| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet |
| * & Swedish University of Agricultural Sciences. |
| * |
| * Jens Laas <jens.laas@data.slu.se> Swedish University of |
| * Agricultural Sciences. |
| * |
| * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet |
| * |
| * This work is based on the LPC-trie which is originally described in: |
| * |
| * An experimental study of compression methods for dynamic tries |
| * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. |
| * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
| * |
| * |
| * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson |
| * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 |
| * |
| * |
| * Code from fib_hash has been reused which includes the following header: |
| * |
| * |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * IPv4 FIB: lookup engine and maintenance routines. |
| * |
| * |
| * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Substantial contributions to this work comes from: |
| * |
| * David S. Miller, <davem@davemloft.net> |
| * Stephen Hemminger <shemminger@osdl.org> |
| * Paul E. McKenney <paulmck@us.ibm.com> |
| * Patrick McHardy <kaber@trash.net> |
| */ |
| |
| #define VERSION "0.409" |
| |
| #include <asm/uaccess.h> |
| #include <linux/bitops.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/socket.h> |
| #include <linux/sockios.h> |
| #include <linux/errno.h> |
| #include <linux/in.h> |
| #include <linux/inet.h> |
| #include <linux/inetdevice.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rcupdate.h> |
| #include <linux/skbuff.h> |
| #include <linux/netlink.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <net/net_namespace.h> |
| #include <net/ip.h> |
| #include <net/protocol.h> |
| #include <net/route.h> |
| #include <net/tcp.h> |
| #include <net/sock.h> |
| #include <net/ip_fib.h> |
| #include <net/switchdev.h> |
| #include "fib_lookup.h" |
| |
| #define MAX_STAT_DEPTH 32 |
| |
| #define KEYLENGTH (8*sizeof(t_key)) |
| #define KEY_MAX ((t_key)~0) |
| |
| typedef unsigned int t_key; |
| |
| #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) |
| #define IS_TNODE(n) ((n)->bits) |
| #define IS_LEAF(n) (!(n)->bits) |
| |
| struct key_vector { |
| t_key key; |
| unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
| unsigned char bits; /* 2log(KEYLENGTH) bits needed */ |
| unsigned char slen; |
| union { |
| /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ |
| struct hlist_head leaf; |
| /* This array is valid if (pos | bits) > 0 (TNODE) */ |
| struct key_vector __rcu *tnode[0]; |
| }; |
| }; |
| |
| struct tnode { |
| struct rcu_head rcu; |
| t_key empty_children; /* KEYLENGTH bits needed */ |
| t_key full_children; /* KEYLENGTH bits needed */ |
| struct key_vector __rcu *parent; |
| struct key_vector kv[1]; |
| #define tn_bits kv[0].bits |
| }; |
| |
| #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) |
| #define LEAF_SIZE TNODE_SIZE(1) |
| |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| struct trie_use_stats { |
| unsigned int gets; |
| unsigned int backtrack; |
| unsigned int semantic_match_passed; |
| unsigned int semantic_match_miss; |
| unsigned int null_node_hit; |
| unsigned int resize_node_skipped; |
| }; |
| #endif |
| |
| struct trie_stat { |
| unsigned int totdepth; |
| unsigned int maxdepth; |
| unsigned int tnodes; |
| unsigned int leaves; |
| unsigned int nullpointers; |
| unsigned int prefixes; |
| unsigned int nodesizes[MAX_STAT_DEPTH]; |
| }; |
| |
| struct trie { |
| struct key_vector kv[1]; |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| struct trie_use_stats __percpu *stats; |
| #endif |
| }; |
| |
| static struct key_vector *resize(struct trie *t, struct key_vector *tn); |
| static size_t tnode_free_size; |
| |
| /* |
| * synchronize_rcu after call_rcu for that many pages; it should be especially |
| * useful before resizing the root node with PREEMPT_NONE configs; the value was |
| * obtained experimentally, aiming to avoid visible slowdown. |
| */ |
| static const int sync_pages = 128; |
| |
| static struct kmem_cache *fn_alias_kmem __read_mostly; |
| static struct kmem_cache *trie_leaf_kmem __read_mostly; |
| |
| static inline struct tnode *tn_info(struct key_vector *kv) |
| { |
| return container_of(kv, struct tnode, kv[0]); |
| } |
| |
| /* caller must hold RTNL */ |
| #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) |
| #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) |
| |
| /* caller must hold RCU read lock or RTNL */ |
| #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) |
| #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) |
| |
| /* wrapper for rcu_assign_pointer */ |
| static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) |
