blob: 242bc16da36daf9d1a8d28ac85b77abdea21b4f3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2011,2013-2015 The Linux Foundation. All rights reserved.
*
* lpass-cpu.c -- ALSA SoC CPU DAI driver for QTi LPASS
*/
#include <dt-bindings/sound/qcom,lpass.h>
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <linux/regmap.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#include "lpass-lpaif-reg.h"
#include "lpass.h"
#define LPASS_CPU_MAX_MI2S_LINES 4
#define LPASS_CPU_I2S_SD0_MASK BIT(0)
#define LPASS_CPU_I2S_SD1_MASK BIT(1)
#define LPASS_CPU_I2S_SD2_MASK BIT(2)
#define LPASS_CPU_I2S_SD3_MASK BIT(3)
#define LPASS_CPU_I2S_SD0_1_MASK GENMASK(1, 0)
#define LPASS_CPU_I2S_SD2_3_MASK GENMASK(3, 2)
#define LPASS_CPU_I2S_SD0_1_2_MASK GENMASK(2, 0)
#define LPASS_CPU_I2S_SD0_1_2_3_MASK GENMASK(3, 0)
#define LPASS_REG_READ 1
#define LPASS_REG_WRITE 0
/*
* Channel maps for Quad channel playbacks on MI2S Secondary
*/
static struct snd_pcm_chmap_elem lpass_quad_chmaps[] = {
{ .channels = 4,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_RL,
SNDRV_CHMAP_FR, SNDRV_CHMAP_RR } },
{ }
};
static int lpass_cpu_init_i2sctl_bitfields(struct device *dev,
struct lpaif_i2sctl *i2sctl, struct regmap *map)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
i2sctl->loopback = devm_regmap_field_alloc(dev, map, v->loopback);
i2sctl->spken = devm_regmap_field_alloc(dev, map, v->spken);
i2sctl->spkmode = devm_regmap_field_alloc(dev, map, v->spkmode);
i2sctl->spkmono = devm_regmap_field_alloc(dev, map, v->spkmono);
i2sctl->micen = devm_regmap_field_alloc(dev, map, v->micen);
i2sctl->micmode = devm_regmap_field_alloc(dev, map, v->micmode);
i2sctl->micmono = devm_regmap_field_alloc(dev, map, v->micmono);
i2sctl->wssrc = devm_regmap_field_alloc(dev, map, v->wssrc);
i2sctl->bitwidth = devm_regmap_field_alloc(dev, map, v->bitwidth);
if (IS_ERR(i2sctl->loopback) || IS_ERR(i2sctl->spken) ||
IS_ERR(i2sctl->spkmode) || IS_ERR(i2sctl->spkmono) ||
IS_ERR(i2sctl->micen) || IS_ERR(i2sctl->micmode) ||
IS_ERR(i2sctl->micmono) || IS_ERR(i2sctl->wssrc) ||
IS_ERR(i2sctl->bitwidth))
return -EINVAL;
return 0;
}
static int lpass_cpu_daiops_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
int ret;
ret = clk_set_rate(drvdata->mi2s_osr_clk[dai->driver->id], freq);
if (ret)
dev_err(dai->dev, "error setting mi2s osrclk to %u: %d\n",
freq, ret);
return ret;
}
static int lpass_cpu_daiops_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
int ret;
ret = clk_prepare_enable(drvdata->mi2s_osr_clk[dai->driver->id]);
if (ret) {
dev_err(dai->dev, "error in enabling mi2s osr clk: %d\n", ret);
return ret;
}
ret = clk_prepare(drvdata->mi2s_bit_clk[dai->driver->id]);
if (ret) {
dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret);
clk_disable_unprepare(drvdata->mi2s_osr_clk[dai->driver->id]);
return ret;
}
return 0;
}
static void lpass_cpu_daiops_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
struct lpaif_i2sctl *i2sctl = drvdata->i2sctl;
unsigned int id = dai->driver->id;
clk_disable_unprepare(drvdata->mi2s_osr_clk[dai->driver->id]);
/*
* Ensure LRCLK is disabled even in device node validation.
* Will not impact if disabled in lpass_cpu_daiops_trigger()
* suspend.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_DISABLE);
else
regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_DISABLE);
/*
* BCLK may not be enabled if lpass_cpu_daiops_prepare is called before
* lpass_cpu_daiops_shutdown. It's paired with the clk_enable in
* lpass_cpu_daiops_prepare.
