blob: 1526551f9fe6b5541f08b15d8bbf343537c3d298 [file] [log] [blame]
/*
* Copyright 2010 Ben Herrenschmidt, IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/debugfs.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/iommu.h>
#include <asm/io-workarounds.h>
#include <asm/debug.h>
#include "wsp.h"
#include "wsp_pci.h"
#include "msi.h"
/* Max number of TVTs for one table. Only 32-bit tables can use
* multiple TVTs and so the max currently supported is thus 8
* since only 2G of DMA space is supported
*/
#define MAX_TABLE_TVT_COUNT 8
struct wsp_dma_table {
struct list_head link;
struct iommu_table table;
struct wsp_phb *phb;
struct page *tces[MAX_TABLE_TVT_COUNT];
};
/* We support DMA regions from 0...2G in 32bit space (no support for
* 64-bit DMA just yet). Each device gets a separate TCE table (TVT
* entry) with validation enabled (though not supported by SimiCS
* just yet).
*
* To simplify things, we divide this 2G space into N regions based
* on the constant below which could be turned into a tunable eventually
*
* We then assign dynamically those regions to devices as they show up.
*
* We use a bitmap as an allocator for these.
*
* Tables are allocated/created dynamically as devices are discovered,
* multiple TVT entries are used if needed
*
* When 64-bit DMA support is added we should simply use a separate set
* of larger regions (the HW supports 64 TVT entries). We can
* additionally create a bypass region in 64-bit space for performances
* though that would have a cost in term of security.
*
* If you set NUM_DMA32_REGIONS to 1, then a single table is shared
* for all devices and bus/dev/fn validation is disabled
*
* Note that a DMA32 region cannot be smaller than 256M so the max
* supported here for now is 8. We don't yet support sharing regions
* between multiple devices so the max number of devices supported
* is MAX_TABLE_TVT_COUNT.
*/
#define NUM_DMA32_REGIONS 1
struct wsp_phb {
struct pci_controller *hose;
/* Lock controlling access to the list of dma tables.
* It does -not- protect against dma_* operations on
* those tables, those should be stopped before an entry
* is removed from the list.
*
* The lock is also used for error handling operations
*/
spinlock_t lock;
struct list_head dma_tables;
unsigned long dma32_map;
unsigned long dma32_base;
unsigned int dma32_num_regions;
unsigned long dma32_region_size;
/* Debugfs stuff */
struct dentry *ddir;
struct list_head all;
};
static LIST_HEAD(wsp_phbs);
//#define cfg_debug(fmt...) pr_debug(fmt)
#define cfg_debug(fmt...)
static int wsp_pcie_read_config(struct pci_bus *bus, unsigned int devfn,
int offset, int len, u32 *val)
{
struct pci_controller *hose;
int suboff;
u64 addr;
hose = pci_bus_to_host(bus);
if (hose == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset >= 0x1000)
return PCIBIOS_BAD_REGISTER_NUMBER;
addr = PCIE_REG_CA_ENABLE |
((u64)bus->number) << PCIE_REG_CA_BUS_SHIFT |
((u64)devfn) << PCIE_REG_CA_FUNC_SHIFT |
((u64)offset & ~3) << PCIE_REG_CA_REG_SHIFT;
suboff = offset & 3;
/*
* Note: the caller has already checked that offset is
* suitably aligned and that len is 1, 2 or 4.
*/
switch (len) {
case 1:
addr |= (0x8ul >> suboff) << PCIE_REG_CA_BE_SHIFT;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
*val = (in_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA)
>> (suboff << 3)) & 0xff;
cfg_debug("read 1 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%02x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, *val);
break;
case 2:
addr |= (0xcul >> suboff) << PCIE_REG_CA_BE_SHIFT;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
*val = (in_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA)
>> (suboff << 3)) & 0xffff;
cfg_debug("read 2 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%04x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, *val);
break;
default:
addr |= 0xful << PCIE_REG_CA_BE_SHIFT;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
*val = in_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA);
cfg_debug("read 4 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%08x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, *val);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int wsp_pcie_write_config(struct pci_bus *bus, unsigned int devfn,
int offset, int len, u32 val)
{
struct pci_controller *hose;
int suboff;
u64 addr;
hose = pci_bus_to_host(bus);
if (hose == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset >= 0x1000)
return PCIBIOS_BAD_REGISTER_NUMBER;
addr = PCIE_REG_CA_ENABLE |
((u64)bus->number) << PCIE_REG_CA_BUS_SHIFT |
((u64)devfn) << PCIE_REG_CA_FUNC_SHIFT |
((u64)offset & ~3) << PCIE_REG_CA_REG_SHIFT;
suboff = offset & 3;
/*
* Note: the caller has already checked that offset is
* suitably aligned and that len is 1, 2 or 4.
