| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // sgtl5000.c -- SGTL5000 ALSA SoC Audio driver |
| // |
| // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/pm.h> |
| #include <linux/i2c.h> |
| #include <linux/clk.h> |
| #include <linux/log2.h> |
| #include <linux/of.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/regulator/consumer.h> |
| #include <sound/core.h> |
| #include <sound/tlv.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/soc.h> |
| #include <sound/soc-dapm.h> |
| #include <sound/initval.h> |
| |
| #include "sgtl5000.h" |
| |
| #define SGTL5000_DAP_REG_OFFSET 0x0100 |
| #define SGTL5000_MAX_REG_OFFSET 0x013A |
| |
| /* Delay for the VAG ramp up */ |
| #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */ |
| /* Delay for the VAG ramp down */ |
| #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */ |
| |
| #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE) |
| |
| /* default value of sgtl5000 registers */ |
| static const struct reg_default sgtl5000_reg_defaults[] = { |
| { SGTL5000_CHIP_DIG_POWER, 0x0000 }, |
| { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, |
| { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, |
| { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, |
| { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, |
| { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, |
| { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, |
| { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, |
| { SGTL5000_CHIP_REF_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, |
| { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, |
| { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, |
| { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, |
| { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, |
| { SGTL5000_DAP_CTRL, 0x0000 }, |
| { SGTL5000_DAP_PEQ, 0x0000 }, |
| { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, |
| { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, |
| { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, |
| { SGTL5000_DAP_SURROUND, 0x0040 }, |
| { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, |
| { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, |
| { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, |
| { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, |
| { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, |
| { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, |
| { SGTL5000_DAP_MIX_CHAN, 0x0000 }, |
| { SGTL5000_DAP_AVC_CTRL, 0x5100 }, |
| { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, |
| { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, |
| { SGTL5000_DAP_AVC_DECAY, 0x0050 }, |
| }; |
| |
| /* AVC: Threshold dB -> register: pre-calculated values */ |
| static const u16 avc_thr_db2reg[97] = { |
| 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068, |
| 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F, |
| 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414, |
| 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172, |
| 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083, |
| 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E, |
| 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010, |
| 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005, |
| 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, |
| 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}; |
| |
| /* regulator supplies for sgtl5000, VDDD is an optional external supply */ |
| enum sgtl5000_regulator_supplies { |
| VDDA, |
| VDDIO, |
| VDDD, |
| SGTL5000_SUPPLY_NUM |
| }; |
| |
| /* vddd is optional supply */ |
| static const char *supply_names[SGTL5000_SUPPLY_NUM] = { |
| "VDDA", |
| "VDDIO", |
| "VDDD" |
| }; |
| |
| #define LDO_VOLTAGE 1200000 |
| #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50) |
| |
| enum sgtl5000_micbias_resistor { |
| SGTL5000_MICBIAS_OFF = 0, |
| SGTL5000_MICBIAS_2K = 2, |
| SGTL5000_MICBIAS_4K = 4, |
| SGTL5000_MICBIAS_8K = 8, |
| }; |
| |
| enum { |
| I2S_LRCLK_STRENGTH_DISABLE, |
| I2S_LRCLK_STRENGTH_LOW, |
| I2S_LRCLK_STRENGTH_MEDIUM, |
| I2S_LRCLK_STRENGTH_HIGH, |
| }; |
| |
| enum { |
| I2S_SCLK_STRENGTH_DISABLE, |
| I2S_SCLK_STRENGTH_LOW, |
| I2S_SCLK_STRENGTH_MEDIUM, |
| I2S_SCLK_STRENGTH_HIGH, |
| }; |
| |
| enum { |
| HP_POWER_EVENT, |
| DAC_POWER_EVENT, |
| ADC_POWER_EVENT, |
| LAST_POWER_EVENT = ADC_POWER_EVENT |
| }; |
| |
| /* sgtl5000 private structure in codec */ |
| struct sgtl5000_priv { |
| int sysclk; /* sysclk rate */ |
| int master; /* i2s master or not */ |
| int fmt; /* i2s data format */ |
| struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; |
| int num_supplies; |
| struct regmap *regmap; |
| struct clk *mclk; |
| int revision; |
| u8 micbias_resistor; |
| u8 micbias_voltage; |
| u8 lrclk_strength; |
| u8 sclk_strength; |
| u16 mute_state[LAST_POWER_EVENT + 1]; |
| }; |
| |
| static inline int hp_sel_input(struct snd_soc_component *component) |
| { |
| return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) & |
| SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT; |
| } |
| |
| static inline u16 mute_output(struct snd_soc_component *component, |
| u16 mute_mask) |
| { |
| u16 mute_reg = snd_soc_component_read(component, |
| SGTL5000_CHIP_ANA_CTRL); |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, |
| mute_mask, mute_mask); |
| return mute_reg; |
| } |
| |
| static inline void restore_output(struct snd_soc_component *component, |
| u16 mute_mask, u16 mute_reg) |
| { |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, |
| mute_mask, mute_reg); |
| } |
| |
| static void vag_power_on(struct snd_soc_component *component, u32 source) |
| { |
| if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) & |
| SGTL5000_VAG_POWERUP) |
| return; |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); |
| |
| /* When VAG powering on to get local loop from Line-In, the sleep |
| * is required to avoid loud pop. |
| */ |
| if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN && |
| source == HP_POWER_EVENT) |
| msleep(SGTL5000_VAG_POWERUP_DELAY); |
| } |
| |
| static int vag_power_consumers(struct snd_soc_component *component, |
| u16 ana_pwr_reg, u32 source) |
| { |
| int consumers = 0; |
| |
| /* count dac/adc consumers unconditional */ |
| if (ana_pwr_reg & SGTL5000_DAC_POWERUP) |
| consumers++; |
| if (ana_pwr_reg & SGTL5000_ADC_POWERUP) |
| consumers++; |
| |
| /* |
| * If the event comes from HP and Line-In is selected, |
| * current action is 'DAC to be powered down'. |
| * As HP_POWERUP is not set when HP muxed to line-in, |
| * we need to keep VAG power ON. |
| */ |
| if (source == HP_POWER_EVENT) { |
| if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN) |