*/
if (drvdata->mi2s_was_prepared[dai->driver->id]) {
drvdata->mi2s_was_prepared[dai->driver->id] = false;
clk_disable(drvdata->mi2s_bit_clk[dai->driver->id]);
}
clk_unprepare(drvdata->mi2s_bit_clk[dai->driver->id]);
}
static int lpass_cpu_daiops_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
struct lpaif_i2sctl *i2sctl = drvdata->i2sctl;
unsigned int id = dai->driver->id;
snd_pcm_format_t format = params_format(params);
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
unsigned int mode;
unsigned int regval;
int bitwidth, ret;
bitwidth = snd_pcm_format_width(format);
if (bitwidth < 0) {
dev_err(dai->dev, "invalid bit width given: %d\n", bitwidth);
return bitwidth;
}
ret = regmap_fields_write(i2sctl->loopback, id,
LPAIF_I2SCTL_LOOPBACK_DISABLE);
if (ret) {
dev_err(dai->dev, "error updating loopback field: %d\n", ret);
return ret;
}
ret = regmap_fields_write(i2sctl->wssrc, id,
LPAIF_I2SCTL_WSSRC_INTERNAL);
if (ret) {
dev_err(dai->dev, "error updating wssrc field: %d\n", ret);
return ret;
}
switch (bitwidth) {
case 16:
regval = LPAIF_I2SCTL_BITWIDTH_16;
break;
case 24:
regval = LPAIF_I2SCTL_BITWIDTH_24;
break;
case 32:
regval = LPAIF_I2SCTL_BITWIDTH_32;
break;
default:
dev_err(dai->dev, "invalid bitwidth given: %d\n", bitwidth);
return -EINVAL;
}
ret = regmap_fields_write(i2sctl->bitwidth, id, regval);
if (ret) {
dev_err(dai->dev, "error updating bitwidth field: %d\n", ret);
return ret;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
mode = drvdata->mi2s_playback_sd_mode[id];
else
mode = drvdata->mi2s_capture_sd_mode[id];
if (!mode) {
dev_err(dai->dev, "no line is assigned\n");
return -EINVAL;
}
switch (channels) {
case 1:
case 2:
switch (mode) {
case LPAIF_I2SCTL_MODE_QUAD01:
case LPAIF_I2SCTL_MODE_6CH:
case LPAIF_I2SCTL_MODE_8CH:
mode = LPAIF_I2SCTL_MODE_SD0;
break;
case LPAIF_I2SCTL_MODE_QUAD23:
mode = LPAIF_I2SCTL_MODE_SD2;
break;
}
break;
case 4:
if (mode < LPAIF_I2SCTL_MODE_QUAD01) {
dev_err(dai->dev, "cannot configure 4 channels with mode %d\n",
mode);
return -EINVAL;
}
switch (mode) {
case LPAIF_I2SCTL_MODE_6CH:
case LPAIF_I2SCTL_MODE_8CH:
mode = LPAIF_I2SCTL_MODE_QUAD01;
break;
}
break;
case 6:
if (mode < LPAIF_I2SCTL_MODE_6CH) {
dev_err(dai->dev, "cannot configure 6 channels with mode %d\n",
mode);
return -EINVAL;
}
switch (mode) {
case LPAIF_I2SCTL_MODE_8CH:
mode = LPAIF_I2SCTL_MODE_6CH;
break;
}
break;
case 8:
if (mode < LPAIF_I2SCTL_MODE_8CH) {
dev_err(dai->dev, "cannot configure 8 channels with mode %d\n",
mode);
return -EINVAL;
}
break;
default:
dev_err(dai->dev, "invalid channels given: %u\n", channels);
return -EINVAL;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = regmap_fields_write(i2sctl->spkmode, id,
LPAIF_I2SCTL_SPKMODE(mode));
if (ret) {
dev_err(dai->dev, "error writing to i2sctl spkr mode: %d\n",
ret);
return ret;
}
if (channels >= 2)
ret = regmap_fields_write(i2sctl->spkmono, id,
LPAIF_I2SCTL_SPKMONO_STEREO);
else
ret = regmap_fields_write(i2sctl->spkmono, id,
LPAIF_I2SCTL_SPKMONO_MONO);
} else {
ret = regmap_fields_write(i2sctl->micmode, id,
LPAIF_I2SCTL_MICMODE(mode));
if (ret) {
dev_err(dai->dev, "error writing to i2sctl mic mode: %d\n",
ret);
return ret;
}
if (channels >= 2)
ret = regmap_fields_write(i2sctl->micmono, id,
LPAIF_I2SCTL_MICMONO_STEREO);
else
ret = regmap_fields_write(i2sctl->micmono, id,
LPAIF_I2SCTL_MICMONO_MONO);
}
if (ret) {
dev_err(dai->dev, "error writing to i2sctl channels mode: %d\n",
ret);
return ret;
}
ret = clk_set_rate(drvdata->mi2s_bit_clk[id],
rate * bitwidth * 2);
if (ret) {
dev_err(dai->dev, "error setting mi2s bitclk to %u: %d\n",
rate * bitwidth * 2, ret);
return ret;
}
return 0;
}
static int lpass_cpu_daiops_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
struct lpaif_i2sctl *i2sctl = drvdata->i2sctl;
unsigned int id = dai->driver->id;
int ret = -EINVAL;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
/*
* Ensure lpass BCLK/LRCLK is enabled during
* device resume as lpass_cpu_daiops_prepare() is not called
* after the device resumes. We don't check mi2s_was_prepared before
* enable/disable BCLK in trigger events because:
* 1. These trigger events are paired, so the BCLK
* enable_count is balanced.