*/
switch (len) {
case 1:
addr |= (0x8ul >> suboff) << PCIE_REG_CA_BE_SHIFT;
val <<= suboff << 3;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
out_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA, val);
cfg_debug("write 1 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%02x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, val);
break;
case 2:
addr |= (0xcul >> suboff) << PCIE_REG_CA_BE_SHIFT;
val <<= suboff << 3;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
out_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA, val);
cfg_debug("write 2 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%04x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, val);
break;
default:
addr |= 0xful << PCIE_REG_CA_BE_SHIFT;
out_be64(hose->cfg_data + PCIE_REG_CONFIG_ADDRESS, addr);
out_le32(hose->cfg_data + PCIE_REG_CONFIG_DATA, val);
cfg_debug("write 4 %02x:%02x:%02x + %02x/%x addr=0x%llx val=%08x\n",
bus->number, devfn >> 3, devfn & 7,
offset, suboff, addr, val);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops wsp_pcie_pci_ops =
{
.read = wsp_pcie_read_config,
.write = wsp_pcie_write_config,
};
#define TCE_SHIFT 12
#define TCE_PAGE_SIZE (1 << TCE_SHIFT)
#define TCE_PCI_WRITE 0x2 /* write from PCI allowed */
#define TCE_PCI_READ 0x1 /* read from PCI allowed */
#define TCE_RPN_MASK 0x3fffffffffful /* 42-bit RPN (4K pages) */
#define TCE_RPN_SHIFT 12
//#define dma_debug(fmt...) pr_debug(fmt)
#define dma_debug(fmt...)
static int tce_build_wsp(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct wsp_dma_table *ptbl = container_of(tbl,
struct wsp_dma_table,
table);
u64 proto_tce;
u64 *tcep;
u64 rpn;
proto_tce = TCE_PCI_READ;
#ifdef CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS
proto_tce |= TCE_PCI_WRITE;
#else
if (direction != DMA_TO_DEVICE)
proto_tce |= TCE_PCI_WRITE;
#endif
/* XXX Make this faster by factoring out the page address for
* within a TCE table
*/
while (npages--) {
/* We don't use it->base as the table can be scattered */
tcep = (u64 *)page_address(ptbl->tces[index >> 16]);
tcep += (index & 0xffff);
/* can't move this out since we might cross LMB boundary */
rpn = __pa(uaddr) >> TCE_SHIFT;
*tcep = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT;
dma_debug("[DMA] TCE %p set to 0x%016llx (dma addr: 0x%lx)\n",
tcep, *tcep, (tbl->it_offset + index) << IOMMU_PAGE_SHIFT);
uaddr += TCE_PAGE_SIZE;
index++;
}
return 0;
}
static void tce_free_wsp(struct iommu_table *tbl, long index, long npages)
{
struct wsp_dma_table *ptbl = container_of(tbl,
struct wsp_dma_table,
table);
#ifndef CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS
struct pci_controller *hose = ptbl->phb->hose;
#endif
u64 *tcep;
/* XXX Make this faster by factoring out the page address for
* within a TCE table. Also use line-kill option to kill multiple
* TCEs at once
*/
while (npages--) {
/* We don't use it->base as the table can be scattered */
tcep = (u64 *)page_address(ptbl->tces[index >> 16]);
tcep += (index & 0xffff);
dma_debug("[DMA] TCE %p cleared\n", tcep);
*tcep = 0;
#ifndef CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS
/* Don't write there since it would pollute other MMIO accesses */
out_be64(hose->cfg_data + PCIE_REG_TCE_KILL,
PCIE_REG_TCEKILL_SINGLE | PCIE_REG_TCEKILL_PS_4K |
(__pa(tcep) & PCIE_REG_TCEKILL_ADDR_MASK));
#endif
index++;
}
}
static struct wsp_dma_table *wsp_pci_create_dma32_table(struct wsp_phb *phb,
unsigned int region,
struct pci_dev *validate)
{
struct pci_controller *hose = phb->hose;
unsigned long size = phb->dma32_region_size;
unsigned long addr = phb->dma32_region_size * region + phb->dma32_base;
struct wsp_dma_table *tbl;
int tvts_per_table, i, tvt, nid;
unsigned long flags;
nid = of_node_to_nid(phb->hose->dn);
/* Calculate how many TVTs are needed */
tvts_per_table = size / 0x10000000;
if (tvts_per_table == 0)
tvts_per_table = 1;
/* Calculate the base TVT index. We know all tables have the same
* size so we just do a simple multiply here
*/
tvt = region * tvts_per_table;
pr_debug(" Region : %d\n", region);
pr_debug(" DMA range : 0x%08lx..0x%08lx\n", addr, addr + size - 1);
pr_debug(" Number of TVTs : %d\n", tvts_per_table);
pr_debug(" Base TVT : %d\n", tvt);
pr_debug(" Node : %d\n", nid);
tbl = kzalloc_node(sizeof(struct wsp_dma_table), GFP_KERNEL, nid);
if (!tbl)
return ERR_PTR(-ENOMEM);
tbl->phb = phb;
/* Create as many TVTs as needed, each represents 256M at most */
for (i = 0; i < tvts_per_table; i++) {
u64 tvt_data1, tvt_data0;
/* Allocate table. We use a 4K TCE size for now always so
* one table is always 8 * (258M / 4K) == 512K
*/
tbl->tces[i] = alloc_pages_node(nid, GFP_KERNEL, get_order(0x80000));
if (tbl->tces[i] == NULL)
goto fail;
memset(page_address(tbl->tces[i]), 0, 0x80000);
pr_debug(" TCE table %d at : %p\n", i, page_address(tbl->tces[i]));
/* Table size. We currently set it to be the whole 256M region */
tvt_data0 = 2ull << IODA_TVT0_TCE_TABLE_SIZE_SHIFT;
/* IO page size set to 4K */
tvt_data1 = 1ull << IODA_TVT1_IO_PAGE_SIZE_SHIFT;
/* Shift in the address */
tvt_data0 |= __pa(page_address(tbl->tces[i])) << IODA_TVT0_TTA_SHIFT;
/* Validation stuff. We only validate fully bus/dev/fn for now
* one day maybe we can group devices but that isn't the case
* at the moment
*/
if (validate) {
tvt_data0 |= IODA_TVT0_BUSNUM_VALID_MASK;
tvt_data0 |= validate->bus->number;
tvt_data1 |= IODA_TVT1_DEVNUM_VALID;
tvt_data1 |= ((u64)PCI_SLOT(validate->devfn))
<< IODA_TVT1_DEVNUM_VALUE_SHIFT;
tvt_data1 |= IODA_TVT1_FUNCNUM_VALID;
tvt_data1 |= ((u64)PCI_FUNC(validate->devfn))
<< IODA_TVT1_FUNCNUM_VALUE_SHIFT;
}
/* XX PE number is always 0 for now */
/* Program the values using the PHB lock */
spin_lock_irqsave(&phb->lock, flags);
out_be64(hose->cfg_data + PCIE_REG_IODA_ADDR,
(tvt + i) | PCIE_REG_IODA_AD_TBL_TVT);
out_be64(hose->cfg_data + PCIE_REG_IODA_DATA1, tvt_data1);
out_be64(hose->cfg_data + PCIE_REG_IODA_DATA0, tvt_data0);
spin_unlock_irqrestore(&phb->lock, flags);
}
/* Init bits and pieces */
tbl->table.it_blocksize = 16;
tbl->table.it_offset = addr >> IOMMU_PAGE_SHIFT;
tbl->table.it_size = size >> IOMMU_PAGE_SHIFT;
/*
* It's already blank but we clear it anyway.