| consumers++; |
| } else { |
| if (ana_pwr_reg & SGTL5000_HP_POWERUP) |
| consumers++; |
| } |
| |
| return consumers; |
| } |
| |
| static void vag_power_off(struct snd_soc_component *component, u32 source) |
| { |
| u16 ana_pwr = snd_soc_component_read(component, |
| SGTL5000_CHIP_ANA_POWER); |
| |
| if (!(ana_pwr & SGTL5000_VAG_POWERUP)) |
| return; |
| |
| /* |
| * This function calls when any of VAG power consumers is disappearing. |
| * Thus, if there is more than one consumer at the moment, as minimum |
| * one consumer will definitely stay after the end of the current |
| * event. |
| * Don't clear VAG_POWERUP if 2 or more consumers of VAG present: |
| * - LINE_IN (for HP events) / HP (for DAC/ADC events) |
| * - DAC |
| * - ADC |
| * (the current consumer is disappearing right now) |
| */ |
| if (vag_power_consumers(component, ana_pwr, source) >= 2) |
| return; |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_VAG_POWERUP, 0); |
| /* In power down case, we need wait 400-1000 ms |
| * when VAG fully ramped down. |
| * As longer we wait, as smaller pop we've got. |
| */ |
| msleep(SGTL5000_VAG_POWERDOWN_DELAY); |
| } |
| |
| /* |
| * mic_bias power on/off share the same register bits with |
| * output impedance of mic bias, when power on mic bias, we |
| * need reclaim it to impedance value. |
| * 0x0 = Powered off |
| * 0x1 = 2Kohm |
| * 0x2 = 4Kohm |
| * 0x3 = 8Kohm |
| */ |
| static int mic_bias_event(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *kcontrol, int event) |
| { |
| struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| |
| switch (event) { |
| case SND_SOC_DAPM_POST_PMU: |
| /* change mic bias resistor */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, |
| SGTL5000_BIAS_R_MASK, |
| sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); |
| break; |
| |
| case SND_SOC_DAPM_PRE_PMD: |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, |
| SGTL5000_BIAS_R_MASK, 0); |
| break; |
| } |
| return 0; |
| } |
| |
| static int vag_and_mute_control(struct snd_soc_component *component, |
| int event, int event_source) |
| { |
| static const u16 mute_mask[] = { |
| /* |
| * Mask for HP_POWER_EVENT. |
| * Muxing Headphones have to be wrapped with mute/unmute |
| * headphones only. |
| */ |
| SGTL5000_HP_MUTE, |
| /* |
| * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT. |
| * Muxing DAC or ADC block have to wrapped with mute/unmute |
| * both headphones and line-out. |
| */ |
| SGTL5000_OUTPUTS_MUTE, |
| SGTL5000_OUTPUTS_MUTE |
| }; |
| |
| struct sgtl5000_priv *sgtl5000 = |
| snd_soc_component_get_drvdata(component); |
| |
| switch (event) { |
| case SND_SOC_DAPM_PRE_PMU: |
| sgtl5000->mute_state[event_source] = |
| mute_output(component, mute_mask[event_source]); |
| break; |
| case SND_SOC_DAPM_POST_PMU: |
| vag_power_on(component, event_source); |
| restore_output(component, mute_mask[event_source], |
| sgtl5000->mute_state[event_source]); |
| break; |
| case SND_SOC_DAPM_PRE_PMD: |
| sgtl5000->mute_state[event_source] = |
| mute_output(component, mute_mask[event_source]); |
| vag_power_off(component, event_source); |
| break; |
| case SND_SOC_DAPM_POST_PMD: |
| restore_output(component, mute_mask[event_source], |
| sgtl5000->mute_state[event_source]); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Mute Headphone when power it up/down. |
| * Control VAG power on HP power path. |
| */ |
| static int headphone_pga_event(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *kcontrol, int event) |
| { |
| struct snd_soc_component *component = |
| snd_soc_dapm_to_component(w->dapm); |
| |
| return vag_and_mute_control(component, event, HP_POWER_EVENT); |
| } |
| |
| /* As manual describes, ADC/DAC powering up/down requires |
| * to mute outputs to avoid pops. |
| * Control VAG power on ADC/DAC power path. |
| */ |
| static int adc_updown_depop(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *kcontrol, int event) |
| { |
| struct snd_soc_component *component = |
| snd_soc_dapm_to_component(w->dapm); |
| |
| return vag_and_mute_control(component, event, ADC_POWER_EVENT); |
| } |
| |
| static int dac_updown_depop(struct snd_soc_dapm_widget *w, |
| struct snd_kcontrol *kcontrol, int event) |
| { |
| struct snd_soc_component *component = |
| snd_soc_dapm_to_component(w->dapm); |
| |
| return vag_and_mute_control(component, event, DAC_POWER_EVENT); |
| } |
| |
| /* input sources for ADC */ |
| static const char *adc_mux_text[] = { |
| "MIC_IN", "LINE_IN" |
| }; |
| |
| static SOC_ENUM_SINGLE_DECL(adc_enum, |
| SGTL5000_CHIP_ANA_CTRL, 2, |
| adc_mux_text); |
| |
| static const struct snd_kcontrol_new adc_mux = |
| SOC_DAPM_ENUM("Capture Mux", adc_enum); |
| |
| /* input sources for headphone */ |
| static const char *hp_mux_text[] = { |
| "DAC", "LINE_IN" |
| }; |
| |
| static SOC_ENUM_SINGLE_DECL(hp_enum, |
| SGTL5000_CHIP_ANA_CTRL, 6, |
| hp_mux_text); |
| |
| static const struct snd_kcontrol_new hp_mux = |
| SOC_DAPM_ENUM("Headphone Mux", hp_enum); |
| |
| /* input sources for DAC */ |
| static const char *dac_mux_text[] = { |
| "ADC", "I2S", "Rsvrd", "DAP" |
| }; |
| |
| static SOC_ENUM_SINGLE_DECL(dac_enum, |
| SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT, |
| dac_mux_text); |
| |
| static const struct snd_kcontrol_new dac_mux = |
| SOC_DAPM_ENUM("Digital Input Mux", dac_enum); |
| |
| /* input sources for DAP */ |
| static const char *dap_mux_text[] = { |
| "ADC", "I2S" |
| }; |
| |
| static SOC_ENUM_SINGLE_DECL(dap_enum, |
| SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT, |
| dap_mux_text); |
| |
| static const struct snd_kcontrol_new dap_mux = |
| SOC_DAPM_ENUM("DAP Mux", dap_enum); |
| |
| /* input sources for DAP mix */ |
| static const char *dapmix_mux_text[] = { |
| "ADC", "I2S" |
| }; |
| |
| static SOC_ENUM_SINGLE_DECL(dapmix_enum, |
| SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT, |
| dapmix_mux_text); |
| |
| static const struct snd_kcontrol_new dapmix_mux = |
| SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum); |
| |
| |
| static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { |
| SND_SOC_DAPM_INPUT("LINE_IN"), |
| SND_SOC_DAPM_INPUT("MIC_IN"), |
| |
| SND_SOC_DAPM_OUTPUT("HP_OUT"), |
| SND_SOC_DAPM_OUTPUT("LINE_OUT"), |
| |
| SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, |
| mic_bias_event, |
| SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), |
| |
| SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0, |
| headphone_pga_event, |
| SND_SOC_DAPM_PRE_POST_PMU | |
| SND_SOC_DAPM_PRE_POST_PMD), |
| SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), |
| |
| SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), |
| SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux), |
| SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux), |
| SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux), |
| SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux), |
| SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0), |
| |
| |
| /* aif for i2s input */ |
| SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", |
| 0, SGTL5000_CHIP_DIG_POWER, |
| 0, 0), |
| |
| /* aif for i2s output */ |
| SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", |
| 0, SGTL5000_CHIP_DIG_POWER, |
| 1, 0), |
| |
| SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0, |
| adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | |
| SND_SOC_DAPM_PRE_POST_PMD), |
| SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0, |
| dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | |
| SND_SOC_DAPM_PRE_POST_PMD), |
| }; |
| |
| /* routes for sgtl5000 */ |
| static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { |
| {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ |
| {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ |
| |
| {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ |
| {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ |
| |
| {"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */ |
| {"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */ |
| {"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */ |
| |
| {"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */ |
| {"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */ |
| {"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */ |
| |
| {"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */ |
| {"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */ |
| {"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */ |
| {"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */ |
| |
| {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ |
| {"LO", NULL, "DAC"}, /* dac --> line_out */ |
| |
| {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ |
| {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ |
| |
| {"LINE_OUT", NULL, "LO"}, |
| {"HP_OUT", NULL, "HP"}, |
| }; |
| |
| /* custom function to fetch info of PCM playback volume */ |
| static int dac_info_volsw(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; |
| uinfo->count = 2; |
| uinfo->value.integer.min = 0; |
| uinfo->value.integer.max = 0xfc - 0x3c; |
| return 0; |
| } |
| |
| /* |
| * custom function to get of PCM playback volume |
| * |
| * dac volume register |
| * 15-------------8-7--------------0 |
| * | R channel vol | L channel vol | |
| * ------------------------------- |
| * |
| * PCM volume with 0.5017 dB steps from 0 to -90 dB |
| * |
| * register values map to dB |
| * 0x3B and less = Reserved |
| * 0x3C = 0 dB |
| * 0x3D = -0.5 dB |
| * 0xF0 = -90 dB |
| * 0xFC and greater = Muted |
| * |
| * register value map to userspace value |
| * |
| * register value 0x3c(0dB) 0xf0(-90dB)0xfc |
| * ------------------------------ |
| * userspace value 0xc0 0 |
| */ |
| static int dac_get_volsw(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| int reg; |
| int l; |
| int r; |
| |
| reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL); |
| |
| /* get left channel volume */ |
| l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; |
| |
| /* get right channel volume */ |
| r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; |
| |
| /* make sure value fall in (0x3c,0xfc) */ |
| l = clamp(l, 0x3c, 0xfc); |
| r = clamp(r, 0x3c, 0xfc); |
| |
| /* invert it and map to userspace value */ |
| l = 0xfc - l; |
| r = 0xfc - r; |
| |
| ucontrol->value.integer.value[0] = l; |
| ucontrol->value.integer.value[1] = r; |
| |
| return 0; |
| } |
| |
| /* |
| * custom function to put of PCM playback volume |
| * |
| * dac volume register |
| * 15-------------8-7--------------0 |
| * | R channel vol | L channel vol | |
| * ------------------------------- |
| * |
| * PCM volume with 0.5017 dB steps from 0 to -90 dB |
| * |
| * register values map to dB |
| * 0x3B and less = Reserved |
| * 0x3C = 0 dB |
| * 0x3D = -0.5 dB |
| * 0xF0 = -90 dB |
| * 0xFC and greater = Muted |
| * |
| * userspace value map to register value |
| * |
| * userspace value 0xc0 0 |
| * ------------------------------ |
| * register value 0x3c(0dB) 0xf0(-90dB)0xfc |
| */ |
| static int dac_put_volsw(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| int reg; |
| int l; |
| int r; |
| |
| l = ucontrol->value.integer.value[0]; |
| r = ucontrol->value.integer.value[1]; |
| |
| /* make sure userspace volume fall in (0, 0xfc-0x3c) */ |
| l = clamp(l, 0, 0xfc - 0x3c); |
| r = clamp(r, 0, 0xfc - 0x3c); |
| |
| /* invert it, get the value can be set to register */ |
| l = 0xfc - l; |
| r = 0xfc - r; |
| |
| /* shift to get the register value */ |
| reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | |
| r << SGTL5000_DAC_VOL_RIGHT_SHIFT; |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg); |
| |
| return 0; |
| } |
| |
| /* |
| * custom function to get AVC threshold |
| * |
| * The threshold dB is calculated by rearranging the calculation from the |
| * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==> |
| * dB = ( fls(register_value) - 14.347 ) * 6.02 |
| * |
| * As this calculation is expensive and the threshold dB values may not exceed |
| * 0 to 96 we use pre-calculated values. |
| */ |
| static int avc_get_threshold(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| int db, i; |
| u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD); |
| |
| /* register value 0 => -96dB */ |
| if (!reg) { |
| ucontrol->value.integer.value[0] = 96; |
| ucontrol->value.integer.value[1] = 96; |
| return 0; |
| } |
| |
| /* get dB from register value (rounded down) */ |
| for (i = 0; avc_thr_db2reg[i] > reg; i++) |
| ; |
| db = i; |
| |
| ucontrol->value.integer.value[0] = db; |
| ucontrol->value.integer.value[1] = db; |
| |
| return 0; |
| } |
| |
| /* |
| * custom function to put AVC threshold |
| * |
| * The register value is calculated by following formula: |
| * register_value = 10^(dB/20) * 0.636 * 2^15 |
| * As this calculation is expensive and the threshold dB values may not exceed |
| * 0 to 96 we use pre-calculated values. |
| */ |
| static int avc_put_threshold(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); |
| int db; |
| u16 reg; |
| |
| db = (int)ucontrol->value.integer.value[0]; |
| if (db < 0 || db > 96) |
| return -EINVAL; |
| reg = avc_thr_db2reg[db]; |
| snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg); |
| |
| return 0; |
| } |
| |
| static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); |
| |
| /* tlv for mic gain, 0db 20db 30db 40db */ |
| static const DECLARE_TLV_DB_RANGE(mic_gain_tlv, |
| 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), |