* 2. the BCLK can be shared (ex: headset and headset mic),
* we need to increase the enable_count so that we don't
* turn off the shared BCLK while other devices are using
* it.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = regmap_fields_write(i2sctl->spken, id,
LPAIF_I2SCTL_SPKEN_ENABLE);
} else {
ret = regmap_fields_write(i2sctl->micen, id,
LPAIF_I2SCTL_MICEN_ENABLE);
}
if (ret)
dev_err(dai->dev, "error writing to i2sctl reg: %d\n",
ret);
ret = clk_enable(drvdata->mi2s_bit_clk[id]);
if (ret) {
dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret);
clk_disable(drvdata->mi2s_osr_clk[id]);
return ret;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
/*
* To ensure lpass BCLK/LRCLK is disabled during
* device suspend.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = regmap_fields_write(i2sctl->spken, id,
LPAIF_I2SCTL_SPKEN_DISABLE);
} else {
ret = regmap_fields_write(i2sctl->micen, id,
LPAIF_I2SCTL_MICEN_DISABLE);
}
if (ret)
dev_err(dai->dev, "error writing to i2sctl reg: %d\n",
ret);
clk_disable(drvdata->mi2s_bit_clk[dai->driver->id]);
break;
}
return ret;
}
static int lpass_cpu_daiops_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
struct lpaif_i2sctl *i2sctl = drvdata->i2sctl;
unsigned int id = dai->driver->id;
int ret;
/*
* Ensure lpass BCLK/LRCLK is enabled bit before playback/capture
* data flow starts. This allows other codec to have some delay before
* the data flow.
* (ex: to drop start up pop noise before capture starts).
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
ret = regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_ENABLE);
else
ret = regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_ENABLE);
if (ret) {
dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret);
return ret;
}
/*
* Check mi2s_was_prepared before enabling BCLK as lpass_cpu_daiops_prepare can
* be called multiple times. It's paired with the clk_disable in
* lpass_cpu_daiops_shutdown.
*/
if (!drvdata->mi2s_was_prepared[dai->driver->id]) {
ret = clk_enable(drvdata->mi2s_bit_clk[id]);
if (ret) {
dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret);
return ret;
}
drvdata->mi2s_was_prepared[dai->driver->id] = true;
}
return 0;
}
static int lpass_cpu_daiops_pcm_new(struct snd_soc_pcm_runtime *rtd, struct snd_soc_dai *dai)
{
int ret;
struct snd_soc_dai_driver *drv = dai->driver;
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
if (drvdata->mi2s_playback_sd_mode[dai->id] == LPAIF_I2SCTL_MODE_QUAD01) {
ret = snd_pcm_add_chmap_ctls(rtd->pcm, SNDRV_PCM_STREAM_PLAYBACK,
lpass_quad_chmaps, drv->playback.channels_max, 0,
NULL);
if (ret < 0)
return ret;
}
return 0;
}
static int lpass_cpu_daiops_probe(struct snd_soc_dai *dai)
{
struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai);
int ret;
/* ensure audio hardware is disabled */
ret = regmap_write(drvdata->lpaif_map,
LPAIF_I2SCTL_REG(drvdata->variant, dai->driver->id), 0);
if (ret)
dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret);
return ret;
}
const struct snd_soc_dai_ops asoc_qcom_lpass_cpu_dai_ops = {
.probe = lpass_cpu_daiops_probe,
.set_sysclk = lpass_cpu_daiops_set_sysclk,
.startup = lpass_cpu_daiops_startup,
.shutdown = lpass_cpu_daiops_shutdown,
.hw_params = lpass_cpu_daiops_hw_params,
.trigger = lpass_cpu_daiops_trigger,
.prepare = lpass_cpu_daiops_prepare,
};
EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_dai_ops);
const struct snd_soc_dai_ops asoc_qcom_lpass_cpu_dai_ops2 = {
.pcm_new = lpass_cpu_daiops_pcm_new,
.probe = lpass_cpu_daiops_probe,
.set_sysclk = lpass_cpu_daiops_set_sysclk,
.startup = lpass_cpu_daiops_startup,
.shutdown = lpass_cpu_daiops_shutdown,
.hw_params = lpass_cpu_daiops_hw_params,
.trigger = lpass_cpu_daiops_trigger,
.prepare = lpass_cpu_daiops_prepare,
};
EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_dai_ops2);
static int asoc_qcom_of_xlate_dai_name(struct snd_soc_component *component,
const struct of_phandle_args *args,
const char **dai_name)
{
struct lpass_data *drvdata = snd_soc_component_get_drvdata(component);
const struct lpass_variant *variant = drvdata->variant;
int id = args->args[0];
int ret = -EINVAL;
int i;
for (i = 0; i < variant->num_dai; i++) {