* Consider an aditiona interface that makes cleaing optional
*/
iommu_init_table(&tbl->table, nid);
list_add(&tbl->link, &phb->dma_tables);
return tbl;
fail:
pr_debug(" Failed to allocate a 256M TCE table !\n");
for (i = 0; i < tvts_per_table; i++)
if (tbl->tces[i])
__free_pages(tbl->tces[i], get_order(0x80000));
kfree(tbl);
return ERR_PTR(-ENOMEM);
}
static void __devinit wsp_pci_dma_dev_setup(struct pci_dev *pdev)
{
struct dev_archdata *archdata = &pdev->dev.archdata;
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct wsp_phb *phb = hose->private_data;
struct wsp_dma_table *table = NULL;
unsigned long flags;
int i;
/* Don't assign an iommu table to a bridge */
if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
return;
pr_debug("%s: Setting up DMA...\n", pci_name(pdev));
spin_lock_irqsave(&phb->lock, flags);
/* If only one region, check if it already exist */
if (phb->dma32_num_regions == 1) {
spin_unlock_irqrestore(&phb->lock, flags);
if (list_empty(&phb->dma_tables))
table = wsp_pci_create_dma32_table(phb, 0, NULL);
else
table = list_first_entry(&phb->dma_tables,
struct wsp_dma_table,
link);
} else {
/* else find a free region */
for (i = 0; i < phb->dma32_num_regions && !table; i++) {
if (__test_and_set_bit(i, &phb->dma32_map))
continue;
spin_unlock_irqrestore(&phb->lock, flags);
table = wsp_pci_create_dma32_table(phb, i, pdev);
}
}
/* Check if we got an error */
if (IS_ERR(table)) {
pr_err("%s: Failed to create DMA table, err %ld !\n",
pci_name(pdev), PTR_ERR(table));
return;
}
/* Or a valid table */
if (table) {
pr_info("%s: Setup iommu: 32-bit DMA region 0x%08lx..0x%08lx\n",
pci_name(pdev),
table->table.it_offset << IOMMU_PAGE_SHIFT,
(table->table.it_offset << IOMMU_PAGE_SHIFT)
+ phb->dma32_region_size - 1);
archdata->dma_data.iommu_table_base = &table->table;
return;
}
/* Or no room */
spin_unlock_irqrestore(&phb->lock, flags);
pr_err("%s: Out of DMA space !\n", pci_name(pdev));
}
static void __init wsp_pcie_configure_hw(struct pci_controller *hose)
{
u64 val;
int i;
#define DUMP_REG(x) \
pr_debug("%-30s : 0x%016llx\n", #x, in_be64(hose->cfg_data + x))
/*
* Some WSP variants has a bogus class code by default in the PCI-E
* root complex's built-in P2P bridge
*/
val = in_be64(hose->cfg_data + PCIE_REG_SYS_CFG1);
pr_debug("PCI-E SYS_CFG1 : 0x%llx\n", val);
out_be64(hose->cfg_data + PCIE_REG_SYS_CFG1,
(val & ~PCIE_REG_SYS_CFG1_CLASS_CODE) | (PCI_CLASS_BRIDGE_PCI << 8));
pr_debug("PCI-E SYS_CFG1 : 0x%llx\n", in_be64(hose->cfg_data + PCIE_REG_SYS_CFG1));
#ifdef CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS
/* XXX Disable TCE caching, it doesn't work on DD1 */
out_be64(hose->cfg_data + 0xe50,
in_be64(hose->cfg_data + 0xe50) | (3ull << 62));
printk("PCI-E DEBUG CONTROL 5 = 0x%llx\n", in_be64(hose->cfg_data + 0xe50));
#endif
/* Configure M32A and IO. IO is hard wired to be 1M for now */
out_be64(hose->cfg_data + PCIE_REG_IO_BASE_ADDR, hose->io_base_phys);
out_be64(hose->cfg_data + PCIE_REG_IO_BASE_MASK,
(~(hose->io_resource.end - hose->io_resource.start)) &
0x3fffffff000ul);
out_be64(hose->cfg_data + PCIE_REG_IO_START_ADDR, 0 | 1);
out_be64(hose->cfg_data + PCIE_REG_M32A_BASE_ADDR,
hose->mem_resources[0].start);
printk("Want to write to M32A_BASE_MASK : 0x%llx\n",
(~(hose->mem_resources[0].end -
hose->mem_resources[0].start)) & 0x3ffffff0000ul);
