| kfree(ptr); |
| } |
| |
| /* |
| * Check that KASAN detects an out-of-bounds access for a big object allocated |
| * via kmalloc(). But not as big as to trigger the page_alloc fallback. |
| */ |
| static void kmalloc_big_oob_right(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE - 256; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0); |
| kfree(ptr); |
| } |
| |
| /* |
| * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk |
| * that does not fit into the largest slab cache and therefore is allocated via |
| * the page_alloc fallback. |
| */ |
| |
| static void kmalloc_large_oob_right(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0); |
| |
| kfree(ptr); |
| } |
| |
| static void kmalloc_large_uaf(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| kfree(ptr); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
| } |
| |
| static void kmalloc_large_invalid_free(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1)); |
| } |
| |
| static void page_alloc_oob_right(struct kunit *test) |
| { |
| char *ptr; |
| struct page *pages; |
| size_t order = 4; |
| size_t size = (1UL << (PAGE_SHIFT + order)); |
| |
| /* |
| * With generic KASAN page allocations have no redzones, thus |
| * out-of-bounds detection is not guaranteed. |
| * See https://bugzilla.kernel.org/show_bug.cgi?id=210503. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| pages = alloc_pages(GFP_KERNEL, order); |
| ptr = page_address(pages); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
| free_pages((unsigned long)ptr, order); |
| } |
| |
| static void page_alloc_uaf(struct kunit *test) |
| { |
| char *ptr; |
| struct page *pages; |
| size_t order = 4; |
| |
| pages = alloc_pages(GFP_KERNEL, order); |
| ptr = page_address(pages); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| free_pages((unsigned long)ptr, order); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
| } |
| |
| static void krealloc_more_oob_helper(struct kunit *test, |
| size_t size1, size_t size2) |
| { |
| char *ptr1, *ptr2; |
| size_t middle; |
| |
| KUNIT_ASSERT_LT(test, size1, size2); |
| middle = size1 + (size2 - size1) / 2; |
| |
| ptr1 = kmalloc(size1, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| |
| ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| |
| /* Suppress -Warray-bounds warnings. */ |
| OPTIMIZER_HIDE_VAR(ptr2); |
| |
| /* All offsets up to size2 must be accessible. */ |
| ptr2[size1 - 1] = 'x'; |
| ptr2[size1] = 'x'; |
| ptr2[middle] = 'x'; |
| ptr2[size2 - 1] = 'x'; |
| |
| /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
| |
| /* For all modes first aligned offset after size2 must be inaccessible. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
| |
| kfree(ptr2); |
| } |
| |
| static void krealloc_less_oob_helper(struct kunit *test, |
| size_t size1, size_t size2) |
| { |
| char *ptr1, *ptr2; |
| size_t middle; |
| |
| KUNIT_ASSERT_LT(test, size2, size1); |
| middle = size2 + (size1 - size2) / 2; |
| |
| ptr1 = kmalloc(size1, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| |
| ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| |
| /* Suppress -Warray-bounds warnings. */ |
| OPTIMIZER_HIDE_VAR(ptr2); |
| |
| /* Must be accessible for all modes. */ |
| ptr2[size2 - 1] = 'x'; |
| |
| /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
| |
| /* For all modes first aligned offset after size2 must be inaccessible. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
| |
| /* |
| * For all modes all size2, middle, and size1 should land in separate |
| * granules and thus the latter two offsets should be inaccessible. |
| */ |
| KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE), |
| round_down(middle, KASAN_GRANULE_SIZE)); |
| KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE), |
| round_down(size1, KASAN_GRANULE_SIZE)); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x'); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x'); |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x'); |
| |
| kfree(ptr2); |
| } |
| |
| static void krealloc_more_oob(struct kunit *test) |
| { |
| krealloc_more_oob_helper(test, 201, 235); |
| } |
| |
| static void krealloc_less_oob(struct kunit *test) |
| { |
| krealloc_less_oob_helper(test, 235, 201); |
| } |
| |
| static void krealloc_large_more_oob(struct kunit *test) |
| { |
| krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201, |
| KMALLOC_MAX_CACHE_SIZE + 235); |
| } |
| |
| static void krealloc_large_less_oob(struct kunit *test) |
| { |
| krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235, |
| KMALLOC_MAX_CACHE_SIZE + 201); |
| } |
| |
| /* |
| * Check that krealloc() detects a use-after-free, returns NULL, |
| * and doesn't unpoison the freed object. |
| */ |
| static void krealloc_uaf(struct kunit *test) |
| { |
| char *ptr1, *ptr2; |
| int size1 = 201; |
| int size2 = 235; |
| |
| ptr1 = kmalloc(size1, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| kfree(ptr1); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL)); |
| KUNIT_ASSERT_NULL(test, ptr2); |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1); |
| } |
| |
| static void kmalloc_oob_16(struct kunit *test) |