| { |
| if (n) |
| rcu_assign_pointer(tn_info(n)->parent, tp); |
| } |
| |
| #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) |
| |
| /* This provides us with the number of children in this node, in the case of a |
| * leaf this will return 0 meaning none of the children are accessible. |
| */ |
| static inline unsigned long child_length(const struct key_vector *tn) |
| { |
| return (1ul << tn->bits) & ~(1ul); |
| } |
| |
| #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) |
| |
| static inline unsigned long get_index(t_key key, struct key_vector *kv) |
| { |
| unsigned long index = key ^ kv->key; |
| |
| if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) |
| return 0; |
| |
| return index >> kv->pos; |
| } |
| |
| /* To understand this stuff, an understanding of keys and all their bits is |
| * necessary. Every node in the trie has a key associated with it, but not |
| * all of the bits in that key are significant. |
| * |
| * Consider a node 'n' and its parent 'tp'. |
| * |
| * If n is a leaf, every bit in its key is significant. Its presence is |
| * necessitated by path compression, since during a tree traversal (when |
| * searching for a leaf - unless we are doing an insertion) we will completely |
| * ignore all skipped bits we encounter. Thus we need to verify, at the end of |
| * a potentially successful search, that we have indeed been walking the |
| * correct key path. |
| * |
| * Note that we can never "miss" the correct key in the tree if present by |
| * following the wrong path. Path compression ensures that segments of the key |
| * that are the same for all keys with a given prefix are skipped, but the |
| * skipped part *is* identical for each node in the subtrie below the skipped |
| * bit! trie_insert() in this implementation takes care of that. |
| * |
| * if n is an internal node - a 'tnode' here, the various parts of its key |
| * have many different meanings. |
| * |
| * Example: |
| * _________________________________________________________________ |
| * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | |
| * ----------------------------------------------------------------- |
| * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |
| * |
| * _________________________________________________________________ |
| * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | |
| * ----------------------------------------------------------------- |
| * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| * |
| * tp->pos = 22 |
| * tp->bits = 3 |
| * n->pos = 13 |
| * n->bits = 4 |
| * |
| * First, let's just ignore the bits that come before the parent tp, that is |
| * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this |
| * point we do not use them for anything. |
| * |
| * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the |
| * index into the parent's child array. That is, they will be used to find |
| * 'n' among tp's children. |
| * |
| * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits |
| * for the node n. |
| * |
| * All the bits we have seen so far are significant to the node n. The rest |
| * of the bits are really not needed or indeed known in n->key. |
| * |
| * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
| * n's child array, and will of course be different for each child. |
| * |
| * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown |
| * at this point. |
| */ |
| |
| static const int halve_threshold = 25; |
| static const int inflate_threshold = 50; |
| static const int halve_threshold_root = 15; |
| static const int inflate_threshold_root = 30; |
| |
| static void __alias_free_mem(struct rcu_head *head) |
| { |
| struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
| kmem_cache_free(fn_alias_kmem, fa); |
| } |
| |
| static inline void alias_free_mem_rcu(struct fib_alias *fa) |
| { |
| call_rcu(&fa->rcu, __alias_free_mem); |
| } |
| |
| #define TNODE_KMALLOC_MAX \ |
| ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
| #define TNODE_VMALLOC_MAX \ |
| ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
| |
| static void __node_free_rcu(struct rcu_head *head) |
| { |
| struct tnode *n = container_of(head, struct tnode, rcu); |
| |
| if (!n->tn_bits) |
| kmem_cache_free(trie_leaf_kmem, n); |
| else if (n->tn_bits <= TNODE_KMALLOC_MAX) |
| kfree(n); |
| else |
| vfree(n); |
| } |
| |
| #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) |
| |
| static struct tnode *tnode_alloc(int bits) |
| { |
| size_t size; |
| |
| /* verify bits is within bounds */ |
| if (bits > TNODE_VMALLOC_MAX) |
| return NULL; |
| |
| /* determine size and verify it is non-zero and didn't overflow */ |
| size = TNODE_SIZE(1ul << bits); |
| |