out_be64(hose->cfg_data + PCIE_REG_M32A_BASE_MASK,
(~(hose->mem_resources[0].end -
hose->mem_resources[0].start)) & 0x3ffffff0000ul);
out_be64(hose->cfg_data + PCIE_REG_M32A_START_ADDR,
(hose->mem_resources[0].start - hose->pci_mem_offset) | 1);
/* Clear all TVT entries
*
* XX Might get TVT count from device-tree
*/
for (i = 0; i < IODA_TVT_COUNT; i++) {
out_be64(hose->cfg_data + PCIE_REG_IODA_ADDR,
PCIE_REG_IODA_AD_TBL_TVT | i);
out_be64(hose->cfg_data + PCIE_REG_IODA_DATA1, 0);
out_be64(hose->cfg_data + PCIE_REG_IODA_DATA0, 0);
}
/* Kill the TCE cache */
out_be64(hose->cfg_data + PCIE_REG_PHB_CONFIG,
in_be64(hose->cfg_data + PCIE_REG_PHB_CONFIG) |
PCIE_REG_PHBC_64B_TCE_EN);
/* Enable 32 & 64-bit MSIs, IO space and M32A */
val = PCIE_REG_PHBC_32BIT_MSI_EN |
PCIE_REG_PHBC_IO_EN |
PCIE_REG_PHBC_64BIT_MSI_EN |
PCIE_REG_PHBC_M32A_EN;
if (iommu_is_off)
val |= PCIE_REG_PHBC_DMA_XLATE_BYPASS;
pr_debug("Will write config: 0x%llx\n", val);
out_be64(hose->cfg_data + PCIE_REG_PHB_CONFIG, val);
/* Enable error reporting */
out_be64(hose->cfg_data + 0xe00,
in_be64(hose->cfg_data + 0xe00) | 0x0008000000000000ull);
/* Mask an error that's generated when doing config space probe
*
* XXX Maybe we should only mask it around config space cycles... that or
* ignore it when we know we had a config space cycle recently ?
*/
out_be64(hose->cfg_data + PCIE_REG_DMA_ERR_STATUS_MASK, 0x8000000000000000ull);
out_be64(hose->cfg_data + PCIE_REG_DMA_ERR1_STATUS_MASK, 0x8000000000000000ull);
/* Enable UTL errors, for now, all of them got to UTL irq 1
*
* We similarily mask one UTL error caused apparently during normal
* probing. We also mask the link up error
*/
out_be64(hose->cfg_data + PCIE_UTL_SYS_BUS_AGENT_ERR_SEV, 0);
out_be64(hose->cfg_data + PCIE_UTL_RC_ERR_SEVERITY, 0);
out_be64(hose->cfg_data + PCIE_UTL_PCIE_PORT_ERROR_SEV, 0);
out_be64(hose->cfg_data + PCIE_UTL_SYS_BUS_AGENT_IRQ_EN, 0xffffffff00000000ull);
out_be64(hose->cfg_data + PCIE_UTL_PCIE_PORT_IRQ_EN, 0xff5fffff00000000ull);
out_be64(hose->cfg_data + PCIE_UTL_EP_ERR_IRQ_EN, 0xffffffff00000000ull);
DUMP_REG(PCIE_REG_IO_BASE_ADDR);
DUMP_REG(PCIE_REG_IO_BASE_MASK);
DUMP_REG(PCIE_REG_IO_START_ADDR);
DUMP_REG(PCIE_REG_M32A_BASE_ADDR);
DUMP_REG(PCIE_REG_M32A_BASE_MASK);
DUMP_REG(PCIE_REG_M32A_START_ADDR);
DUMP_REG(PCIE_REG_M32B_BASE_ADDR);
DUMP_REG(PCIE_REG_M32B_BASE_MASK);
DUMP_REG(PCIE_REG_M32B_START_ADDR);
DUMP_REG(PCIE_REG_M64_BASE_ADDR);
DUMP_REG(PCIE_REG_M64_BASE_MASK);
DUMP_REG(PCIE_REG_M64_START_ADDR);
DUMP_REG(PCIE_REG_PHB_CONFIG);
}
static void wsp_pci_wait_io_idle(struct wsp_phb *phb, unsigned long port)
{
u64 val;
int i;
for (i = 0; i < 10000; i++) {
val = in_be64(phb->hose->cfg_data + 0xe08);
if ((val & 0x1900000000000000ull) == 0x0100000000000000ull)
return;
udelay(1);
}
pr_warning("PCI IO timeout on domain %d port 0x%lx\n",
phb->hose->global_number, port);
}
#define DEF_PCI_AC_RET_pio(name, ret, at, al, aa) \
static ret wsp_pci_##name at \
{ \
struct iowa_bus *bus; \
struct wsp_phb *phb; \
unsigned long flags; \
ret rval; \
bus = iowa_pio_find_bus(aa); \
WARN_ON(!bus); \
phb = bus->private; \
spin_lock_irqsave(&phb->lock, flags); \
wsp_pci_wait_io_idle(phb, aa); \
rval = __do_##name al; \
spin_unlock_irqrestore(&phb->lock, flags); \
return rval; \
}
#define DEF_PCI_AC_NORET_pio(name, at, al, aa) \