| { |
| struct { |
| u64 words[2]; |
| } *ptr1, *ptr2; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| /* This test is specifically crafted for the generic mode. */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| |
| /* RELOC_HIDE to prevent gcc from warning about short alloc */ |
| ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| |
| ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| |
| OPTIMIZER_HIDE_VAR(ptr1); |
| OPTIMIZER_HIDE_VAR(ptr2); |
| KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
| kfree(ptr1); |
| kfree(ptr2); |
| } |
| |
| static void kmalloc_uaf_16(struct kunit *test) |
| { |
| struct { |
| u64 words[2]; |
| } *ptr1, *ptr2; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| |
| ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| kfree(ptr2); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
| kfree(ptr1); |
| } |
| |
| /* |
| * Note: in the memset tests below, the written range touches both valid and |
| * invalid memory. This makes sure that the instrumentation does not only check |
| * the starting address but the whole range. |
| */ |
| |
| static void kmalloc_oob_memset_2(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE; |
| size_t memset_size = 2; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| OPTIMIZER_HIDE_VAR(memset_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_oob_memset_4(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE; |
| size_t memset_size = 4; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| OPTIMIZER_HIDE_VAR(memset_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_oob_memset_8(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE; |
| size_t memset_size = 8; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| OPTIMIZER_HIDE_VAR(memset_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_oob_memset_16(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE; |
| size_t memset_size = 16; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| OPTIMIZER_HIDE_VAR(memset_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_oob_in_memset(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| memset(ptr, 0, size + KASAN_GRANULE_SIZE)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_memmove_negative_size(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 64; |
| size_t invalid_size = -2; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| /* |
| * Hardware tag-based mode doesn't check memmove for negative size. |
| * As a result, this test introduces a side-effect memory corruption, |
| * which can result in a crash. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| memset((char *)ptr, 0, 64); |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(invalid_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_memmove_invalid_size(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 64; |
| size_t invalid_size = size; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| memset((char *)ptr, 0, 64); |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(invalid_size); |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
| kfree(ptr); |
| } |
| |
| static void kmalloc_uaf(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 10; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| kfree(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]); |
| } |
| |
| static void kmalloc_uaf_memset(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 33; |
| |
| KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| |
| /* |
| * Only generic KASAN uses quarantine, which is required to avoid a |
| * kernel memory corruption this test causes. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| kfree(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size)); |
| } |
| |
| static void kmalloc_uaf2(struct kunit *test) |
| { |
| char *ptr1, *ptr2; |
| size_t size = 43; |
| int counter = 0; |
| |
| again: |
| ptr1 = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| |
| kfree(ptr1); |
| |
| ptr2 = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| |
| /* |
| * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same. |
| * Allow up to 16 attempts at generating different tags. |
| */ |
| if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) { |
| kfree(ptr2); |
| goto again; |
| } |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]); |
| KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2); |
| |
| kfree(ptr2); |
| } |
| |
| /* |
| * Check that KASAN detects use-after-free when another object was allocated in |
| * the same slot. Relevant for the tag-based modes, which do not use quarantine. |
| */ |
| static void kmalloc_uaf3(struct kunit *test) |
| { |
| char *ptr1, *ptr2; |
| size_t size = 100; |
| |
| /* This test is specifically crafted for tag-based modes. */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| ptr1 = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| kfree(ptr1); |
| |
| ptr2 = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| kfree(ptr2); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]); |
| } |
| |
| static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe) |
| { |