if (variant->dai_driver[i].id == id) {
*dai_name = variant->dai_driver[i].name;
ret = 0;
break;
}
}
return ret;
}
static const struct snd_soc_component_driver lpass_cpu_comp_driver = {
.name = "lpass-cpu",
.of_xlate_dai_name = asoc_qcom_of_xlate_dai_name,
.legacy_dai_naming = 1,
};
static bool lpass_cpu_regmap_writeable(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->i2s_ports; ++i)
if (reg == LPAIF_I2SCTL_REG(v, i))
return true;
for (i = 0; i < v->irq_ports; ++i) {
if (reg == LPAIF_IRQEN_REG(v, i))
return true;
if (reg == LPAIF_IRQCLEAR_REG(v, i))
return true;
}
for (i = 0; i < v->rdma_channels; ++i) {
if (reg == LPAIF_RDMACTL_REG(v, i))
return true;
if (reg == LPAIF_RDMABASE_REG(v, i))
return true;
if (reg == LPAIF_RDMABUFF_REG(v, i))
return true;
if (reg == LPAIF_RDMAPER_REG(v, i))
return true;
}
for (i = 0; i < v->wrdma_channels; ++i) {
if (reg == LPAIF_WRDMACTL_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMABASE_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMABUFF_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMAPER_REG(v, i + v->wrdma_channel_start))
return true;
}
return false;
}
static bool lpass_cpu_regmap_readable(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->i2s_ports; ++i)
if (reg == LPAIF_I2SCTL_REG(v, i))
return true;
for (i = 0; i < v->irq_ports; ++i) {
if (reg == LPAIF_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_IRQEN_REG(v, i))
return true;
if (reg == LPAIF_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->rdma_channels; ++i) {
if (reg == LPAIF_RDMACTL_REG(v, i))
return true;
if (reg == LPAIF_RDMABASE_REG(v, i))
return true;
if (reg == LPAIF_RDMABUFF_REG(v, i))
return true;
if (reg == LPAIF_RDMACURR_REG(v, i))
return true;
if (reg == LPAIF_RDMAPER_REG(v, i))
return true;
}
for (i = 0; i < v->wrdma_channels; ++i) {
if (reg == LPAIF_WRDMACTL_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMABASE_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMABUFF_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMACURR_REG(v, i + v->wrdma_channel_start))
return true;
if (reg == LPAIF_WRDMAPER_REG(v, i + v->wrdma_channel_start))
return true;
}
return false;
}
static bool lpass_cpu_regmap_volatile(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->irq_ports; ++i) {
if (reg == LPAIF_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->rdma_channels; ++i)
if (reg == LPAIF_RDMACURR_REG(v, i))
return true;
for (i = 0; i < v->wrdma_channels; ++i)
if (reg == LPAIF_WRDMACURR_REG(v, i + v->wrdma_channel_start))
return true;
return false;
}
static struct regmap_config lpass_cpu_regmap_config = {
.name = "lpass_cpu",
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.writeable_reg = lpass_cpu_regmap_writeable,
.readable_reg = lpass_cpu_regmap_readable,
.volatile_reg = lpass_cpu_regmap_volatile,
.cache_type = REGCACHE_FLAT,
};
static int lpass_hdmi_init_bitfields(struct device *dev, struct regmap *map)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
unsigned int i;
struct lpass_hdmi_tx_ctl *tx_ctl;
struct regmap_field *legacy_en;
struct lpass_vbit_ctrl *vbit_ctl;
struct regmap_field *tx_parity;
struct lpass_dp_metadata_ctl *meta_ctl;
struct lpass_sstream_ctl *sstream_ctl;
struct regmap_field *ch_msb;
struct regmap_field *ch_lsb;
struct lpass_hdmitx_dmactl *tx_dmactl;
int rval;
tx_ctl = devm_kzalloc(dev, sizeof(*tx_ctl), GFP_KERNEL);
if (!tx_ctl)
return -ENOMEM;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->soft_reset, tx_ctl->soft_reset);
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->force_reset, tx_ctl->force_reset);
drvdata->tx_ctl = tx_ctl;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->legacy_en, legacy_en);
drvdata->hdmitx_legacy_en = legacy_en;
vbit_ctl = devm_kzalloc(dev, sizeof(*vbit_ctl), GFP_KERNEL);
if (!vbit_ctl)
return -ENOMEM;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->replace_vbit, vbit_ctl->replace_vbit);
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->vbit_stream, vbit_ctl->vbit_stream);
drvdata->vbit_ctl = vbit_ctl;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->calc_en, tx_parity);
drvdata->hdmitx_parity_calc_en = tx_parity;
meta_ctl = devm_kzalloc(dev, sizeof(*meta_ctl), GFP_KERNEL);
