blob: fe6c37fd7859a230c2928404aaea54fdb4794658 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020-2021 Intel Corporation
*/
#include "gt/intel_migrate.h"
#include "gt/intel_gpu_commands.h"
#include "gem/i915_gem_ttm_move.h"
#include "i915_deps.h"
#include "selftests/igt_reset.h"
#include "selftests/igt_spinner.h"
static int igt_fill_check_buffer(struct drm_i915_gem_object *obj,
bool fill)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
unsigned int i, count = obj->base.size / sizeof(u32);
enum i915_map_type map_type =
i915_coherent_map_type(i915, obj, false);
u32 *cur;
int err = 0;
assert_object_held(obj);
cur = i915_gem_object_pin_map(obj, map_type);
if (IS_ERR(cur))
return PTR_ERR(cur);
if (fill)
for (i = 0; i < count; ++i)
*cur++ = i;
else
for (i = 0; i < count; ++i)
if (*cur++ != i) {
pr_err("Object content mismatch at location %d of %d\n", i, count);
err = -EINVAL;
break;
}
i915_gem_object_unpin_map(obj);
return err;
}
static int igt_create_migrate(struct intel_gt *gt, enum intel_region_id src,
enum intel_region_id dst)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_memory_region *src_mr = i915->mm.regions[src];
struct intel_memory_region *dst_mr = i915->mm.regions[dst];
struct drm_i915_gem_object *obj;
struct i915_gem_ww_ctx ww;
int err = 0;
GEM_BUG_ON(!src_mr);
GEM_BUG_ON(!dst_mr);
/* Switch object backing-store on create */
obj = i915_gem_object_create_region(src_mr, dst_mr->min_page_size, 0, 0);
if (IS_ERR(obj))
return PTR_ERR(obj);
for_i915_gem_ww(&ww, err, true) {
err = i915_gem_object_lock(obj, &ww);
if (err)
continue;
err = igt_fill_check_buffer(obj, true);
if (err)
continue;
err = i915_gem_object_migrate(obj, &ww, dst);
if (err)
continue;
err = i915_gem_object_pin_pages(obj);
if (err)
continue;
if (i915_gem_object_can_migrate(obj, src))
err = -EINVAL;
i915_gem_object_unpin_pages(obj);
err = i915_gem_object_wait_migration(obj, true);
if (err)
continue;
err = igt_fill_check_buffer(obj, false);
}
i915_gem_object_put(obj);
return err;
}
static int igt_smem_create_migrate(void *arg)
{
return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_SMEM);
}
static int igt_lmem_create_migrate(void *arg)
{
return igt_create_migrate(arg, INTEL_REGION_SMEM, INTEL_REGION_LMEM_0);
}
static int igt_same_create_migrate(void *arg)
{
return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_LMEM_0);
}
static int lmem_pages_migrate_one(struct i915_gem_ww_ctx *ww,
struct drm_i915_gem_object *obj,
struct i915_vma *vma,
bool silent_migrate)
{
int err;
err = i915_gem_object_lock(obj, ww);
if (err)
return err;
if (vma) {
err = i915_vma_pin_ww(vma, ww, obj->base.size, 0,
0UL | PIN_OFFSET_FIXED |
PIN_USER);
if (err) {
if (err != -EINTR && err != ERESTARTSYS &&
err != -EDEADLK)
pr_err("Failed to pin vma.\n");
return err;
}
i915_vma_unpin(vma);
}
/*
* Migration will implicitly unbind (asynchronously) any bound
* vmas.