| int *i_unsafe = unsafe; |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42)); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe)); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe)); |
| KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe)); |
| } |
| |
| static void kasan_atomics(struct kunit *test) |
| { |
| void *a1, *a2; |
| |
| /* |
| * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such |
| * that the following 16 bytes will make up the redzone. |
| */ |
| a1 = kzalloc(48, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1); |
| a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2); |
| |
| /* Use atomics to access the redzone. */ |
| kasan_atomics_helper(test, a1 + 48, a2); |
| |
| kfree(a1); |
| kfree(a2); |
| } |
| |
| static void kmalloc_double_kzfree(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 16; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| kfree_sensitive(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr)); |
| } |
| |
| /* Check that ksize() does NOT unpoison whole object. */ |
| static void ksize_unpoisons_memory(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| size_t real_size; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| real_size = ksize(ptr); |
| KUNIT_EXPECT_GT(test, real_size, size); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| |
| /* These accesses shouldn't trigger a KASAN report. */ |
| ptr[0] = 'x'; |
| ptr[size - 1] = 'x'; |
| |
| /* These must trigger a KASAN report. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]); |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]); |
| |
| kfree(ptr); |
| } |
| |
| /* |
| * Check that a use-after-free is detected by ksize() and via normal accesses |
| * after it. |
| */ |
| static void ksize_uaf(struct kunit *test) |
| { |
| char *ptr; |
| int size = 128 - KASAN_GRANULE_SIZE; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| kfree(ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
| } |
| |
| /* |
| * The two tests below check that Generic KASAN prints auxiliary stack traces |
| * for RCU callbacks and workqueues. The reports need to be inspected manually. |
| * |
| * These tests are still enabled for other KASAN modes to make sure that all |
| * modes report bad accesses in tested scenarios. |
| */ |
| |
| static struct kasan_rcu_info { |
| int i; |
| struct rcu_head rcu; |
| } *global_rcu_ptr; |
| |
| static void rcu_uaf_reclaim(struct rcu_head *rp) |
| { |
| struct kasan_rcu_info *fp = |
| container_of(rp, struct kasan_rcu_info, rcu); |
| |
| kfree(fp); |
| ((volatile struct kasan_rcu_info *)fp)->i; |
| } |
| |
| static void rcu_uaf(struct kunit *test) |
| { |
| struct kasan_rcu_info *ptr; |
| |
| ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| global_rcu_ptr = rcu_dereference_protected( |
| (struct kasan_rcu_info __rcu *)ptr, NULL); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim); |
| rcu_barrier()); |
| } |
| |
| static void workqueue_uaf_work(struct work_struct *work) |
| { |
| kfree(work); |
| } |
| |
| static void workqueue_uaf(struct kunit *test) |
| { |
| struct workqueue_struct *workqueue; |
| struct work_struct *work; |
| |
| workqueue = create_workqueue("kasan_workqueue_test"); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue); |
| |
| work = kmalloc(sizeof(struct work_struct), GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work); |
| |
| INIT_WORK(work, workqueue_uaf_work); |
| queue_work(workqueue, work); |
| destroy_workqueue(workqueue); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| ((volatile struct work_struct *)work)->data); |
| } |
| |
| static void kfree_via_page(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 8; |
| struct page *page; |
| unsigned long offset; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| page = virt_to_page(ptr); |
| offset = offset_in_page(ptr); |
| kfree(page_address(page) + offset); |
| } |
| |
| static void kfree_via_phys(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 8; |
| phys_addr_t phys; |
| |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| phys = virt_to_phys(ptr); |
| kfree(phys_to_virt(phys)); |
| } |
| |
| static void kmem_cache_oob(struct kunit *test) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, 0, NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| kunit_err(test, "Allocation failed: %s\n", __func__); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]); |
| |
| kmem_cache_free(cache, p); |
| kmem_cache_destroy(cache); |
| } |
| |
| static void kmem_cache_double_free(struct kunit *test) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, 0, NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| kunit_err(test, "Allocation failed: %s\n", __func__); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| kmem_cache_free(cache, p); |
| KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p)); |
| kmem_cache_destroy(cache); |
| } |
| |
| static void kmem_cache_invalid_free(struct kunit *test) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU, |
| NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| kunit_err(test, "Allocation failed: %s\n", __func__); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| /* Trigger invalid free, the object doesn't get freed. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1)); |