static void wsp_pci_##name at \
{ \
struct iowa_bus *bus; \
struct wsp_phb *phb; \
unsigned long flags; \
bus = iowa_pio_find_bus(aa); \
WARN_ON(!bus); \
phb = bus->private; \
spin_lock_irqsave(&phb->lock, flags); \
wsp_pci_wait_io_idle(phb, aa); \
__do_##name al; \
spin_unlock_irqrestore(&phb->lock, flags); \
}
#define DEF_PCI_AC_RET_mem(name, ret, at, al, aa)
#define DEF_PCI_AC_NORET_mem(name, at, al, aa)
#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
DEF_PCI_AC_RET_##space(name, ret, at, al, aa)
#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
DEF_PCI_AC_NORET_##space(name, at, al, aa) \
#include <asm/io-defs.h>
#undef DEF_PCI_AC_RET
#undef DEF_PCI_AC_NORET
static struct ppc_pci_io wsp_pci_iops = {
.inb = wsp_pci_inb,
.inw = wsp_pci_inw,
.inl = wsp_pci_inl,
.outb = wsp_pci_outb,
.outw = wsp_pci_outw,
.outl = wsp_pci_outl,
.insb = wsp_pci_insb,
.insw = wsp_pci_insw,
.insl = wsp_pci_insl,
.outsb = wsp_pci_outsb,
.outsw = wsp_pci_outsw,
.outsl = wsp_pci_outsl,
};
static int __init wsp_setup_one_phb(struct device_node *np)
{
struct pci_controller *hose;
struct wsp_phb *phb;
pr_info("PCI: Setting up PCIe host bridge 0x%s\n", np->full_name);
phb = zalloc_maybe_bootmem(sizeof(struct wsp_phb), GFP_KERNEL);
if (!phb)
return -ENOMEM;
hose = pcibios_alloc_controller(np);
if (!hose) {
/* Can't really free the phb */
return -ENOMEM;
}
hose->private_data = phb;
phb->hose = hose;
INIT_LIST_HEAD(&phb->dma_tables);
spin_lock_init(&phb->lock);
/* XXX Use bus-range property ? */
hose->first_busno = 0;
hose->last_busno = 0xff;
/* We use cfg_data as the address for the whole bridge MMIO space
*/
hose->cfg_data = of_iomap(hose->dn, 0);
pr_debug("PCIe registers mapped at 0x%p\n", hose->cfg_data);
/* Get the ranges of the device-tree */
pci_process_bridge_OF_ranges(hose, np, 0);
/* XXX Force re-assigning of everything for now */
pci_add_flags(PCI_REASSIGN_ALL_BUS | PCI_REASSIGN_ALL_RSRC |
PCI_ENABLE_PROC_DOMAINS);
/* Calculate how the TCE space is divided */
phb->dma32_base = 0;
phb->dma32_num_regions = NUM_DMA32_REGIONS;
if (phb->dma32_num_regions > MAX_TABLE_TVT_COUNT) {
pr_warning("IOMMU: Clamped to %d DMA32 regions\n",
MAX_TABLE_TVT_COUNT);
phb->dma32_num_regions = MAX_TABLE_TVT_COUNT;
}
phb->dma32_region_size = 0x80000000 / phb->dma32_num_regions;
BUG_ON(!is_power_of_2(phb->dma32_region_size));
/* Setup config ops */
hose->ops = &wsp_pcie_pci_ops;
/* Configure the HW */
wsp_pcie_configure_hw(hose);
/* Instanciate IO workarounds */
iowa_register_bus(hose, &wsp_pci_iops, NULL, phb);
#ifdef CONFIG_PCI_MSI
wsp_setup_phb_msi(hose);
#endif
/* Add to global list */
list_add(&phb->all, &wsp_phbs);
return 0;
}
void __init wsp_setup_pci(void)
{
struct device_node *np;
int rc;
/* Find host bridges */
for_each_compatible_node(np, "pciex", PCIE_COMPATIBLE) {
rc = wsp_setup_one_phb(np);
if (rc)
pr_err("Failed to setup PCIe bridge %s, rc=%d\n",
np->full_name, rc);
}
/* Establish device-tree linkage */
pci_devs_phb_init();
/* Set DMA ops to use TCEs */
if (iommu_is_off) {
pr_info("PCI-E: Disabled TCEs, using direct DMA\n");
set_pci_dma_ops(&dma_direct_ops);
} else {
ppc_md.pci_dma_dev_setup = wsp_pci_dma_dev_setup;
ppc_md.tce_build = tce_build_wsp;
ppc_md.tce_free = tce_free_wsp;
set_pci_dma_ops(&dma_iommu_ops);
}
}
#define err_debug(fmt...) pr_debug(fmt)
//#define err_debug(fmt...)