| if (size <= PAGE_SIZE) |
| return kzalloc(size, GFP_KERNEL); |
| else |
| return vzalloc(size); |
| } |
| |
| static inline void empty_child_inc(struct key_vector *n) |
| { |
| ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; |
| } |
| |
| static inline void empty_child_dec(struct key_vector *n) |
| { |
| tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; |
| } |
| |
| static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) |
| { |
| struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
| struct key_vector *l = kv->kv; |
| |
| if (!kv) |
| return NULL; |
| |
| /* initialize key vector */ |
| l->key = key; |
| l->pos = 0; |
| l->bits = 0; |
| l->slen = fa->fa_slen; |
| |
| /* link leaf to fib alias */ |
| INIT_HLIST_HEAD(&l->leaf); |
| hlist_add_head(&fa->fa_list, &l->leaf); |
| |
| return l; |
| } |
| |
| static struct key_vector *tnode_new(t_key key, int pos, int bits) |
| { |
| struct tnode *tnode = tnode_alloc(bits); |
| unsigned int shift = pos + bits; |
| struct key_vector *tn = tnode->kv; |
| |
| /* verify bits and pos their msb bits clear and values are valid */ |
| BUG_ON(!bits || (shift > KEYLENGTH)); |
| |
| pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), |
| sizeof(struct key_vector *) << bits); |
| |
| if (!tnode) |
| return NULL; |
| |
| if (bits == KEYLENGTH) |
| tnode->full_children = 1; |
| else |
| tnode->empty_children = 1ul << bits; |
| |
| tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; |
| tn->pos = pos; |
| tn->bits = bits; |
| tn->slen = pos; |
| |
| return tn; |
| } |
| |
| /* Check whether a tnode 'n' is "full", i.e. it is an internal node |
| * and no bits are skipped. See discussion in dyntree paper p. 6 |
| */ |
| static inline int tnode_full(struct key_vector *tn, struct key_vector *n) |
| { |
| return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); |
| } |
| |
| /* Add a child at position i overwriting the old value. |
| * Update the value of full_children and empty_children. |
| */ |
| static void put_child(struct key_vector *tn, unsigned long i, |
| struct key_vector *n) |
| { |
| struct key_vector *chi = get_child(tn, i); |
| int isfull, wasfull; |
| |
| BUG_ON(i >= child_length(tn)); |
| |
| /* update emptyChildren, overflow into fullChildren */ |
| if (!n && chi) |
| empty_child_inc(tn); |
| if (n && !chi) |
| empty_child_dec(tn); |
| |
| /* update fullChildren */ |
| wasfull = tnode_full(tn, chi); |
| isfull = tnode_full(tn, n); |
| |
| if (wasfull && !isfull) |
| tn_info(tn)->full_children--; |
| else if (!wasfull && isfull) |
| tn_info(tn)->full_children++; |
| |
| if (n && (tn->slen < n->slen)) |
| tn->slen = n->slen; |
| |
| rcu_assign_pointer(tn->tnode[i], n); |
| } |
| |
| static void update_children(struct key_vector *tn) |
| { |
| unsigned long i; |
| |
| /* update all of the child parent pointers */ |
| for (i = child_length(tn); i;) { |
| struct key_vector *inode = get_child(tn, --i); |
| |
| if (!inode) |
| continue; |
| |
| /* Either update the children of a tnode that |
| * already belongs to us or update the child |
| * to point to ourselves. |
| */ |
| if (node_parent(inode) == tn) |
| update_children(inode); |
| else |
| node_set_parent(inode, tn); |
| } |
| } |
| |
| static inline void put_child_root(struct key_vector *tp, t_key key, |
| struct key_vector *n) |
| { |
| if (IS_TRIE(tp)) |
| rcu_assign_pointer(tp->tnode[0], n); |
| else |
| put_child(tp, get_index(key, tp), n); |
| } |
| |
| static inline void tnode_free_init(struct key_vector *tn) |
| { |
| tn_info(tn)->rcu.next = NULL; |
| } |
| |
| static inline void tnode_free_append(struct key_vector *tn, |
| struct key_vector *n) |
| { |
| tn_info(n)->rcu.next = tn_info(tn)->rcu.next; |
| tn_info(tn)->rcu.next = &tn_info(n)->rcu; |
| } |
| |
| static void tnode_free(struct key_vector *tn) |
| { |
| struct callback_head *head = &tn_info(tn)->rcu; |
| |
| while (head) { |
| head = head->next; |
| tnode_free_size += TNODE_SIZE(1ul << tn->bits); |
| node_free(tn); |
| |
| tn = container_of(head, struct tnode, rcu)->kv; |
| } |
| |
| if (tnode_free_size >= PAGE_SIZE * sync_pages) { |
| tnode_free_size = 0; |
| synchronize_rcu(); |
| } |
| } |
| |
| static struct key_vector *replace(struct trie *t, |
| struct key_vector *oldtnode, |
| struct key_vector *tn) |
| { |
| struct key_vector *tp = node_parent(oldtnode); |
| unsigned long i; |
| |
| /* setup the parent pointer out of and back into this node */ |
| NODE_INIT_PARENT(tn, tp); |
| put_child_root(tp, tn->key, tn); |
| |
| /* update all of the child parent pointers */ |
| update_children(tn); |
| |
| /* all pointers should be clean so we are done */ |
| tnode_free(oldtnode); |
| |
| /* resize children now that oldtnode is freed */ |
| for (i = child_length(tn); i;) { |