*/
if (i915_gem_object_is_lmem(obj)) {
err = i915_gem_object_migrate(obj, ww, INTEL_REGION_SMEM);
if (err) {
if (!silent_migrate)
pr_err("Object failed migration to smem\n");
if (err)
return err;
}
if (i915_gem_object_is_lmem(obj)) {
pr_err("object still backed by lmem\n");
err = -EINVAL;
}
if (!i915_gem_object_has_struct_page(obj)) {
pr_err("object not backed by struct page\n");
err = -EINVAL;
}
} else {
err = i915_gem_object_migrate(obj, ww, INTEL_REGION_LMEM_0);
if (err) {
if (!silent_migrate)
pr_err("Object failed migration to lmem\n");
if (err)
return err;
}
if (i915_gem_object_has_struct_page(obj)) {
pr_err("object still backed by struct page\n");
err = -EINVAL;
}
if (!i915_gem_object_is_lmem(obj)) {
pr_err("object not backed by lmem\n");
err = -EINVAL;
}
}
return err;
}
static int __igt_lmem_pages_migrate(struct intel_gt *gt,
struct i915_address_space *vm,
struct i915_deps *deps,
struct igt_spinner *spin,
struct dma_fence *spin_fence,
bool borked_migrate)
{
struct drm_i915_private *i915 = gt->i915;
struct drm_i915_gem_object *obj;
struct i915_vma *vma = NULL;
struct i915_gem_ww_ctx ww;
struct i915_request *rq;
int err;
int i;
/* From LMEM to shmem and back again */
obj = i915_gem_object_create_lmem(i915, SZ_2M, 0);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (vm) {
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_put;
}
}
/* Initial GPU fill, sync, CPU initialization. */
for_i915_gem_ww(&ww, err, true) {
err = i915_gem_object_lock(obj, &ww);
if (err)
continue;
err = ____i915_gem_object_get_pages(obj);
if (err)
continue;
err = intel_migrate_clear(&gt->migrate, &ww, deps,
obj->mm.pages->sgl, obj->cache_level,
i915_gem_object_is_lmem(obj),
0xdeadbeaf, &rq);
if (rq) {
err = dma_resv_reserve_fences(obj->base.resv, 1);
if (!err)
dma_resv_add_fence(obj->base.resv, &rq->fence,
DMA_RESV_USAGE_KERNEL);
i915_request_put(rq);
}
if (err)
continue;
if (!vma) {
err = igt_fill_check_buffer(obj, true);
if (err)
continue;
}
}
if (err)
goto out_put;
/*
* Migrate to and from smem without explicitly syncing.
* Finalize with data in smem for fast readout.
*/
for (i = 1; i <= 5; ++i) {
for_i915_gem_ww(&ww, err, true)
err = lmem_pages_migrate_one(&ww, obj, vma,
borked_migrate);
if (err)
goto out_put;
}
err = i915_gem_object_lock_interruptible(obj, NULL);
if (err)
goto out_put;
if (spin) {
if (dma_fence_is_signaled(spin_fence)) {
pr_err("Spinner was terminated by hangcheck.\n");
err = -EBUSY;
goto out_unlock;
}
igt_spinner_end(spin);
}
/* Finally sync migration and check content. */
err = i915_gem_object_wait_migration(obj, true);
if (err)
goto out_unlock;
if (vma) {
err = i915_vma_wait_for_bind(vma);
if (err)
goto out_unlock;
} else {
err = igt_fill_check_buffer(obj, false);
}
out_unlock:
i915_gem_object_unlock(obj);
out_put:
i915_gem_object_put(obj);
return err;
}
static int igt_lmem_pages_failsafe_migrate(void *arg)
{
int fail_gpu, fail_alloc, ban_memcpy, ret;
struct intel_gt *gt = arg;
for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) {
for (fail_alloc = 0; fail_alloc < 2; ++fail_alloc) {
for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) {
pr_info("Simulated failure modes: gpu: %d, alloc:%d, ban_memcpy: %d\n",
fail_gpu, fail_alloc, ban_memcpy);
i915_ttm_migrate_set_ban_memcpy(ban_memcpy);
i915_ttm_migrate_set_failure_modes(fail_gpu,
fail_alloc);
ret = __igt_lmem_pages_migrate(gt, NULL, NULL,
NULL, NULL,
ban_memcpy &&
fail_gpu);
if (ban_memcpy && fail_gpu) {
struct intel_gt *__gt;
unsigned int id;
if (ret != -EIO) {
pr_err("expected -EIO, got (%d)\n", ret);
ret = -EINVAL;
} else {
ret = 0;
}
for_each_gt(__gt, gt->i915, id) {
intel_wakeref_t wakeref;
bool wedged;
mutex_lock(&__gt->reset.mutex);
wedged = test_bit(I915_WEDGED, &__gt->reset.flags);
mutex_unlock(&__gt->reset.mutex);
if (fail_gpu && !fail_alloc) {
if (!wedged) {
pr_err("gt(%u) not wedged\n", id);
ret = -EINVAL;
continue;
}
} else if (wedged) {
pr_err("gt(%u) incorrectly wedged\n", id);
ret = -EINVAL;
} else {
continue;
}
wakeref = intel_runtime_pm_get(__gt->uncore->rpm);
igt_global_reset_lock(__gt);
intel_gt_reset(__gt, ALL_ENGINES, NULL);
igt_global_reset_unlock(__gt);
intel_runtime_pm_put(__gt->uncore->rpm, wakeref);
}
if (ret)
goto out_err;
}
}
}
}
out_err:
i915_ttm_migrate_set_failure_modes(false, false);
i915_ttm_migrate_set_ban_memcpy(false);
return ret;
}
/*
* This subtest tests that unbinding at migration is indeed performed
* async. We launch a spinner and a number of migrations depending on
* that spinner to have terminated. Before each migration we bind a
* vma, which should then be async unbound by the migration operation.