if (!meta_ctl)
return -ENOMEM;
rval = devm_regmap_field_bulk_alloc(dev, map, &meta_ctl->mute, &v->mute, 7);
if (rval)
return rval;
drvdata->meta_ctl = meta_ctl;
sstream_ctl = devm_kzalloc(dev, sizeof(*sstream_ctl), GFP_KERNEL);
if (!sstream_ctl)
return -ENOMEM;
rval = devm_regmap_field_bulk_alloc(dev, map, &sstream_ctl->sstream_en, &v->sstream_en, 9);
if (rval)
return rval;
drvdata->sstream_ctl = sstream_ctl;
for (i = 0; i < LPASS_MAX_HDMI_DMA_CHANNELS; i++) {
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->msb_bits, ch_msb);
drvdata->hdmitx_ch_msb[i] = ch_msb;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->lsb_bits, ch_lsb);
drvdata->hdmitx_ch_lsb[i] = ch_lsb;
tx_dmactl = devm_kzalloc(dev, sizeof(*tx_dmactl), GFP_KERNEL);
if (!tx_dmactl)
return -ENOMEM;
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->use_hw_chs, tx_dmactl->use_hw_chs);
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->use_hw_usr, tx_dmactl->use_hw_usr);
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->hw_chs_sel, tx_dmactl->hw_chs_sel);
QCOM_REGMAP_FIELD_ALLOC(dev, map, v->hw_usr_sel, tx_dmactl->hw_usr_sel);
drvdata->hdmi_tx_dmactl[i] = tx_dmactl;
}
return 0;
}
static bool lpass_hdmi_regmap_writeable(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
if (reg == LPASS_HDMI_TX_CTL_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_PARITY_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_DP_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_SSTREAM_ADDR(v))
return true;
if (reg == LPASS_HDMITX_APP_IRQEN_REG(v))
return true;
if (reg == LPASS_HDMITX_APP_IRQCLEAR_REG(v))
return true;
for (i = 0; i < v->hdmi_rdma_channels; i++) {
if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i))
return true;
}
for (i = 0; i < v->hdmi_rdma_channels; ++i) {
if (reg == LPAIF_HDMI_RDMACTL_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMABASE_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMABUFF_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMAPER_REG(v, i))
return true;
}
return false;
}
static bool lpass_hdmi_regmap_readable(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
if (reg == LPASS_HDMI_TX_CTL_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v))
return true;
for (i = 0; i < v->hdmi_rdma_channels; i++) {
if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i))
return true;
}
if (reg == LPASS_HDMI_TX_PARITY_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_DP_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_SSTREAM_ADDR(v))
return true;
if (reg == LPASS_HDMITX_APP_IRQEN_REG(v))
return true;
if (reg == LPASS_HDMITX_APP_IRQSTAT_REG(v))
return true;
for (i = 0; i < v->hdmi_rdma_channels; ++i) {
if (reg == LPAIF_HDMI_RDMACTL_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMABASE_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMABUFF_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMAPER_REG(v, i))
return true;
if (reg == LPAIF_HDMI_RDMACURR_REG(v, i))
return true;
}
return false;
}
static bool lpass_hdmi_regmap_volatile(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
if (reg == LPASS_HDMITX_APP_IRQSTAT_REG(v))
return true;
if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v))
return true;
if (reg == LPASS_HDMI_TX_PARITY_ADDR(v))
return true;
for (i = 0; i < v->hdmi_rdma_channels; ++i) {
if (reg == LPAIF_HDMI_RDMACURR_REG(v, i))
return true;
if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i))
return true;
if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i))
return true;
}
return false;
}
static struct regmap_config lpass_hdmi_regmap_config = {
.name = "lpass_hdmi",
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.writeable_reg = lpass_hdmi_regmap_writeable,
.readable_reg = lpass_hdmi_regmap_readable,
.volatile_reg = lpass_hdmi_regmap_volatile,
.cache_type = REGCACHE_FLAT,
};
static bool __lpass_rxtx_regmap_accessible(struct device *dev, unsigned int reg, bool rw)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->rxtx_irq_ports; ++i) {
if (reg == LPAIF_RXTX_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_RXTX_IRQEN_REG(v, i))
return true;
if (reg == LPAIF_RXTX_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->rxtx_rdma_channels; ++i) {