static int __init wsp_pci_get_err_irq_no_dt(struct device_node *np)
{
const u32 *prop;
int hw_irq;
/* Ok, no interrupts property, let's try to find our child P2P */
np = of_get_next_child(np, NULL);
if (np == NULL)
return 0;
/* Grab it's interrupt map */
prop = of_get_property(np, "interrupt-map", NULL);
if (prop == NULL)
return 0;
/* Grab one of the interrupts in there, keep the low 4 bits */
hw_irq = prop[5] & 0xf;
/* 0..4 for PHB 0 and 5..9 for PHB 1 */
if (hw_irq < 5)
hw_irq = 4;
else
hw_irq = 9;
hw_irq |= prop[5] & ~0xf;
err_debug("PCI: Using 0x%x as error IRQ for %s\n",
hw_irq, np->parent->full_name);
return irq_create_mapping(NULL, hw_irq);
}
static const struct {
u32 offset;
const char *name;
} wsp_pci_regs[] = {
#define DREG(x) { PCIE_REG_##x, #x }
#define DUTL(x) { PCIE_UTL_##x, "UTL_" #x }
/* Architected registers except CONFIG_ and IODA
* to avoid side effects
*/
DREG(DMA_CHAN_STATUS),
DREG(CPU_LOADSTORE_STATUS),
DREG(LOCK0),
DREG(LOCK1),
DREG(PHB_CONFIG),
DREG(IO_BASE_ADDR),
DREG(IO_BASE_MASK),
DREG(IO_START_ADDR),
DREG(M32A_BASE_ADDR),
DREG(M32A_BASE_MASK),
DREG(M32A_START_ADDR),
DREG(M32B_BASE_ADDR),
DREG(M32B_BASE_MASK),
DREG(M32B_START_ADDR),
DREG(M64_BASE_ADDR),
DREG(M64_BASE_MASK),
DREG(M64_START_ADDR),
DREG(TCE_KILL),
DREG(LOCK2),
DREG(PHB_GEN_CAP),
DREG(PHB_TCE_CAP),
DREG(PHB_IRQ_CAP),
DREG(PHB_EEH_CAP),
DREG(PAPR_ERR_INJ_CONTROL),
DREG(PAPR_ERR_INJ_ADDR),
DREG(PAPR_ERR_INJ_MASK),
/* UTL core regs */
DUTL(SYS_BUS_CONTROL),
DUTL(STATUS),
DUTL(SYS_BUS_AGENT_STATUS),
DUTL(SYS_BUS_AGENT_ERR_SEV),
DUTL(SYS_BUS_AGENT_IRQ_EN),
DUTL(SYS_BUS_BURST_SZ_CONF),
DUTL(REVISION_ID),
DUTL(OUT_POST_HDR_BUF_ALLOC),
DUTL(OUT_POST_DAT_BUF_ALLOC),
DUTL(IN_POST_HDR_BUF_ALLOC),
DUTL(IN_POST_DAT_BUF_ALLOC),
DUTL(OUT_NP_BUF_ALLOC),
DUTL(IN_NP_BUF_ALLOC),
DUTL(PCIE_TAGS_ALLOC),
DUTL(GBIF_READ_TAGS_ALLOC),
DUTL(PCIE_PORT_CONTROL),
DUTL(PCIE_PORT_STATUS),
DUTL(PCIE_PORT_ERROR_SEV),
DUTL(PCIE_PORT_IRQ_EN),
DUTL(RC_STATUS),
DUTL(RC_ERR_SEVERITY),
DUTL(RC_IRQ_EN),
DUTL(EP_STATUS),
DUTL(EP_ERR_SEVERITY),
DUTL(EP_ERR_IRQ_EN),
DUTL(PCI_PM_CTRL1),
DUTL(PCI_PM_CTRL2),
/* PCIe stack regs */
DREG(SYSTEM_CONFIG1),
DREG(SYSTEM_CONFIG2),
DREG(EP_SYSTEM_CONFIG),
DREG(EP_FLR),
DREG(EP_BAR_CONFIG),
DREG(LINK_CONFIG),
DREG(PM_CONFIG),
DREG(DLP_CONTROL),
DREG(DLP_STATUS),
DREG(ERR_REPORT_CONTROL),
DREG(SLOT_CONTROL1),
DREG(SLOT_CONTROL2),
DREG(UTL_CONFIG),
DREG(BUFFERS_CONFIG),
DREG(ERROR_INJECT),
DREG(SRIOV_CONFIG),
DREG(PF0_SRIOV_STATUS),
DREG(PF1_SRIOV_STATUS),
DREG(PORT_NUMBER),
DREG(POR_SYSTEM_CONFIG),
/* Internal logic regs */
DREG(PHB_VERSION),
DREG(RESET),
DREG(PHB_CONTROL),
DREG(PHB_TIMEOUT_CONTROL1),
DREG(PHB_QUIESCE_DMA),
DREG(PHB_DMA_READ_TAG_ACTV),
DREG(PHB_TCE_READ_TAG_ACTV),
/* FIR registers */
DREG(LEM_FIR_ACCUM),
DREG(LEM_FIR_AND_MASK),
DREG(LEM_FIR_OR_MASK),
DREG(LEM_ACTION0),
DREG(LEM_ACTION1),
DREG(LEM_ERROR_MASK),
DREG(LEM_ERROR_AND_MASK),
DREG(LEM_ERROR_OR_MASK),
/* Error traps registers */
DREG(PHB_ERR_STATUS),
DREG(PHB_ERR_STATUS),
DREG(PHB_ERR1_STATUS),
DREG(PHB_ERR_INJECT),
DREG(PHB_ERR_LEM_ENABLE),
DREG(PHB_ERR_IRQ_ENABLE),
DREG(PHB_ERR_FREEZE_ENABLE),
DREG(PHB_ERR_SIDE_ENABLE),
DREG(PHB_ERR_LOG_0),
DREG(PHB_ERR_LOG_1),
DREG(PHB_ERR_STATUS_MASK),
DREG(PHB_ERR1_STATUS_MASK),
DREG(MMIO_ERR_STATUS),
DREG(MMIO_ERR1_STATUS),
DREG(MMIO_ERR_INJECT),
DREG(MMIO_ERR_LEM_ENABLE),
DREG(MMIO_ERR_IRQ_ENABLE),
DREG(MMIO_ERR_FREEZE_ENABLE),
DREG(MMIO_ERR_SIDE_ENABLE),
DREG(MMIO_ERR_LOG_0),
DREG(MMIO_ERR_LOG_1),