| |
| /* |
| * Properly free the object to prevent the "Objects remaining in |
| * test_cache on __kmem_cache_shutdown" BUG failure. |
| */ |
| kmem_cache_free(cache, p); |
| |
| kmem_cache_destroy(cache); |
| } |
| |
| static void kmem_cache_rcu_uaf(struct kunit *test) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB_RCU_DEBUG); |
| |
| cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU, |
| NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| kunit_err(test, "Allocation failed: %s\n", __func__); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| *p = 1; |
| |
| rcu_read_lock(); |
| |
| /* Free the object - this will internally schedule an RCU callback. */ |
| kmem_cache_free(cache, p); |
| |
| /* |
| * We should still be allowed to access the object at this point because |
| * the cache is SLAB_TYPESAFE_BY_RCU and we've been in an RCU read-side |
| * critical section since before the kmem_cache_free(). |
| */ |
| READ_ONCE(*p); |
| |
| rcu_read_unlock(); |
| |
| /* |
| * Wait for the RCU callback to execute; after this, the object should |
| * have actually been freed from KASAN's perspective. |
| */ |
| rcu_barrier(); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*p)); |
| |
| kmem_cache_destroy(cache); |
| } |
| |
| static void empty_cache_ctor(void *object) { } |
| |
| static void kmem_cache_double_destroy(struct kunit *test) |
| { |
| struct kmem_cache *cache; |
| |
| /* Provide a constructor to prevent cache merging. */ |
| cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| kmem_cache_destroy(cache); |
| KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache)); |
| } |
| |
| static void kmem_cache_accounted(struct kunit *test) |
| { |
| int i; |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| /* |
| * Several allocations with a delay to allow for lazy per memcg kmem |
| * cache creation. |
| */ |
| for (i = 0; i < 5; i++) { |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) |
| goto free_cache; |
| |
| kmem_cache_free(cache, p); |
| msleep(100); |
| } |
| |
| free_cache: |
| kmem_cache_destroy(cache); |
| } |
| |
| static void kmem_cache_bulk(struct kunit *test) |
| { |
| struct kmem_cache *cache; |
| size_t size = 200; |
| char *p[10]; |
| bool ret; |
| int i; |
| |
| cache = kmem_cache_create("test_cache", size, 0, 0, NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p); |
| if (!ret) { |
| kunit_err(test, "Allocation failed: %s\n", __func__); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(p); i++) |
| p[i][0] = p[i][size - 1] = 42; |
| |
| kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p); |
| kmem_cache_destroy(cache); |
| } |
| |
| static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size) |
| { |
| int pool_size = 4; |
| int ret; |
| void *elem; |
| |
| memset(pool, 0, sizeof(*pool)); |
| ret = mempool_init_kmalloc_pool(pool, pool_size, size); |
| KUNIT_ASSERT_EQ(test, ret, 0); |
| |
| /* |
| * Allocate one element to prevent mempool from freeing elements to the |
| * underlying allocator and instead make it add them to the element |
| * list when the tests trigger double-free and invalid-free bugs. |
| * This allows testing KASAN annotations in add_element(). |
| */ |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| return elem; |
| } |
| |
| static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size) |
| { |
| struct kmem_cache *cache; |
| int pool_size = 4; |
| int ret; |
| |
| cache = kmem_cache_create("test_cache", size, 0, 0, NULL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| |
| memset(pool, 0, sizeof(*pool)); |
| ret = mempool_init_slab_pool(pool, pool_size, cache); |
| KUNIT_ASSERT_EQ(test, ret, 0); |
| |
| /* |
| * Do not allocate one preallocated element, as we skip the double-free |
| * and invalid-free tests for slab mempool for simplicity. |
| */ |
| |
| return cache; |
| } |
| |
| static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order) |
| { |
| int pool_size = 4; |
| int ret; |
| void *elem; |
| |
| memset(pool, 0, sizeof(*pool)); |
| ret = mempool_init_page_pool(pool, pool_size, order); |
| KUNIT_ASSERT_EQ(test, ret, 0); |
| |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| return elem; |
| } |
| |
| static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size) |
| { |
| char *elem; |
| |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| OPTIMIZER_HIDE_VAR(elem); |
| |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| ((volatile char *)&elem[size])[0]); |
| else |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]); |
| |
| mempool_free(elem, pool); |
| } |
| |
| static void mempool_kmalloc_oob_right(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| void *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_oob_right_helper(test, &pool, size); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_kmalloc_large_oob_right(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| void *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_oob_right_helper(test, &pool, size); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_slab_oob_right(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 123; |