| 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0) |
| ); |
| |
| /* tlv for DAP channels, 0% - 100% - 200% */ |
| static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0); |
| |
| /* tlv for bass bands, -11.75db to 12.0db, step .25db */ |
| static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0); |
| |
| /* tlv for hp volume, -51.5db to 12.0db, step .5db */ |
| static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); |
| |
| /* tlv for lineout volume, 31 steps of .5db each */ |
| static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0); |
| |
| /* tlv for dap avc max gain, 0db, 6db, 12db */ |
| static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0); |
| |
| /* tlv for dap avc threshold, */ |
| static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600); |
| |
| static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { |
| /* SOC_DOUBLE_S8_TLV with invert */ |
| { |
| .iface = SNDRV_CTL_ELEM_IFACE_MIXER, |
| .name = "PCM Playback Volume", |
| .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | |
| SNDRV_CTL_ELEM_ACCESS_READWRITE, |
| .info = dac_info_volsw, |
| .get = dac_get_volsw, |
| .put = dac_put_volsw, |
| }, |
| |
| SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), |
| SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", |
| SGTL5000_CHIP_ANA_ADC_CTRL, |
| 8, 1, 0, capture_6db_attenuate), |
| SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), |
| SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1), |
| |
| SOC_DOUBLE_TLV("Headphone Playback Volume", |
| SGTL5000_CHIP_ANA_HP_CTRL, |
| 0, 8, |
| 0x7f, 1, |
| headphone_volume), |
| SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL, |
| 4, 1, 1), |
| SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, |
| 5, 1, 0), |
| |
| SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, |
| 0, 3, 0, mic_gain_tlv), |
| |
| SOC_DOUBLE_TLV("Lineout Playback Volume", |
| SGTL5000_CHIP_LINE_OUT_VOL, |
| SGTL5000_LINE_OUT_VOL_LEFT_SHIFT, |
| SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT, |
| 0x1f, 1, |
| lineout_volume), |
| SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1), |
| |
| SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN, |
| 0, 0xffff, 0, dap_volume), |
| |
| SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN, |
| 0, 0xffff, 0, dap_volume), |
| /* Automatic Volume Control (DAP AVC) */ |
| SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0), |
| SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0), |
| SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0, |
| avc_max_gain), |
| SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0), |
| SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD, |
| 0, 96, 0, avc_get_threshold, avc_put_threshold, |
| avc_threshold), |
| |
| SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0, |
| 0, 0x5F, 0, bass_band), |
| |
| SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1, |
| 0, 0x5F, 0, bass_band), |
| |
| SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2, |
| 0, 0x5F, 0, bass_band), |
| |
| SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3, |
| 0, 0x5F, 0, bass_band), |
| |
| SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4, |
| 0, 0x5F, 0, bass_band), |
| }; |
| |
| /* mute the codec used by alsa core */ |
| static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction) |
| { |
| struct snd_soc_component *component = codec_dai->component; |
| u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP; |
| |
| /* |
| * During 'digital mute' do not mute DAC |
| * because LINE_IN would be muted aswell. We want to mute |
| * only I2S block - this can be done by powering it off |
| */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER, |
| i2s_pwr, mute ? 0 : i2s_pwr); |
| |
| return 0; |
| } |
| |
| /* set codec format */ |
| static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) |
| { |
| struct snd_soc_component *component = codec_dai->component; |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| u16 i2sctl = 0; |
| |
| sgtl5000->master = 0; |
| /* |
| * i2s clock and frame master setting. |
| * ONLY support: |
| * - clock and frame slave, |
| * - clock and frame master |
| */ |
| switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { |
| case SND_SOC_DAIFMT_CBS_CFS: |
| break; |
| case SND_SOC_DAIFMT_CBM_CFM: |
| i2sctl |= SGTL5000_I2S_MASTER; |
| sgtl5000->master = 1; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* setting i2s data format */ |
| switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { |
| case SND_SOC_DAIFMT_DSP_A: |
| i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; |
| break; |
| case SND_SOC_DAIFMT_DSP_B: |
| i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; |
| i2sctl |= SGTL5000_I2S_LRALIGN; |
| break; |
| case SND_SOC_DAIFMT_I2S: |
| i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; |
| break; |
| case SND_SOC_DAIFMT_RIGHT_J: |
| i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; |
| i2sctl |= SGTL5000_I2S_LRPOL; |
| break; |
| case SND_SOC_DAIFMT_LEFT_J: |
| i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; |
| i2sctl |= SGTL5000_I2S_LRALIGN; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; |
| |
| /* Clock inversion */ |
| switch (fmt & SND_SOC_DAIFMT_INV_MASK) { |
| case SND_SOC_DAIFMT_NB_NF: |
| break; |
| case SND_SOC_DAIFMT_IB_NF: |
| i2sctl |= SGTL5000_I2S_SCLK_INV; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl); |
| |
| return 0; |
| } |
| |
| /* set codec sysclk */ |
| static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, |
| int clk_id, unsigned int freq, int dir) |
| { |
| struct snd_soc_component *component = codec_dai->component; |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| |
| switch (clk_id) { |
| case SGTL5000_SYSCLK: |
| sgtl5000->sysclk = freq; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * set clock according to i2s frame clock, |
| * sgtl5000 provides 2 clock sources: |
| * 1. sys_mclk: sample freq can only be configured to |
| * 1/256, 1/384, 1/512 of sys_mclk. |
| * 2. pll: can derive any audio clocks. |
| * |
| * clock setting rules: |
| * 1. in slave mode, only sys_mclk can be used |
| * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz |
| * and above. |
| * 3. usage of sys_mclk is preferred over pll to save power. |
| */ |
| static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate) |
| { |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| int clk_ctl = 0; |
| int sys_fs; /* sample freq */ |
| |
| /* |
| * sample freq should be divided by frame clock, |
| * if frame clock is lower than 44.1 kHz, sample freq should be set to |
| * 32 kHz or 44.1 kHz. |
| */ |
| switch (frame_rate) { |
| case 8000: |
| case 16000: |
| sys_fs = 32000; |
| break; |