DREG(MMIO_ERR_STATUS_MASK),
DREG(MMIO_ERR1_STATUS_MASK),
DREG(DMA_ERR_STATUS),
DREG(DMA_ERR1_STATUS),
DREG(DMA_ERR_INJECT),
DREG(DMA_ERR_LEM_ENABLE),
DREG(DMA_ERR_IRQ_ENABLE),
DREG(DMA_ERR_FREEZE_ENABLE),
DREG(DMA_ERR_SIDE_ENABLE),
DREG(DMA_ERR_LOG_0),
DREG(DMA_ERR_LOG_1),
DREG(DMA_ERR_STATUS_MASK),
DREG(DMA_ERR1_STATUS_MASK),
/* Debug and Trace registers */
DREG(PHB_DEBUG_CONTROL0),
DREG(PHB_DEBUG_STATUS0),
DREG(PHB_DEBUG_CONTROL1),
DREG(PHB_DEBUG_STATUS1),
DREG(PHB_DEBUG_CONTROL2),
DREG(PHB_DEBUG_STATUS2),
DREG(PHB_DEBUG_CONTROL3),
DREG(PHB_DEBUG_STATUS3),
DREG(PHB_DEBUG_CONTROL4),
DREG(PHB_DEBUG_STATUS4),
DREG(PHB_DEBUG_CONTROL5),
DREG(PHB_DEBUG_STATUS5),
/* Don't seem to exist ...
DREG(PHB_DEBUG_CONTROL6),
DREG(PHB_DEBUG_STATUS6),
*/
};
static int wsp_pci_regs_show(struct seq_file *m, void *private)
{
struct wsp_phb *phb = m->private;
struct pci_controller *hose = phb->hose;
int i;
for (i = 0; i < ARRAY_SIZE(wsp_pci_regs); i++) {
/* Skip write-only regs */
if (wsp_pci_regs[i].offset == 0xc08 ||
wsp_pci_regs[i].offset == 0xc10 ||
wsp_pci_regs[i].offset == 0xc38 ||
wsp_pci_regs[i].offset == 0xc40)
continue;
seq_printf(m, "0x%03x: 0x%016llx %s\n",
wsp_pci_regs[i].offset,
in_be64(hose->cfg_data + wsp_pci_regs[i].offset),
wsp_pci_regs[i].name);
}
return 0;
}
static int wsp_pci_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, wsp_pci_regs_show, inode->i_private);
}
static const struct file_operations wsp_pci_regs_fops = {
.open = wsp_pci_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int wsp_pci_reg_set(void *data, u64 val)
{
out_be64((void __iomem *)data, val);
return 0;
}
static int wsp_pci_reg_get(void *data, u64 *val)
{
*val = in_be64((void __iomem *)data);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(wsp_pci_reg_fops, wsp_pci_reg_get, wsp_pci_reg_set, "0x%llx\n");
static irqreturn_t wsp_pci_err_irq(int irq, void *dev_id)
{
struct wsp_phb *phb = dev_id;
struct pci_controller *hose = phb->hose;
irqreturn_t handled = IRQ_NONE;
struct wsp_pcie_err_log_data ed;
pr_err("PCI: Error interrupt on %s (PHB %d)\n",
hose->dn->full_name, hose->global_number);
again:
memset(&ed, 0, sizeof(ed));
/* Read and clear UTL errors */
ed.utl_sys_err = in_be64(hose->cfg_data + PCIE_UTL_SYS_BUS_AGENT_STATUS);
if (ed.utl_sys_err)
out_be64(hose->cfg_data + PCIE_UTL_SYS_BUS_AGENT_STATUS, ed.utl_sys_err);
ed.utl_port_err = in_be64(hose->cfg_data + PCIE_UTL_PCIE_PORT_STATUS);
if (ed.utl_port_err)
out_be64(hose->cfg_data + PCIE_UTL_PCIE_PORT_STATUS, ed.utl_port_err);
ed.utl_rc_err = in_be64(hose->cfg_data + PCIE_UTL_RC_STATUS);
if (ed.utl_rc_err)
out_be64(hose->cfg_data + PCIE_UTL_RC_STATUS, ed.utl_rc_err);
/* Read and clear main trap errors */
ed.phb_err = in_be64(hose->cfg_data + PCIE_REG_PHB_ERR_STATUS);
if (ed.phb_err) {
ed.phb_err1 = in_be64(hose->cfg_data + PCIE_REG_PHB_ERR1_STATUS);
ed.phb_log0 = in_be64(hose->cfg_data + PCIE_REG_PHB_ERR_LOG_0);
ed.phb_log1 = in_be64(hose->cfg_data + PCIE_REG_PHB_ERR_LOG_1);
out_be64(hose->cfg_data + PCIE_REG_PHB_ERR1_STATUS, 0);
out_be64(hose->cfg_data + PCIE_REG_PHB_ERR_STATUS, 0);
}
ed.mmio_err = in_be64(hose->cfg_data + PCIE_REG_MMIO_ERR_STATUS);
if (ed.mmio_err) {
ed.mmio_err1 = in_be64(hose->cfg_data + PCIE_REG_MMIO_ERR1_STATUS);
ed.mmio_log0 = in_be64(hose->cfg_data + PCIE_REG_MMIO_ERR_LOG_0);
ed.mmio_log1 = in_be64(hose->cfg_data + PCIE_REG_MMIO_ERR_LOG_1);
out_be64(hose->cfg_data + PCIE_REG_MMIO_ERR1_STATUS, 0);