| struct kmem_cache *cache; |
| |
| cache = mempool_prepare_slab(test, &pool, size); |
| |
| mempool_oob_right_helper(test, &pool, size); |
| |
| mempool_exit(&pool); |
| kmem_cache_destroy(cache); |
| } |
| |
| /* |
| * Skip the out-of-bounds test for page mempool. With Generic KASAN, page |
| * allocations have no redzones, and thus the out-of-bounds detection is not |
| * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With |
| * the tag-based KASAN modes, the neighboring allocation might have the same |
| * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505. |
| */ |
| |
| static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page) |
| { |
| char *elem, *ptr; |
| |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| mempool_free(elem, pool); |
| |
| ptr = page ? page_address((struct page *)elem) : elem; |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
| } |
| |
| static void mempool_kmalloc_uaf(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 128; |
| void *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_uaf_helper(test, &pool, false); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_kmalloc_large_uaf(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| void *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_uaf_helper(test, &pool, false); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_slab_uaf(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 123; |
| struct kmem_cache *cache; |
| |
| cache = mempool_prepare_slab(test, &pool, size); |
| |
| mempool_uaf_helper(test, &pool, false); |
| |
| mempool_exit(&pool); |
| kmem_cache_destroy(cache); |
| } |
| |
| static void mempool_page_alloc_uaf(struct kunit *test) |
| { |
| mempool_t pool; |
| int order = 2; |
| void *extra_elem; |
| |
| extra_elem = mempool_prepare_page(test, &pool, order); |
| |
| mempool_uaf_helper(test, &pool, true); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_double_free_helper(struct kunit *test, mempool_t *pool) |
| { |
| char *elem; |
| |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| mempool_free(elem, pool); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool)); |
| } |
| |
| static void mempool_kmalloc_double_free(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 128; |
| char *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_double_free_helper(test, &pool); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_kmalloc_large_double_free(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| char *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_double_free_helper(test, &pool); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_page_alloc_double_free(struct kunit *test) |
| { |
| mempool_t pool; |
| int order = 2; |
| char *extra_elem; |
| |
| extra_elem = mempool_prepare_page(test, &pool, order); |
| |
| mempool_double_free_helper(test, &pool); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool) |
| { |
| char *elem; |
| |
| elem = mempool_alloc_preallocated(pool); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool)); |
| |
| mempool_free(elem, pool); |
| } |
| |
| static void mempool_kmalloc_invalid_free(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = 128; |
| char *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_kmalloc_invalid_free_helper(test, &pool); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| static void mempool_kmalloc_large_invalid_free(struct kunit *test) |
| { |
| mempool_t pool; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| char *extra_elem; |
| |
| extra_elem = mempool_prepare_kmalloc(test, &pool, size); |
| |
| mempool_kmalloc_invalid_free_helper(test, &pool); |
| |
| mempool_free(extra_elem, &pool); |
| mempool_exit(&pool); |
| } |
| |
| /* |
| * Skip the invalid-free test for page mempool. The invalid-free detection only |
| * works for compound pages and mempool preallocates all page elements without |
| * the __GFP_COMP flag. |
| */ |
| |
| static char global_array[10]; |
| |
| static void kasan_global_oob_right(struct kunit *test) |
| { |
| /* |
| * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS |
| * from failing here and panicking the kernel, access the array via a |
| * volatile pointer, which will prevent the compiler from being able to |
| * determine the array bounds. |
| * |
| * This access uses a volatile pointer to char (char *volatile) rather |
| * than the more conventional pointer to volatile char (volatile char *) |
| * because we want to prevent the compiler from making inferences about |
| * the pointer itself (i.e. its array bounds), not the data that it |
| * refers to. |
| */ |
| char *volatile array = global_array; |
| char *p = &array[ARRAY_SIZE(global_array) + 3]; |
| |
| /* Only generic mode instruments globals. */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| } |
| |
| static void kasan_global_oob_left(struct kunit *test) |
| { |
| char *volatile array = global_array; |
| char *p = array - 3; |
| |
| /* |
| * GCC is known to fail this test, skip it. |
| * See https://bugzilla.kernel.org/show_bug.cgi?id=215051. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG); |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| } |