if (reg == LPAIF_CDC_RXTX_RDMACTL_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
if (reg == LPAIF_CDC_RXTX_RDMABASE_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
if (reg == LPAIF_CDC_RXTX_RDMABUFF_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
if (rw == LPASS_REG_READ) {
if (reg == LPAIF_CDC_RXTX_RDMACURR_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
}
if (reg == LPAIF_CDC_RXTX_RDMAPER_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
if (reg == LPAIF_CDC_RXTX_RDMA_INTF_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
}
for (i = 0; i < v->rxtx_wrdma_channels; ++i) {
if (reg == LPAIF_CDC_RXTX_WRDMACTL_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
if (reg == LPAIF_CDC_RXTX_WRDMABASE_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
if (reg == LPAIF_CDC_RXTX_WRDMABUFF_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
if (rw == LPASS_REG_READ) {
if (reg == LPAIF_CDC_RXTX_WRDMACURR_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
}
if (reg == LPAIF_CDC_RXTX_WRDMAPER_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
if (reg == LPAIF_CDC_RXTX_WRDMA_INTF_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
}
return false;
}
static bool lpass_rxtx_regmap_writeable(struct device *dev, unsigned int reg)
{
return __lpass_rxtx_regmap_accessible(dev, reg, LPASS_REG_WRITE);
}
static bool lpass_rxtx_regmap_readable(struct device *dev, unsigned int reg)
{
return __lpass_rxtx_regmap_accessible(dev, reg, LPASS_REG_READ);
}
static bool lpass_rxtx_regmap_volatile(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->rxtx_irq_ports; ++i) {
if (reg == LPAIF_RXTX_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_RXTX_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->rxtx_rdma_channels; ++i)
if (reg == LPAIF_CDC_RXTX_RDMACURR_REG(v, i, LPASS_CDC_DMA_RX0))
return true;
for (i = 0; i < v->rxtx_wrdma_channels; ++i)
if (reg == LPAIF_CDC_RXTX_WRDMACURR_REG(v, i + v->rxtx_wrdma_channel_start,
LPASS_CDC_DMA_TX3))
return true;
return false;
}
static bool __lpass_va_regmap_accessible(struct device *dev, unsigned int reg, bool rw)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->va_irq_ports; ++i) {
if (reg == LPAIF_VA_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_VA_IRQEN_REG(v, i))
return true;
if (reg == LPAIF_VA_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->va_wrdma_channels; ++i) {
if (reg == LPAIF_CDC_VA_WRDMACTL_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
if (reg == LPAIF_CDC_VA_WRDMABASE_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
if (reg == LPAIF_CDC_VA_WRDMABUFF_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
if (rw == LPASS_REG_READ) {
if (reg == LPAIF_CDC_VA_WRDMACURR_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
}
if (reg == LPAIF_CDC_VA_WRDMAPER_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
if (reg == LPAIF_CDC_VA_WRDMA_INTF_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
}
return false;
}
static bool lpass_va_regmap_writeable(struct device *dev, unsigned int reg)
{
return __lpass_va_regmap_accessible(dev, reg, LPASS_REG_WRITE);
}
static bool lpass_va_regmap_readable(struct device *dev, unsigned int reg)
{
return __lpass_va_regmap_accessible(dev, reg, LPASS_REG_READ);
}
static bool lpass_va_regmap_volatile(struct device *dev, unsigned int reg)
{
struct lpass_data *drvdata = dev_get_drvdata(dev);
const struct lpass_variant *v = drvdata->variant;
int i;
for (i = 0; i < v->va_irq_ports; ++i) {
if (reg == LPAIF_VA_IRQCLEAR_REG(v, i))
return true;
if (reg == LPAIF_VA_IRQSTAT_REG(v, i))
return true;
}
for (i = 0; i < v->va_wrdma_channels; ++i) {
if (reg == LPAIF_CDC_VA_WRDMACURR_REG(v, i + v->va_wrdma_channel_start,
LPASS_CDC_DMA_VA_TX0))
return true;
}
return false;
}
static struct regmap_config lpass_rxtx_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.writeable_reg = lpass_rxtx_regmap_writeable,
.readable_reg = lpass_rxtx_regmap_readable,
.volatile_reg = lpass_rxtx_regmap_volatile,
.cache_type = REGCACHE_FLAT,
};
static struct regmap_config lpass_va_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.writeable_reg = lpass_va_regmap_writeable,