* If we are able to schedule migrations without blocking while the
* spinner is still running, those unbinds are indeed async and non-
* blocking.
*
* Note that each async bind operation is awaiting the previous migration
* due to the moving fence resulting from the migration.
*/
static int igt_async_migrate(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct i915_ppgtt *ppgtt;
struct igt_spinner spin;
int err;
ppgtt = i915_ppgtt_create(gt, 0);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
if (igt_spinner_init(&spin, gt)) {
err = -ENOMEM;
goto out_spin;
}
for_each_engine(engine, gt, id) {
struct ttm_operation_ctx ctx = {
.interruptible = true
};
struct dma_fence *spin_fence;
struct intel_context *ce;
struct i915_request *rq;
struct i915_deps deps;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_ce;
}
/*
* Use MI_NOOP, making the spinner non-preemptible. If there
* is a code path where we fail async operation due to the
* running spinner, we will block and fail to end the
* spinner resulting in a deadlock. But with a non-
* preemptible spinner, hangcheck will terminate the spinner
* for us, and we will later detect that and fail the test.
*/
rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
intel_context_put(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
i915_deps_init(&deps, GFP_KERNEL);
err = i915_deps_add_dependency(&deps, &rq->fence, &ctx);
spin_fence = dma_fence_get(&rq->fence);
i915_request_add(rq);
if (err)
goto out_ce;
err = __igt_lmem_pages_migrate(gt, &ppgtt->vm, &deps, &spin,
spin_fence, false);
i915_deps_fini(&deps);
dma_fence_put(spin_fence);
if (err)
goto out_ce;
}
out_ce:
igt_spinner_fini(&spin);
out_spin:
i915_vm_put(&ppgtt->vm);
return err;
}
/*
* Setting ASYNC_FAIL_ALLOC to 2 will simulate memory allocation failure while
* arming the migration error check and block async migration. This
* will cause us to deadlock and hangcheck will terminate the spinner
* causing the test to fail.
*/
#define ASYNC_FAIL_ALLOC 1
static int igt_lmem_async_migrate(void *arg)
{
int fail_gpu, fail_alloc, ban_memcpy, ret;
struct intel_gt *gt = arg;
for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) {
for (fail_alloc = 0; fail_alloc < ASYNC_FAIL_ALLOC; ++fail_alloc) {
for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) {
pr_info("Simulated failure modes: gpu: %d, alloc: %d, ban_memcpy: %d\n",
fail_gpu, fail_alloc, ban_memcpy);
i915_ttm_migrate_set_ban_memcpy(ban_memcpy);
i915_ttm_migrate_set_failure_modes(fail_gpu,
fail_alloc);
ret = igt_async_migrate(gt);
if (fail_gpu && ban_memcpy) {
struct intel_gt *__gt;
unsigned int id;
if (ret != -EIO) {
pr_err("expected -EIO, got (%d)\n", ret);
ret = -EINVAL;
} else {
ret = 0;
}
for_each_gt(__gt, gt->i915, id) {
intel_wakeref_t wakeref;
bool wedged;
mutex_lock(&__gt->reset.mutex);
wedged = test_bit(I915_WEDGED, &__gt->reset.flags);
mutex_unlock(&__gt->reset.mutex);
if (fail_gpu && !fail_alloc) {
if (!wedged) {
pr_err("gt(%u) not wedged\n", id);
ret = -EINVAL;
continue;
}
} else if (wedged) {
pr_err("gt(%u) incorrectly wedged\n", id);
ret = -EINVAL;
} else {
continue;
}
wakeref = intel_runtime_pm_get(__gt->uncore->rpm);
igt_global_reset_lock(__gt);
intel_gt_reset(__gt, ALL_ENGINES, NULL);
igt_global_reset_unlock(__gt);
intel_runtime_pm_put(__gt->uncore->rpm, wakeref);
}
}
if (ret)
goto out_err;
}
}
}
out_err:
i915_ttm_migrate_set_failure_modes(false, false);
i915_ttm_migrate_set_ban_memcpy(false);
return ret;
}
int i915_gem_migrate_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_smem_create_migrate),
SUBTEST(igt_lmem_create_migrate),
SUBTEST(igt_same_create_migrate),
SUBTEST(igt_lmem_pages_failsafe_migrate),
SUBTEST(igt_lmem_async_migrate),
};
if (!HAS_LMEM(i915))
return 0;
return intel_gt_live_subtests(tests, to_gt(i915));
}