| |
| static void kasan_stack_oob(struct kunit *test) |
| { |
| char stack_array[10]; |
| /* See comment in kasan_global_oob_right. */ |
| char *volatile array = stack_array; |
| char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF]; |
| |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| } |
| |
| static void kasan_alloca_oob_left(struct kunit *test) |
| { |
| volatile int i = 10; |
| char alloca_array[i]; |
| /* See comment in kasan_global_oob_right. */ |
| char *volatile array = alloca_array; |
| char *p = array - 1; |
| |
| /* Only generic mode instruments dynamic allocas. */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| } |
| |
| static void kasan_alloca_oob_right(struct kunit *test) |
| { |
| volatile int i = 10; |
| char alloca_array[i]; |
| /* See comment in kasan_global_oob_right. */ |
| char *volatile array = alloca_array; |
| char *p = array + i; |
| |
| /* Only generic mode instruments dynamic allocas. */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| } |
| |
| static void kasan_memchr(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 24; |
| |
| /* |
| * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| |
| if (OOB_TAG_OFF) |
| size = round_up(size, OOB_TAG_OFF); |
| |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| kasan_ptr_result = memchr(ptr, '1', size + 1)); |
| |
| kfree(ptr); |
| } |
| |
| static void kasan_memcmp(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 24; |
| int arr[9]; |
| |
| /* |
| * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| |
| if (OOB_TAG_OFF) |
| size = round_up(size, OOB_TAG_OFF); |
| |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| memset(arr, 0, sizeof(arr)); |
| |
| OPTIMIZER_HIDE_VAR(ptr); |
| OPTIMIZER_HIDE_VAR(size); |
| KUNIT_EXPECT_KASAN_FAIL(test, |
| kasan_int_result = memcmp(ptr, arr, size+1)); |
| kfree(ptr); |
| } |
| |
| static void kasan_strings(struct kunit *test) |
| { |
| char *ptr; |
| size_t size = 24; |
| |
| /* |
| * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| kfree(ptr); |
| |
| /* |
| * Try to cause only 1 invalid access (less spam in dmesg). |
| * For that we need ptr to point to zeroed byte. |
| * Skip metadata that could be stored in freed object so ptr |
| * will likely point to zeroed byte. |
| */ |
| ptr += 16; |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1')); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1')); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2")); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1)); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr)); |
| |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1)); |
| } |
| |
| static void kasan_bitops_modify(struct kunit *test, int nr, void *addr) |
| { |
| KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr)); |
| } |
| |
| static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr) |
| { |
| KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr)); |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr)); |
| if (nr < 7) |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = |
| xor_unlock_is_negative_byte(1 << nr, addr)); |
| } |
| |
| static void kasan_bitops_generic(struct kunit *test) |
| { |
| long *bits; |
| |
| /* This test is specifically crafted for the generic mode. */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| |
| /* |
| * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes; |
| * this way we do not actually corrupt other memory. |
| */ |
| bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
| |
| /* |
| * Below calls try to access bit within allocated memory; however, the |
| * below accesses are still out-of-bounds, since bitops are defined to |
| * operate on the whole long the bit is in. |
| */ |
| kasan_bitops_modify(test, BITS_PER_LONG, bits); |
| |
| /* |
| * Below calls try to access bit beyond allocated memory. |
| */ |
| kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| kfree(bits); |
| } |
| |
| static void kasan_bitops_tags(struct kunit *test) |
| { |
| long *bits; |
| |
| /* This test is specifically crafted for tag-based modes. */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */ |
| bits = kzalloc(48, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
| |
| /* Do the accesses past the 48 allocated bytes, but within the redone. */ |
| kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48); |
| kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48); |
| |
| kfree(bits); |
| } |
| |
| static void vmalloc_helpers_tags(struct kunit *test) |
| { |
| void *ptr; |
| |
| /* This test is intended for tag-based modes. */ |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| |
| if (!kasan_vmalloc_enabled()) |
| kunit_skip(test, "Test requires kasan.vmalloc=on"); |
| |
| ptr = vmalloc(PAGE_SIZE); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| /* Check that the returned pointer is tagged. */ |
| KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| |
| /* Make sure exported vmalloc helpers handle tagged pointers. */ |
| KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr)); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr)); |