| case 11025: |
| case 22050: |
| sys_fs = 44100; |
| break; |
| default: |
| sys_fs = frame_rate; |
| break; |
| } |
| |
| /* set divided factor of frame clock */ |
| switch (sys_fs / frame_rate) { |
| case 4: |
| clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; |
| break; |
| case 2: |
| clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; |
| break; |
| case 1: |
| clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* set the sys_fs according to frame rate */ |
| switch (sys_fs) { |
| case 32000: |
| clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; |
| break; |
| case 44100: |
| clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; |
| break; |
| case 48000: |
| clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; |
| break; |
| case 96000: |
| clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; |
| break; |
| default: |
| dev_err(component->dev, "frame rate %d not supported\n", |
| frame_rate); |
| return -EINVAL; |
| } |
| |
| /* |
| * calculate the divider of mclk/sample_freq, |
| * factor of freq = 96 kHz can only be 256, since mclk is in the range |
| * of 8 MHz - 27 MHz |
| */ |
| switch (sgtl5000->sysclk / frame_rate) { |
| case 256: |
| clk_ctl |= SGTL5000_MCLK_FREQ_256FS << |
| SGTL5000_MCLK_FREQ_SHIFT; |
| break; |
| case 384: |
| clk_ctl |= SGTL5000_MCLK_FREQ_384FS << |
| SGTL5000_MCLK_FREQ_SHIFT; |
| break; |
| case 512: |
| clk_ctl |= SGTL5000_MCLK_FREQ_512FS << |
| SGTL5000_MCLK_FREQ_SHIFT; |
| break; |
| default: |
| /* if mclk does not satisfy the divider, use pll */ |
| if (sgtl5000->master) { |
| clk_ctl |= SGTL5000_MCLK_FREQ_PLL << |
| SGTL5000_MCLK_FREQ_SHIFT; |
| } else { |
| dev_err(component->dev, |
| "PLL not supported in slave mode\n"); |
| dev_err(component->dev, "%d ratio is not supported. " |
| "SYS_MCLK needs to be 256, 384 or 512 * fs\n", |
| sgtl5000->sysclk / frame_rate); |
| return -EINVAL; |
| } |
| } |
| |
| /* if using pll, please check manual 6.4.2 for detail */ |
| if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { |
| u64 out, t; |
| int div2; |
| int pll_ctl; |
| unsigned int in, int_div, frac_div; |
| |
| if (sgtl5000->sysclk > 17000000) { |
| div2 = 1; |
| in = sgtl5000->sysclk / 2; |
| } else { |
| div2 = 0; |
| in = sgtl5000->sysclk; |
| } |
| if (sys_fs == 44100) |
| out = 180633600; |
| else |
| out = 196608000; |
| t = do_div(out, in); |
| int_div = out; |
| t *= 2048; |
| do_div(t, in); |
| frac_div = t; |
| pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | |
| frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl); |
| if (div2) |
| snd_soc_component_update_bits(component, |
| SGTL5000_CHIP_CLK_TOP_CTRL, |
| SGTL5000_INPUT_FREQ_DIV2, |
| SGTL5000_INPUT_FREQ_DIV2); |
| else |
| snd_soc_component_update_bits(component, |
| SGTL5000_CHIP_CLK_TOP_CTRL, |
| SGTL5000_INPUT_FREQ_DIV2, |
| 0); |
| |
| /* power up pll */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, |
| SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); |
| |
| /* if using pll, clk_ctrl must be set after pll power up */ |
| snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); |
| } else { |
| /* otherwise, clk_ctrl must be set before pll power down */ |
| snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); |
| |
| /* power down pll */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, |
| 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set PCM DAI bit size and sample rate. |
| * input: params_rate, params_fmt |
| */ |
| static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *params, |
| struct snd_soc_dai *dai) |
| { |
| struct snd_soc_component *component = dai->component; |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| int channels = params_channels(params); |
| int i2s_ctl = 0; |
| int stereo; |
| int ret; |
| |
| /* sysclk should already set */ |
| if (!sgtl5000->sysclk) { |
| dev_err(component->dev, "%s: set sysclk first!\n", __func__); |
| return -EFAULT; |
| } |
| |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| stereo = SGTL5000_DAC_STEREO; |
| else |
| stereo = SGTL5000_ADC_STEREO; |
| |
| /* set mono to save power */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo, |
| channels == 1 ? 0 : stereo); |
| |
| /* set codec clock base on lrclk */ |
| ret = sgtl5000_set_clock(component, params_rate(params)); |
| if (ret) |
| return ret; |
| |
| /* set i2s data format */ |
| switch (params_width(params)) { |
| case 16: |
| if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) |
| return -EINVAL; |
| i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; |
| i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << |
| SGTL5000_I2S_SCLKFREQ_SHIFT; |
| break; |
| case 20: |
| i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; |
| i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << |
| SGTL5000_I2S_SCLKFREQ_SHIFT; |
| break; |
| case 24: |
| i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; |
| i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << |
| SGTL5000_I2S_SCLKFREQ_SHIFT; |
| break; |
| case 32: |
| if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) |
| return -EINVAL; |
| i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; |
| i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << |
| SGTL5000_I2S_SCLKFREQ_SHIFT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL, |
| SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, |
| i2s_ctl); |
| |
| return 0; |
| } |
| |
| /* |
| * set dac bias |
| * common state changes: |
| * startup: |
| * off --> standby --> prepare --> on |
| * standby --> prepare --> on |
| * |
| * stop: |
| * on --> prepare --> standby |
| */ |
| static int sgtl5000_set_bias_level(struct snd_soc_component *component, |
| enum snd_soc_bias_level level) |
| { |
| struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component); |
| int ret; |
| |
| switch (level) { |
| case SND_SOC_BIAS_ON: |
| case SND_SOC_BIAS_PREPARE: |
| case SND_SOC_BIAS_STANDBY: |
| regcache_cache_only(sgtl->regmap, false); |
| ret = regcache_sync(sgtl->regmap); |
| if (ret) { |
| regcache_cache_only(sgtl->regmap, true); |
| return ret; |
| } |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_REFTOP_POWERUP, |
| SGTL5000_REFTOP_POWERUP); |
| break; |
| case SND_SOC_BIAS_OFF: |
| regcache_cache_only(sgtl->regmap, true); |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_REFTOP_POWERUP, 0); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ |
| SNDRV_PCM_FMTBIT_S20_3LE |\ |
| SNDRV_PCM_FMTBIT_S24_LE |\ |
| SNDRV_PCM_FMTBIT_S32_LE) |
| |
| static const struct snd_soc_dai_ops sgtl5000_ops = { |
| .hw_params = sgtl5000_pcm_hw_params, |
| .mute_stream = sgtl5000_mute_stream, |
| .set_fmt = sgtl5000_set_dai_fmt, |
| .set_sysclk = sgtl5000_set_dai_sysclk, |
| .no_capture_mute = 1, |