out_be64(hose->cfg_data + PCIE_REG_MMIO_ERR_STATUS, 0);
}
ed.dma_err = in_be64(hose->cfg_data + PCIE_REG_DMA_ERR_STATUS);
if (ed.dma_err) {
ed.dma_err1 = in_be64(hose->cfg_data + PCIE_REG_DMA_ERR1_STATUS);
ed.dma_log0 = in_be64(hose->cfg_data + PCIE_REG_DMA_ERR_LOG_0);
ed.dma_log1 = in_be64(hose->cfg_data + PCIE_REG_DMA_ERR_LOG_1);
out_be64(hose->cfg_data + PCIE_REG_DMA_ERR1_STATUS, 0);
out_be64(hose->cfg_data + PCIE_REG_DMA_ERR_STATUS, 0);
}
/* Now print things out */
if (ed.phb_err) {
pr_err(" PHB Error Status : 0x%016llx\n", ed.phb_err);
pr_err(" PHB First Error Status: 0x%016llx\n", ed.phb_err1);
pr_err(" PHB Error Log 0 : 0x%016llx\n", ed.phb_log0);
pr_err(" PHB Error Log 1 : 0x%016llx\n", ed.phb_log1);
}
if (ed.mmio_err) {
pr_err(" MMIO Error Status : 0x%016llx\n", ed.mmio_err);
pr_err(" MMIO First Error Status: 0x%016llx\n", ed.mmio_err1);
pr_err(" MMIO Error Log 0 : 0x%016llx\n", ed.mmio_log0);
pr_err(" MMIO Error Log 1 : 0x%016llx\n", ed.mmio_log1);
}
if (ed.dma_err) {
pr_err(" DMA Error Status : 0x%016llx\n", ed.dma_err);
pr_err(" DMA First Error Status: 0x%016llx\n", ed.dma_err1);
pr_err(" DMA Error Log 0 : 0x%016llx\n", ed.dma_log0);
pr_err(" DMA Error Log 1 : 0x%016llx\n", ed.dma_log1);
}
if (ed.utl_sys_err)
pr_err(" UTL Sys Error Status : 0x%016llx\n", ed.utl_sys_err);
if (ed.utl_port_err)
pr_err(" UTL Port Error Status : 0x%016llx\n", ed.utl_port_err);
if (ed.utl_rc_err)
pr_err(" UTL RC Error Status : 0x%016llx\n", ed.utl_rc_err);
/* Interrupts are caused by the error traps. If we had any error there
* we loop again in case the UTL buffered some new stuff between
* going there and going to the traps
*/
if (ed.dma_err || ed.mmio_err || ed.phb_err) {
handled = IRQ_HANDLED;
goto again;
}
return handled;
}
static void __init wsp_setup_pci_err_reporting(struct wsp_phb *phb)
{
struct pci_controller *hose = phb->hose;
int err_irq, i, rc;
char fname[16];
/* Create a debugfs file for that PHB */
sprintf(fname, "phb%d", phb->hose->global_number);
phb->ddir = debugfs_create_dir(fname, powerpc_debugfs_root);
/* Some useful debug output */
if (phb->ddir) {
struct dentry *d = debugfs_create_dir("regs", phb->ddir);
char tmp[64];
for (i = 0; i < ARRAY_SIZE(wsp_pci_regs); i++) {
sprintf(tmp, "%03x_%s", wsp_pci_regs[i].offset,
wsp_pci_regs[i].name);
debugfs_create_file(tmp, 0600, d,
hose->cfg_data + wsp_pci_regs[i].offset,
&wsp_pci_reg_fops);
}
debugfs_create_file("all_regs", 0600, phb->ddir, phb, &wsp_pci_regs_fops);
}
/* Find the IRQ number for that PHB */
err_irq = irq_of_parse_and_map(hose->dn, 0);
if (err_irq == 0)
/* XXX Error IRQ lacking from device-tree */
err_irq = wsp_pci_get_err_irq_no_dt(hose->dn);
if (err_irq == 0) {
pr_err("PCI: Failed to fetch error interrupt for %s\n",
hose->dn->full_name);
return;
}
/* Request it */
rc = request_irq(err_irq, wsp_pci_err_irq, 0, "wsp_pci error", phb);
if (rc) {
pr_err("PCI: Failed to request interrupt for %s\n",
hose->dn->full_name);
}
/* Enable interrupts for all errors for now */
out_be64(hose->cfg_data + PCIE_REG_PHB_ERR_IRQ_ENABLE, 0xffffffffffffffffull);
out_be64(hose->cfg_data + PCIE_REG_MMIO_ERR_IRQ_ENABLE, 0xffffffffffffffffull);
out_be64(hose->cfg_data + PCIE_REG_DMA_ERR_IRQ_ENABLE, 0xffffffffffffffffull);
}
/*
* This is called later to hookup with the error interrupt
*/
static int __init wsp_setup_pci_late(void)
{
struct wsp_phb *phb;
list_for_each_entry(phb, &wsp_phbs, all)
wsp_setup_pci_err_reporting(phb);
return 0;
}
arch_initcall(wsp_setup_pci_late);