| |
| #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST) |
| { |
| int rv; |
| |
| /* Make sure vmalloc'ed memory permissions can be changed. */ |
| rv = set_memory_ro((unsigned long)ptr, 1); |
| KUNIT_ASSERT_GE(test, rv, 0); |
| rv = set_memory_rw((unsigned long)ptr, 1); |
| KUNIT_ASSERT_GE(test, rv, 0); |
| } |
| #endif |
| |
| vfree(ptr); |
| } |
| |
| static void vmalloc_oob(struct kunit *test) |
| { |
| char *v_ptr, *p_ptr; |
| struct page *page; |
| size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5; |
| |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| |
| if (!kasan_vmalloc_enabled()) |
| kunit_skip(test, "Test requires kasan.vmalloc=on"); |
| |
| v_ptr = vmalloc(size); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| |
| OPTIMIZER_HIDE_VAR(v_ptr); |
| |
| /* |
| * We have to be careful not to hit the guard page in vmalloc tests. |
| * The MMU will catch that and crash us. |
| */ |
| |
| /* Make sure in-bounds accesses are valid. */ |
| v_ptr[0] = 0; |
| v_ptr[size - 1] = 0; |
| |
| /* |
| * An unaligned access past the requested vmalloc size. |
| * Only generic KASAN can precisely detect these. |
| */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]); |
| |
| /* An aligned access into the first out-of-bounds granule. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]); |
| |
| /* Check that in-bounds accesses to the physical page are valid. */ |
| page = vmalloc_to_page(v_ptr); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
| p_ptr = page_address(page); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| p_ptr[0] = 0; |
| |
| vfree(v_ptr); |
| |
| /* |
| * We can't check for use-after-unmap bugs in this nor in the following |
| * vmalloc tests, as the page might be fully unmapped and accessing it |
| * will crash the kernel. |
| */ |
| } |
| |
| static void vmap_tags(struct kunit *test) |
| { |
| char *p_ptr, *v_ptr; |
| struct page *p_page, *v_page; |
| |
| /* |
| * This test is specifically crafted for the software tag-based mode, |
| * the only tag-based mode that poisons vmap mappings. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
| |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| |
| if (!kasan_vmalloc_enabled()) |
| kunit_skip(test, "Test requires kasan.vmalloc=on"); |
| |
| p_page = alloc_pages(GFP_KERNEL, 1); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page); |
| p_ptr = page_address(p_page); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| |
| v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| |
| /* |
| * We can't check for out-of-bounds bugs in this nor in the following |
| * vmalloc tests, as allocations have page granularity and accessing |
| * the guard page will crash the kernel. |
| */ |
| |
| KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
| |
| /* Make sure that in-bounds accesses through both pointers work. */ |
| *p_ptr = 0; |
| *v_ptr = 0; |
| |
| /* Make sure vmalloc_to_page() correctly recovers the page pointer. */ |
| v_page = vmalloc_to_page(v_ptr); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page); |
| KUNIT_EXPECT_PTR_EQ(test, p_page, v_page); |
| |
| vunmap(v_ptr); |
| free_pages((unsigned long)p_ptr, 1); |
| } |
| |
| static void vm_map_ram_tags(struct kunit *test) |
| { |
| char *p_ptr, *v_ptr; |
| struct page *page; |
| |
| /* |
| * This test is specifically crafted for the software tag-based mode, |
| * the only tag-based mode that poisons vm_map_ram mappings. |
| */ |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
| |
| page = alloc_pages(GFP_KERNEL, 1); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
| p_ptr = page_address(page); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| |
| v_ptr = vm_map_ram(&page, 1, -1); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| |
| KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
| |
| /* Make sure that in-bounds accesses through both pointers work. */ |
| *p_ptr = 0; |
| *v_ptr = 0; |
| |
| vm_unmap_ram(v_ptr, 1); |
| free_pages((unsigned long)p_ptr, 1); |
| } |
| |
| /* |
| * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN, |
| * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based |
| * modes. |
| */ |
| static void match_all_not_assigned(struct kunit *test) |
| { |
| char *ptr; |
| struct page *pages; |
| int i, size, order; |
| |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| for (i = 0; i < 256; i++) { |
| size = get_random_u32_inclusive(1, 1024); |
| ptr = kmalloc(size, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| kfree(ptr); |
| } |
| |
| for (i = 0; i < 256; i++) { |
| order = get_random_u32_inclusive(1, 4); |
| pages = alloc_pages(GFP_KERNEL, order); |
| ptr = page_address(pages); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| free_pages((unsigned long)ptr, order); |
| } |
| |
| if (!kasan_vmalloc_enabled()) |
| return; |
| |
| for (i = 0; i < 256; i++) { |
| size = get_random_u32_inclusive(1, 1024); |
| ptr = vmalloc(size); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| vfree(ptr); |
| } |
| } |
| |
| /* Check that 0xff works as a match-all pointer tag for tag-based modes. */ |