| }; |
| |
| static struct snd_soc_dai_driver sgtl5000_dai = { |
| .name = "sgtl5000", |
| .playback = { |
| .stream_name = "Playback", |
| .channels_min = 1, |
| .channels_max = 2, |
| /* |
| * only support 8~48K + 96K, |
| * TODO modify hw_param to support more |
| */ |
| .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, |
| .formats = SGTL5000_FORMATS, |
| }, |
| .capture = { |
| .stream_name = "Capture", |
| .channels_min = 1, |
| .channels_max = 2, |
| .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, |
| .formats = SGTL5000_FORMATS, |
| }, |
| .ops = &sgtl5000_ops, |
| .symmetric_rate = 1, |
| }; |
| |
| static bool sgtl5000_volatile(struct device *dev, unsigned int reg) |
| { |
| switch (reg) { |
| case SGTL5000_CHIP_ID: |
| case SGTL5000_CHIP_ADCDAC_CTRL: |
| case SGTL5000_CHIP_ANA_STATUS: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool sgtl5000_readable(struct device *dev, unsigned int reg) |
| { |
| switch (reg) { |
| case SGTL5000_CHIP_ID: |
| case SGTL5000_CHIP_DIG_POWER: |
| case SGTL5000_CHIP_CLK_CTRL: |
| case SGTL5000_CHIP_I2S_CTRL: |
| case SGTL5000_CHIP_SSS_CTRL: |
| case SGTL5000_CHIP_ADCDAC_CTRL: |
| case SGTL5000_CHIP_DAC_VOL: |
| case SGTL5000_CHIP_PAD_STRENGTH: |
| case SGTL5000_CHIP_ANA_ADC_CTRL: |
| case SGTL5000_CHIP_ANA_HP_CTRL: |
| case SGTL5000_CHIP_ANA_CTRL: |
| case SGTL5000_CHIP_LINREG_CTRL: |
| case SGTL5000_CHIP_REF_CTRL: |
| case SGTL5000_CHIP_MIC_CTRL: |
| case SGTL5000_CHIP_LINE_OUT_CTRL: |
| case SGTL5000_CHIP_LINE_OUT_VOL: |
| case SGTL5000_CHIP_ANA_POWER: |
| case SGTL5000_CHIP_PLL_CTRL: |
| case SGTL5000_CHIP_CLK_TOP_CTRL: |
| case SGTL5000_CHIP_ANA_STATUS: |
| case SGTL5000_CHIP_SHORT_CTRL: |
| case SGTL5000_CHIP_ANA_TEST2: |
| case SGTL5000_DAP_CTRL: |
| case SGTL5000_DAP_PEQ: |
| case SGTL5000_DAP_BASS_ENHANCE: |
| case SGTL5000_DAP_BASS_ENHANCE_CTRL: |
| case SGTL5000_DAP_AUDIO_EQ: |
| case SGTL5000_DAP_SURROUND: |
| case SGTL5000_DAP_FLT_COEF_ACCESS: |
| case SGTL5000_DAP_COEF_WR_B0_MSB: |
| case SGTL5000_DAP_COEF_WR_B0_LSB: |
| case SGTL5000_DAP_EQ_BASS_BAND0: |
| case SGTL5000_DAP_EQ_BASS_BAND1: |
| case SGTL5000_DAP_EQ_BASS_BAND2: |
| case SGTL5000_DAP_EQ_BASS_BAND3: |
| case SGTL5000_DAP_EQ_BASS_BAND4: |
| case SGTL5000_DAP_MAIN_CHAN: |
| case SGTL5000_DAP_MIX_CHAN: |
| case SGTL5000_DAP_AVC_CTRL: |
| case SGTL5000_DAP_AVC_THRESHOLD: |
| case SGTL5000_DAP_AVC_ATTACK: |
| case SGTL5000_DAP_AVC_DECAY: |
| case SGTL5000_DAP_COEF_WR_B1_MSB: |
| case SGTL5000_DAP_COEF_WR_B1_LSB: |
| case SGTL5000_DAP_COEF_WR_B2_MSB: |
| case SGTL5000_DAP_COEF_WR_B2_LSB: |
| case SGTL5000_DAP_COEF_WR_A1_MSB: |
| case SGTL5000_DAP_COEF_WR_A1_LSB: |
| case SGTL5000_DAP_COEF_WR_A2_MSB: |
| case SGTL5000_DAP_COEF_WR_A2_LSB: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results |
| * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL |
| * The calculatation was done for all possible register values which |
| * is the array index and the following formula: 10^((idx−15)/40) * 100 |
| */ |
| static const u8 vol_quot_table[] = { |
| 42, 45, 47, 50, 53, 56, 60, 63, |
| 67, 71, 75, 79, 84, 89, 94, 100, |
| 106, 112, 119, 126, 133, 141, 150, 158, |
| 168, 178, 188, 200, 211, 224, 237, 251 |
| }; |
| |
| /* |
| * sgtl5000 has 3 internal power supplies: |
| * 1. VAG, normally set to vdda/2 |
| * 2. charge pump, set to different value |
| * according to voltage of vdda and vddio |
| * 3. line out VAG, normally set to vddio/2 |
| * |
| * and should be set according to: |
| * 1. vddd provided by external or not |
| * 2. vdda and vddio voltage value. > 3.1v or not |
| */ |
| static int sgtl5000_set_power_regs(struct snd_soc_component *component) |
| { |
| int vddd; |
| int vdda; |
| int vddio; |
| u16 ana_pwr; |
| u16 lreg_ctrl; |
| int vag; |
| int lo_vag; |
| int vol_quot; |
| int lo_vol; |
| size_t i; |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| |
| vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); |
| vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); |
| vddd = (sgtl5000->num_supplies > VDDD) |
| ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer) |
| : LDO_VOLTAGE; |
| |
| vdda = vdda / 1000; |
| vddio = vddio / 1000; |
| vddd = vddd / 1000; |
| |
| if (vdda <= 0 || vddio <= 0 || vddd < 0) { |
| dev_err(component->dev, "regulator voltage not set correctly\n"); |
| |
| return -EINVAL; |
| } |
| |
| /* according to datasheet, maximum voltage of supplies */ |
| if (vdda > 3600 || vddio > 3600 || vddd > 1980) { |
| dev_err(component->dev, |
| "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", |
| vdda, vddio, vddd); |
| |
| return -EINVAL; |
| } |
| |
| /* reset value */ |
| ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER); |
| ana_pwr |= SGTL5000_DAC_STEREO | |
| SGTL5000_ADC_STEREO | |
| SGTL5000_REFTOP_POWERUP; |
| lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL); |
| |
| if (vddio < 3100 && vdda < 3100) { |
| /* enable internal oscillator used for charge pump */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL, |
| SGTL5000_INT_OSC_EN, |
| SGTL5000_INT_OSC_EN); |
| /* Enable VDDC charge pump */ |
| ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; |
| } else { |
| ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP; |
| /* |
| * if vddio == vdda the source of charge pump should be |
| * assigned manually to VDDIO |
| */ |
| if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer, |
| sgtl5000->supplies[VDDIO].consumer)) { |
| lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; |
| lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << |
| SGTL5000_VDDC_MAN_ASSN_SHIFT; |
| } |
| } |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr); |
| |
| /* |
| * set ADC/DAC VAG to vdda / 2, |
| * should stay in range (0.8v, 1.575v) |
| */ |
| vag = vdda / 2; |
| if (vag <= SGTL5000_ANA_GND_BASE) |
| vag = 0; |
| else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * |
| (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) |
| vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; |
| else |
| vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, |
| SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); |
| |
| /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ |
| lo_vag = vddio / 2; |
| if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE) |
| lo_vag = 0; |
| else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE + |
| SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) |
| lo_vag = SGTL5000_LINE_OUT_GND_MAX; |
| else |
| lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) / |
| SGTL5000_LINE_OUT_GND_STP; |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL, |
| SGTL5000_LINE_OUT_CURRENT_MASK | |
| SGTL5000_LINE_OUT_GND_MASK, |
| lo_vag << SGTL5000_LINE_OUT_GND_SHIFT | |