.readable_reg = lpass_va_regmap_readable,
.volatile_reg = lpass_va_regmap_volatile,
.cache_type = REGCACHE_FLAT,
};
static unsigned int of_lpass_cpu_parse_sd_lines(struct device *dev,
struct device_node *node,
const char *name)
{
unsigned int lines[LPASS_CPU_MAX_MI2S_LINES];
unsigned int sd_line_mask = 0;
int num_lines, i;
num_lines = of_property_read_variable_u32_array(node, name, lines, 0,
LPASS_CPU_MAX_MI2S_LINES);
if (num_lines < 0)
return LPAIF_I2SCTL_MODE_NONE;
for (i = 0; i < num_lines; i++)
sd_line_mask |= BIT(lines[i]);
switch (sd_line_mask) {
case LPASS_CPU_I2S_SD0_MASK:
return LPAIF_I2SCTL_MODE_SD0;
case LPASS_CPU_I2S_SD1_MASK:
return LPAIF_I2SCTL_MODE_SD1;
case LPASS_CPU_I2S_SD2_MASK:
return LPAIF_I2SCTL_MODE_SD2;
case LPASS_CPU_I2S_SD3_MASK:
return LPAIF_I2SCTL_MODE_SD3;
case LPASS_CPU_I2S_SD0_1_MASK:
return LPAIF_I2SCTL_MODE_QUAD01;
case LPASS_CPU_I2S_SD2_3_MASK:
return LPAIF_I2SCTL_MODE_QUAD23;
case LPASS_CPU_I2S_SD0_1_2_MASK:
return LPAIF_I2SCTL_MODE_6CH;
case LPASS_CPU_I2S_SD0_1_2_3_MASK:
return LPAIF_I2SCTL_MODE_8CH;
default:
dev_err(dev, "Unsupported SD line mask: %#x\n", sd_line_mask);
return LPAIF_I2SCTL_MODE_NONE;
}
}
static void of_lpass_cpu_parse_dai_data(struct device *dev,
struct lpass_data *data)
{
struct device_node *node;
int ret, i, id;
/* Allow all channels by default for backwards compatibility */
for (i = 0; i < data->variant->num_dai; i++) {
id = data->variant->dai_driver[i].id;
data->mi2s_playback_sd_mode[id] = LPAIF_I2SCTL_MODE_8CH;
data->mi2s_capture_sd_mode[id] = LPAIF_I2SCTL_MODE_8CH;
}
for_each_child_of_node(dev->of_node, node) {
ret = of_property_read_u32(node, "reg", &id);
if (ret || id < 0) {
dev_err(dev, "valid dai id not found: %d\n", ret);
continue;
}
if (id == LPASS_DP_RX) {
data->hdmi_port_enable = 1;
} else if (is_cdc_dma_port(id)) {
data->codec_dma_enable = 1;
} else {
data->mi2s_playback_sd_mode[id] =
of_lpass_cpu_parse_sd_lines(dev, node,
"qcom,playback-sd-lines");
data->mi2s_capture_sd_mode[id] =
of_lpass_cpu_parse_sd_lines(dev, node,
"qcom,capture-sd-lines");
}
}
}
static int of_lpass_cdc_dma_clks_parse(struct device *dev,
struct lpass_data *data)
{
data->codec_mem0 = devm_clk_get(dev, "audio_cc_codec_mem0");
if (IS_ERR(data->codec_mem0))
return PTR_ERR(data->codec_mem0);
data->codec_mem1 = devm_clk_get(dev, "audio_cc_codec_mem1");
if (IS_ERR(data->codec_mem1))
return PTR_ERR(data->codec_mem1);
data->codec_mem2 = devm_clk_get(dev, "audio_cc_codec_mem2");
if (IS_ERR(data->codec_mem2))
return PTR_ERR(data->codec_mem2);
data->va_mem0 = devm_clk_get(dev, "aon_cc_va_mem0");
if (IS_ERR(data->va_mem0))
return PTR_ERR(data->va_mem0);
return 0;
}
int asoc_qcom_lpass_cpu_platform_probe(struct platform_device *pdev)
{
struct lpass_data *drvdata;
struct device_node *dsp_of_node;
struct resource *res;
const struct lpass_variant *variant;
struct device *dev = &pdev->dev;
int ret, i, dai_id;
dsp_of_node = of_parse_phandle(pdev->dev.of_node, "qcom,adsp", 0);
if (dsp_of_node) {
dev_err(dev, "DSP exists and holds audio resources\n");
of_node_put(dsp_of_node);
return -EBUSY;
}
drvdata = devm_kzalloc(dev, sizeof(struct lpass_data), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
platform_set_drvdata(pdev, drvdata);
variant = device_get_match_data(dev);
if (!variant)
return -EINVAL;
if (of_device_is_compatible(dev->of_node, "qcom,lpass-cpu-apq8016"))
dev_warn(dev, "qcom,lpass-cpu-apq8016 compatible is deprecated\n");
drvdata->variant = variant;
of_lpass_cpu_parse_dai_data(dev, drvdata);
if (drvdata->codec_dma_enable) {
drvdata->rxtx_lpaif =
devm_platform_ioremap_resource_byname(pdev, "lpass-rxtx-lpaif");
if (IS_ERR(drvdata->rxtx_lpaif))
return PTR_ERR(drvdata->rxtx_lpaif);
drvdata->va_lpaif = devm_platform_ioremap_resource_byname(pdev, "lpass-va-lpaif");
if (IS_ERR(drvdata->va_lpaif))
return PTR_ERR(drvdata->va_lpaif);
lpass_rxtx_regmap_config.max_register = LPAIF_CDC_RXTX_WRDMAPER_REG(variant,
variant->rxtx_wrdma_channels +
variant->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3);
drvdata->rxtx_lpaif_map = devm_regmap_init_mmio(dev, drvdata->rxtx_lpaif,
&lpass_rxtx_regmap_config);
if (IS_ERR(drvdata->rxtx_lpaif_map))