| static void match_all_ptr_tag(struct kunit *test) |
| { |
| char *ptr; |
| u8 tag; |
| |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| ptr = kmalloc(128, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| |
| /* Backup the assigned tag. */ |
| tag = get_tag(ptr); |
| KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL); |
| |
| /* Reset the tag to 0xff.*/ |
| ptr = set_tag(ptr, KASAN_TAG_KERNEL); |
| |
| /* This access shouldn't trigger a KASAN report. */ |
| *ptr = 0; |
| |
| /* Recover the pointer tag and free. */ |
| ptr = set_tag(ptr, tag); |
| kfree(ptr); |
| } |
| |
| /* Check that there are no match-all memory tags for tag-based modes. */ |
| static void match_all_mem_tag(struct kunit *test) |
| { |
| char *ptr; |
| int tag; |
| |
| KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| |
| ptr = kmalloc(128, GFP_KERNEL); |
| KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| |
| /* For each possible tag value not matching the pointer tag. */ |
| for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) { |
| /* |
| * For Software Tag-Based KASAN, skip the majority of tag |
| * values to avoid the test printing too many reports. |
| */ |
| if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) && |
| tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8) |
| continue; |
| |
| if (tag == get_tag(ptr)) |
| continue; |
| |
| /* Mark the first memory granule with the chosen memory tag. */ |
| kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false); |
| |
| /* This access must cause a KASAN report. */ |
| KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0); |
| } |
| |
| /* Recover the memory tag and free. */ |
| kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false); |
| kfree(ptr); |
| } |
| |
| /* |
| * Check that Rust performing a use-after-free using `unsafe` is detected. |
| * This is a smoke test to make sure that Rust is being sanitized properly. |
| */ |
| static void rust_uaf(struct kunit *test) |
| { |
| KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_RUST); |
| KUNIT_EXPECT_KASAN_FAIL(test, kasan_test_rust_uaf()); |
| } |
| |
| static struct kunit_case kasan_kunit_test_cases[] = { |
| KUNIT_CASE(kmalloc_oob_right), |
| KUNIT_CASE(kmalloc_oob_left), |
| KUNIT_CASE(kmalloc_node_oob_right), |
| KUNIT_CASE(kmalloc_big_oob_right), |
| KUNIT_CASE(kmalloc_large_oob_right), |
| KUNIT_CASE(kmalloc_large_uaf), |
| KUNIT_CASE(kmalloc_large_invalid_free), |
| KUNIT_CASE(page_alloc_oob_right), |
| KUNIT_CASE(page_alloc_uaf), |
| KUNIT_CASE(krealloc_more_oob), |
| KUNIT_CASE(krealloc_less_oob), |
| KUNIT_CASE(krealloc_large_more_oob), |
| KUNIT_CASE(krealloc_large_less_oob), |
| KUNIT_CASE(krealloc_uaf), |
| KUNIT_CASE(kmalloc_oob_16), |
| KUNIT_CASE(kmalloc_uaf_16), |
| KUNIT_CASE(kmalloc_oob_in_memset), |
| KUNIT_CASE(kmalloc_oob_memset_2), |
| KUNIT_CASE(kmalloc_oob_memset_4), |
| KUNIT_CASE(kmalloc_oob_memset_8), |
| KUNIT_CASE(kmalloc_oob_memset_16), |
| KUNIT_CASE(kmalloc_memmove_negative_size), |
| KUNIT_CASE(kmalloc_memmove_invalid_size), |
| KUNIT_CASE(kmalloc_uaf), |
| KUNIT_CASE(kmalloc_uaf_memset), |
| KUNIT_CASE(kmalloc_uaf2), |
| KUNIT_CASE(kmalloc_uaf3), |
| KUNIT_CASE(kmalloc_double_kzfree), |
| KUNIT_CASE(ksize_unpoisons_memory), |
| KUNIT_CASE(ksize_uaf), |
| KUNIT_CASE(rcu_uaf), |
| KUNIT_CASE(workqueue_uaf), |
| KUNIT_CASE(kfree_via_page), |
| KUNIT_CASE(kfree_via_phys), |
| KUNIT_CASE(kmem_cache_oob), |
| KUNIT_CASE(kmem_cache_double_free), |
| KUNIT_CASE(kmem_cache_invalid_free), |
| KUNIT_CASE(kmem_cache_rcu_uaf), |
| KUNIT_CASE(kmem_cache_double_destroy), |
| KUNIT_CASE(kmem_cache_accounted), |
| KUNIT_CASE(kmem_cache_bulk), |
| KUNIT_CASE(mempool_kmalloc_oob_right), |
| KUNIT_CASE(mempool_kmalloc_large_oob_right), |
| KUNIT_CASE(mempool_slab_oob_right), |
| KUNIT_CASE(mempool_kmalloc_uaf), |
| KUNIT_CASE(mempool_kmalloc_large_uaf), |
| KUNIT_CASE(mempool_slab_uaf), |
| KUNIT_CASE(mempool_page_alloc_uaf), |
| KUNIT_CASE(mempool_kmalloc_double_free), |
| KUNIT_CASE(mempool_kmalloc_large_double_free), |
| KUNIT_CASE(mempool_page_alloc_double_free), |
| KUNIT_CASE(mempool_kmalloc_invalid_free), |
| KUNIT_CASE(mempool_kmalloc_large_invalid_free), |
| KUNIT_CASE(kasan_global_oob_right), |
| KUNIT_CASE(kasan_global_oob_left), |
| KUNIT_CASE(kasan_stack_oob), |
| KUNIT_CASE(kasan_alloca_oob_left), |
| KUNIT_CASE(kasan_alloca_oob_right), |
| KUNIT_CASE(kasan_memchr), |
| KUNIT_CASE(kasan_memcmp), |
| KUNIT_CASE(kasan_strings), |
| KUNIT_CASE(kasan_bitops_generic), |
| KUNIT_CASE(kasan_bitops_tags), |
| KUNIT_CASE(kasan_atomics), |
| KUNIT_CASE(vmalloc_helpers_tags), |
| KUNIT_CASE(vmalloc_oob), |
| KUNIT_CASE(vmap_tags), |
| KUNIT_CASE(vm_map_ram_tags), |
| KUNIT_CASE(match_all_not_assigned), |
| KUNIT_CASE(match_all_ptr_tag), |
| KUNIT_CASE(match_all_mem_tag), |
| KUNIT_CASE(rust_uaf), |
| {} |
| }; |
| |
| static struct kunit_suite kasan_kunit_test_suite = { |
| .name = "kasan", |
| .test_cases = kasan_kunit_test_cases, |
| .exit = kasan_test_exit, |
| .suite_init = kasan_suite_init, |
| .suite_exit = kasan_suite_exit, |
| }; |
| |
| kunit_test_suite(kasan_kunit_test_suite); |
| |
| MODULE_LICENSE("GPL"); |