| SGTL5000_LINE_OUT_CURRENT_360u << |
| SGTL5000_LINE_OUT_CURRENT_SHIFT); |
| |
| /* |
| * Set lineout output level in range (0..31) |
| * the same value is used for right and left channel |
| * |
| * Searching for a suitable index solving this formula: |
| * idx = 40 * log10(vag_val / lo_cagcntrl) + 15 |
| */ |
| vol_quot = lo_vag ? (vag * 100) / lo_vag : 0; |
| lo_vol = 0; |
| for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) { |
| if (vol_quot >= vol_quot_table[i]) |
| lo_vol = i; |
| else |
| break; |
| } |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL, |
| SGTL5000_LINE_OUT_VOL_RIGHT_MASK | |
| SGTL5000_LINE_OUT_VOL_LEFT_MASK, |
| lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT | |
| lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT); |
| |
| return 0; |
| } |
| |
| static int sgtl5000_enable_regulators(struct i2c_client *client) |
| { |
| int ret; |
| int i; |
| int external_vddd = 0; |
| struct regulator *vddd; |
| struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); |
| |
| for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) |
| sgtl5000->supplies[i].supply = supply_names[i]; |
| |
| vddd = regulator_get_optional(&client->dev, "VDDD"); |
| if (IS_ERR(vddd)) { |
| /* See if it's just not registered yet */ |
| if (PTR_ERR(vddd) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| } else { |
| external_vddd = 1; |
| regulator_put(vddd); |
| } |
| |
| sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies) |
| - 1 + external_vddd; |
| ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies, |
| sgtl5000->supplies); |
| if (ret) |
| return ret; |
| |
| ret = regulator_bulk_enable(sgtl5000->num_supplies, |
| sgtl5000->supplies); |
| if (!ret) |
| usleep_range(10, 20); |
| else |
| regulator_bulk_free(sgtl5000->num_supplies, |
| sgtl5000->supplies); |
| |
| return ret; |
| } |
| |
| static int sgtl5000_probe(struct snd_soc_component *component) |
| { |
| int ret; |
| u16 reg; |
| struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); |
| unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN; |
| |
| /* power up sgtl5000 */ |
| ret = sgtl5000_set_power_regs(component); |
| if (ret) |
| goto err; |
| |
| /* enable small pop, introduce 400ms delay in turning off */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, |
| SGTL5000_SMALL_POP, SGTL5000_SMALL_POP); |
| |
| /* disable short cut detector */ |
| snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0); |
| |
| snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER, |
| SGTL5000_ADC_EN | SGTL5000_DAC_EN); |
| |
| /* enable dac volume ramp by default */ |
| snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL, |
| SGTL5000_DAC_VOL_RAMP_EN | |
| SGTL5000_DAC_MUTE_RIGHT | |
| SGTL5000_DAC_MUTE_LEFT); |
| |
| reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | |
| (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT | |
| 0x1f); |
| snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg); |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, |
| zcd_mask, zcd_mask); |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, |
| SGTL5000_BIAS_R_MASK, |
| sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); |
| |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, |
| SGTL5000_BIAS_VOLT_MASK, |
| sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT); |
| /* |
| * enable DAP Graphic EQ |
| * TODO: |
| * Add control for changing between PEQ/Tone Control/GEQ |
| */ |
| snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ); |
| |
| /* Unmute DAC after start */ |
| snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL, |
| SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0); |
| |
| return 0; |
| |
| err: |
| return ret; |
| } |
| |
| static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component, |
| struct device_node *endpoint) |
| { |
| /* return dai id 0, whatever the endpoint index */ |
| return 0; |
| } |
| |
| static const struct snd_soc_component_driver sgtl5000_driver = { |
| .probe = sgtl5000_probe, |
| .set_bias_level = sgtl5000_set_bias_level, |
| .controls = sgtl5000_snd_controls, |
| .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), |
| .dapm_widgets = sgtl5000_dapm_widgets, |
| .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), |
| .dapm_routes = sgtl5000_dapm_routes, |
| .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), |
| .of_xlate_dai_id = sgtl5000_of_xlate_dai_id, |
| .suspend_bias_off = 1, |
| .idle_bias_on = 1, |
| .use_pmdown_time = 1, |
| .endianness = 1, |
| }; |
| |
| static const struct regmap_config sgtl5000_regmap = { |
| .reg_bits = 16, |
| .val_bits = 16, |
| .reg_stride = 2, |
| |
| .max_register = SGTL5000_MAX_REG_OFFSET, |
| .volatile_reg = sgtl5000_volatile, |
| .readable_reg = sgtl5000_readable, |
| |
| .cache_type = REGCACHE_RBTREE, |
| .reg_defaults = sgtl5000_reg_defaults, |
| .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), |
| }; |
| |
| /* |
| * Write all the default values from sgtl5000_reg_defaults[] array into the |
| * sgtl5000 registers, to make sure we always start with the sane registers |
| * values as stated in the datasheet. |
| * |
| * Since sgtl5000 does not have a reset line, nor a reset command in software, |
| * we follow this approach to guarantee we always start from the default values |
| * and avoid problems like, not being able to probe after an audio playback |
| * followed by a system reset or a 'reboot' command in Linux |
| */ |
| static void sgtl5000_fill_defaults(struct i2c_client *client) |
| { |
| struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); |
| int i, ret, val, index; |
| |
| for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { |
| val = sgtl5000_reg_defaults[i].def; |
| index = sgtl5000_reg_defaults[i].reg; |
| ret = regmap_write(sgtl5000->regmap, index, val); |
| if (ret) |
| dev_err(&client->dev, |
| "%s: error %d setting reg 0x%02x to 0x%04x\n", |
| __func__, ret, index, val); |
| } |
| } |
| |
| static int sgtl5000_i2c_probe(struct i2c_client *client) |
| { |
| struct sgtl5000_priv *sgtl5000; |
| int ret, reg, rev; |
| struct device_node *np = client->dev.of_node; |
| u32 value; |
| u16 ana_pwr; |
| |
| sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); |
| if (!sgtl5000) |
| return -ENOMEM; |
| |
| i2c_set_clientdata(client, sgtl5000); |
| |
| ret = sgtl5000_enable_regulators(client); |
| if (ret) |
| return ret; |
| |
| sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); |
| if (IS_ERR(sgtl5000->regmap)) { |
| ret = PTR_ERR(sgtl5000->regmap); |
| dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); |
| goto disable_regs; |
| } |
| |
| sgtl5000->mclk = devm_clk_get(&client->dev, NULL); |
| if (IS_ERR(sgtl5000->mclk)) { |
| ret = PTR_ERR(sgtl5000->mclk); |