return PTR_ERR(drvdata->rxtx_lpaif_map);
lpass_va_regmap_config.max_register = LPAIF_CDC_VA_WRDMAPER_REG(variant,
variant->va_wrdma_channels +
variant->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0);
drvdata->va_lpaif_map = devm_regmap_init_mmio(dev, drvdata->va_lpaif,
&lpass_va_regmap_config);
if (IS_ERR(drvdata->va_lpaif_map))
return PTR_ERR(drvdata->va_lpaif_map);
ret = of_lpass_cdc_dma_clks_parse(dev, drvdata);
if (ret) {
dev_err(dev, "failed to get cdc dma clocks %d\n", ret);
return ret;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpass-rxtx-cdc-dma-lpm");
if (!res)
return -EINVAL;
drvdata->rxtx_cdc_dma_lpm_buf = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpass-va-cdc-dma-lpm");
if (!res)
return -EINVAL;
drvdata->va_cdc_dma_lpm_buf = res->start;
}
drvdata->lpaif = devm_platform_ioremap_resource_byname(pdev, "lpass-lpaif");
if (IS_ERR(drvdata->lpaif))
return PTR_ERR(drvdata->lpaif);
lpass_cpu_regmap_config.max_register = LPAIF_WRDMAPER_REG(variant,
variant->wrdma_channels +
variant->wrdma_channel_start);
drvdata->lpaif_map = devm_regmap_init_mmio(dev, drvdata->lpaif,
&lpass_cpu_regmap_config);
if (IS_ERR(drvdata->lpaif_map)) {
dev_err(dev, "error initializing regmap: %ld\n",
PTR_ERR(drvdata->lpaif_map));
return PTR_ERR(drvdata->lpaif_map);
}
if (drvdata->hdmi_port_enable) {
drvdata->hdmiif = devm_platform_ioremap_resource_byname(pdev, "lpass-hdmiif");
if (IS_ERR(drvdata->hdmiif))
return PTR_ERR(drvdata->hdmiif);
lpass_hdmi_regmap_config.max_register = LPAIF_HDMI_RDMAPER_REG(variant,
variant->hdmi_rdma_channels - 1);
drvdata->hdmiif_map = devm_regmap_init_mmio(dev, drvdata->hdmiif,
&lpass_hdmi_regmap_config);
if (IS_ERR(drvdata->hdmiif_map)) {
dev_err(dev, "error initializing regmap: %ld\n",
PTR_ERR(drvdata->hdmiif_map));
return PTR_ERR(drvdata->hdmiif_map);
}
}
if (variant->init) {
ret = variant->init(pdev);
if (ret) {
dev_err(dev, "error initializing variant: %d\n", ret);
return ret;
}
}
for (i = 0; i < variant->num_dai; i++) {
dai_id = variant->dai_driver[i].id;
if (dai_id == LPASS_DP_RX || is_cdc_dma_port(dai_id))
continue;
drvdata->mi2s_osr_clk[dai_id] = devm_clk_get_optional(dev,
variant->dai_osr_clk_names[i]);
drvdata->mi2s_bit_clk[dai_id] = devm_clk_get(dev,
variant->dai_bit_clk_names[i]);
if (IS_ERR(drvdata->mi2s_bit_clk[dai_id])) {
dev_err(dev,
"error getting %s: %ld\n",
variant->dai_bit_clk_names[i],
PTR_ERR(drvdata->mi2s_bit_clk[dai_id]));
return PTR_ERR(drvdata->mi2s_bit_clk[dai_id]);
}
if (drvdata->mi2s_playback_sd_mode[dai_id] ==
LPAIF_I2SCTL_MODE_QUAD01) {
variant->dai_driver[dai_id].playback.channels_min = 4;
variant->dai_driver[dai_id].playback.channels_max = 4;
}
}
/* Allocation for i2sctl regmap fields */
drvdata->i2sctl = devm_kzalloc(&pdev->dev, sizeof(struct lpaif_i2sctl),
GFP_KERNEL);
if (!drvdata->i2sctl)
return -ENOMEM;
/* Initialize bitfields for dai I2SCTL register */
ret = lpass_cpu_init_i2sctl_bitfields(dev, drvdata->i2sctl,
drvdata->lpaif_map);
if (ret) {
dev_err(dev, "error init i2sctl field: %d\n", ret);
return ret;
}
if (drvdata->hdmi_port_enable) {
ret = lpass_hdmi_init_bitfields(dev, drvdata->hdmiif_map);
if (ret) {
dev_err(dev, "%s error hdmi init failed\n", __func__);
return ret;
}
}
ret = devm_snd_soc_register_component(dev,
&lpass_cpu_comp_driver,
variant->dai_driver,
variant->num_dai);
if (ret) {
dev_err(dev, "error registering cpu driver: %d\n", ret);
goto err;
}
ret = asoc_qcom_lpass_platform_register(pdev);
if (ret) {
dev_err(dev, "error registering platform driver: %d\n", ret);
goto err;
}
err:
return ret;
}
EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_probe);
void asoc_qcom_lpass_cpu_platform_remove(struct platform_device *pdev)
{
struct lpass_data *drvdata = platform_get_drvdata(pdev);
if (drvdata->variant->exit)
drvdata->variant->exit(pdev);
}
EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_remove);
void asoc_qcom_lpass_cpu_platform_shutdown(struct platform_device *pdev)
{
struct lpass_data *drvdata = platform_get_drvdata(pdev);
if (drvdata->variant->exit)
drvdata->variant->exit(pdev);
}
EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_shutdown);
MODULE_DESCRIPTION("QTi LPASS CPU Driver");
MODULE_LICENSE("GPL");