| /* Defer the probe to see if the clk will be provided later */ |
| if (ret == -ENOENT) |
| ret = -EPROBE_DEFER; |
| |
| dev_err_probe(&client->dev, ret, "Failed to get mclock\n"); |
| |
| goto disable_regs; |
| } |
| |
| ret = clk_prepare_enable(sgtl5000->mclk); |
| if (ret) { |
| dev_err(&client->dev, "Error enabling clock %d\n", ret); |
| goto disable_regs; |
| } |
| |
| /* Need 8 clocks before I2C accesses */ |
| udelay(1); |
| |
| /* read chip information */ |
| ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); |
| if (ret) { |
| dev_err(&client->dev, "Error reading chip id %d\n", ret); |
| goto disable_clk; |
| } |
| |
| if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != |
| SGTL5000_PARTID_PART_ID) { |
| dev_err(&client->dev, |
| "Device with ID register %x is not a sgtl5000\n", reg); |
| ret = -ENODEV; |
| goto disable_clk; |
| } |
| |
| rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; |
| dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); |
| sgtl5000->revision = rev; |
| |
| /* reconfigure the clocks in case we're using the PLL */ |
| ret = regmap_write(sgtl5000->regmap, |
| SGTL5000_CHIP_CLK_CTRL, |
| SGTL5000_CHIP_CLK_CTRL_DEFAULT); |
| if (ret) |
| dev_err(&client->dev, |
| "Error %d initializing CHIP_CLK_CTRL\n", ret); |
| |
| /* Mute everything to avoid pop from the following power-up */ |
| ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL, |
| SGTL5000_CHIP_ANA_CTRL_DEFAULT); |
| if (ret) { |
| dev_err(&client->dev, |
| "Error %d muting outputs via CHIP_ANA_CTRL\n", ret); |
| goto disable_clk; |
| } |
| |
| /* |
| * If VAG is powered-on (e.g. from previous boot), it would be disabled |
| * by the write to ANA_POWER in later steps of the probe code. This |
| * may create a loud pop even with all outputs muted. The proper way |
| * to circumvent this is disabling the bit first and waiting the proper |
| * cool-down time. |
| */ |
| ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value); |
| if (ret) { |
| dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret); |
| goto disable_clk; |
| } |
| if (value & SGTL5000_VAG_POWERUP) { |
| ret = regmap_update_bits(sgtl5000->regmap, |
| SGTL5000_CHIP_ANA_POWER, |
| SGTL5000_VAG_POWERUP, |
| 0); |
| if (ret) { |
| dev_err(&client->dev, "Error %d disabling VAG\n", ret); |
| goto disable_clk; |
| } |
| |
| msleep(SGTL5000_VAG_POWERDOWN_DELAY); |
| } |
| |
| /* Follow section 2.2.1.1 of AN3663 */ |
| ana_pwr = SGTL5000_ANA_POWER_DEFAULT; |
| if (sgtl5000->num_supplies <= VDDD) { |
| /* internal VDDD at 1.2V */ |
| ret = regmap_update_bits(sgtl5000->regmap, |
| SGTL5000_CHIP_LINREG_CTRL, |
| SGTL5000_LINREG_VDDD_MASK, |
| LINREG_VDDD); |
| if (ret) |
| dev_err(&client->dev, |
| "Error %d setting LINREG_VDDD\n", ret); |
| |
| ana_pwr |= SGTL5000_LINEREG_D_POWERUP; |
| dev_info(&client->dev, |
| "Using internal LDO instead of VDDD: check ER1 erratum\n"); |
| } else { |
| /* using external LDO for VDDD |
| * Clear startup powerup and simple powerup |
| * bits to save power |
| */ |
| ana_pwr &= ~(SGTL5000_STARTUP_POWERUP |
| | SGTL5000_LINREG_SIMPLE_POWERUP); |
| dev_dbg(&client->dev, "Using external VDDD\n"); |
| } |
| ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr); |
| if (ret) |
| dev_err(&client->dev, |
| "Error %d setting CHIP_ANA_POWER to %04x\n", |
| ret, ana_pwr); |
| |
| if (np) { |
| if (!of_property_read_u32(np, |
| "micbias-resistor-k-ohms", &value)) { |
| switch (value) { |
| case SGTL5000_MICBIAS_OFF: |
| sgtl5000->micbias_resistor = 0; |
| break; |
| case SGTL5000_MICBIAS_2K: |
| sgtl5000->micbias_resistor = 1; |
| break; |
| case SGTL5000_MICBIAS_4K: |
| sgtl5000->micbias_resistor = 2; |
| break; |
| case SGTL5000_MICBIAS_8K: |
| sgtl5000->micbias_resistor = 3; |
| break; |
| default: |
| sgtl5000->micbias_resistor = 2; |
| dev_err(&client->dev, |
| "Unsuitable MicBias resistor\n"); |
| } |
| } else { |
| /* default is 4Kohms */ |
| sgtl5000->micbias_resistor = 2; |
| } |
| if (!of_property_read_u32(np, |
| "micbias-voltage-m-volts", &value)) { |
| /* 1250mV => 0 */ |
| /* steps of 250mV */ |
| if ((value >= 1250) && (value <= 3000)) |
| sgtl5000->micbias_voltage = (value / 250) - 5; |
| else { |
| sgtl5000->micbias_voltage = 0; |
| dev_err(&client->dev, |
| "Unsuitable MicBias voltage\n"); |
| } |
| } else { |
| sgtl5000->micbias_voltage = 0; |
| } |
| } |
| |
| sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW; |
| if (!of_property_read_u32(np, "lrclk-strength", &value)) { |
| if (value > I2S_LRCLK_STRENGTH_HIGH) |
| value = I2S_LRCLK_STRENGTH_LOW; |
| sgtl5000->lrclk_strength = value; |
| } |
| |
| sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW; |
| if (!of_property_read_u32(np, "sclk-strength", &value)) { |
| if (value > I2S_SCLK_STRENGTH_HIGH) |
| value = I2S_SCLK_STRENGTH_LOW; |
| sgtl5000->sclk_strength = value; |
| } |
| |
| /* Ensure sgtl5000 will start with sane register values */ |
| sgtl5000_fill_defaults(client); |
| |
| ret = devm_snd_soc_register_component(&client->dev, |
| &sgtl5000_driver, &sgtl5000_dai, 1); |
| if (ret) |
| goto disable_clk; |
| |
| return 0; |
| |
| disable_clk: |
| clk_disable_unprepare(sgtl5000->mclk); |
| |
| disable_regs: |
| regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); |
| regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); |
| |
| return ret; |
| } |
| |
| static void sgtl5000_i2c_remove(struct i2c_client *client) |
| { |
| struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); |
| |
| regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT); |
| regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT); |
| regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT); |
| |
| clk_disable_unprepare(sgtl5000->mclk); |
| regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); |
| regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); |
| } |
| |
| static void sgtl5000_i2c_shutdown(struct i2c_client *client) |
| { |
| sgtl5000_i2c_remove(client); |
| } |
| |
| static const struct i2c_device_id sgtl5000_id[] = { |
| {"sgtl5000"}, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(i2c, sgtl5000_id); |
| |
| static const struct of_device_id sgtl5000_dt_ids[] = { |
| { .compatible = "fsl,sgtl5000", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); |
| |
| static struct i2c_driver sgtl5000_i2c_driver = { |
| .driver = { |
| .name = "sgtl5000", |
| .of_match_table = sgtl5000_dt_ids, |
| }, |
| .probe = sgtl5000_i2c_probe, |
| .remove = sgtl5000_i2c_remove, |
| .shutdown = sgtl5000_i2c_shutdown, |
| .id_table = sgtl5000_id, |
| }; |
| |
| module_i2c_driver(sgtl5000_i2c_driver); |
| |
| MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); |
| MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); |
| MODULE_LICENSE("GPL"); |