| struct key_vector *inode = get_child(tn, --i); |
| |
| /* resize child node */ |
| if (tnode_full(tn, inode)) |
| tn = resize(t, inode); |
| } |
| |
| return tp; |
| } |
| |
| static struct key_vector *inflate(struct trie *t, |
| struct key_vector *oldtnode) |
| { |
| struct key_vector *tn; |
| unsigned long i; |
| t_key m; |
| |
| pr_debug("In inflate\n"); |
| |
| tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); |
| if (!tn) |
| goto notnode; |
| |
| /* prepare oldtnode to be freed */ |
| tnode_free_init(oldtnode); |
| |
| /* Assemble all of the pointers in our cluster, in this case that |
| * represents all of the pointers out of our allocated nodes that |
| * point to existing tnodes and the links between our allocated |
| * nodes. |
| */ |
| for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { |
| struct key_vector *inode = get_child(oldtnode, --i); |
| struct key_vector *node0, *node1; |
| unsigned long j, k; |
| |
| /* An empty child */ |
| if (!inode) |
| continue; |
| |
| /* A leaf or an internal node with skipped bits */ |
| if (!tnode_full(oldtnode, inode)) { |
| put_child(tn, get_index(inode->key, tn), inode); |
| continue; |
| } |
| |
| /* drop the node in the old tnode free list */ |
| tnode_free_append(oldtnode, inode); |
| |
| /* An internal node with two children */ |
| if (inode->bits == 1) { |
| put_child(tn, 2 * i + 1, get_child(inode, 1)); |
| put_child(tn, 2 * i, get_child(inode, 0)); |
| continue; |
| } |
| |
| /* We will replace this node 'inode' with two new |
| * ones, 'node0' and 'node1', each with half of the |
| * original children. The two new nodes will have |
| * a position one bit further down the key and this |
| * means that the "significant" part of their keys |
| * (see the discussion near the top of this file) |
| * will differ by one bit, which will be "0" in |
| * node0's key and "1" in node1's key. Since we are |
| * moving the key position by one step, the bit that |
| * we are moving away from - the bit at position |
| * (tn->pos) - is the one that will differ between |
| * node0 and node1. So... we synthesize that bit in the |
| * two new keys. |
| */ |
| node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); |
| if (!node1) |
| goto nomem; |
| node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); |
| |
| tnode_free_append(tn, node1); |
| if (!node0) |
| goto nomem; |
| tnode_free_append(tn, node0); |
| |
| /* populate child pointers in new nodes */ |
| for (k = child_length(inode), j = k / 2; j;) { |
| put_child(node1, --j, get_child(inode, --k)); |
| put_child(node0, j, get_child(inode, j)); |
| put_child(node1, --j, get_child(inode, --k)); |
| put_child(node0, j, get_child(inode, j)); |
| } |
| |
| /* link new nodes to parent */ |
| NODE_INIT_PARENT(node1, tn); |
| NODE_INIT_PARENT(node0, tn); |
| |
| /* link parent to nodes */ |
| put_child(tn, 2 * i + 1, node1); |
| put_child(tn, 2 * i, node0); |
| } |
| |
| /* setup the parent pointers into and out of this node */ |
| return replace(t, oldtnode, tn); |
| nomem: |
| /* all pointers should be clean so we are done */ |
| tnode_free(tn); |
| notnode: |
| return NULL; |
| } |
| |
| static struct key_vector *halve(struct trie *t, |
| struct key_vector *oldtnode) |
| { |
| struct key_vector *tn; |
| unsigned long i; |
| |
| pr_debug("In halve\n"); |
| |
| tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); |
| if (!tn) |
| goto notnode; |
| |
| /* prepare oldtnode to be freed */ |
| tnode_free_init(oldtnode); |
| |
| /* Assemble all of the pointers in our cluster, in this case that |
| * represents all of the pointers out of our allocated nodes that |
| * point to existing tnodes and the links between our allocated |
| * nodes. |
| */ |
| for (i = child_length(oldtnode); i;) { |
| struct key_vector *node1 = get_child(oldtnode, --i); |
| struct key_vector *node0 = get_child(oldtnode, --i); |
| struct key_vector *inode; |
| |
| /* At least one of the children is empty */ |
| if (!node1 || !node0) { |
| put_child(tn, i / 2, node1 ? : node0); |
| continue; |
| } |
| |
| /* Two nonempty children */ |
| inode = tnode_new(node0->key, oldtnode->pos, 1); |
| if (!inode) |
| goto nomem; |
| tnode_free_append(tn, inode); |
| |
| /* initialize pointers out of node */ |
| put_child(inode, 1, node1); |
| put_child(inode, 0, node0); |
| NODE_INIT_PARENT(inode, tn); |
| |
| /* link parent to node */ |
| put_child(tn, i / 2, inode); |
| } |
| |
| /* setup the parent pointers into and out of this node */ |
| return replace(t, oldtnode, tn); |
| nomem: |
| /* all pointers should be clean so we are done */ |
| tnode_free(tn); |
| notnode: |
| return NULL; |
| } |
| |
| static struct key_vector *collapse(struct trie *t, |
| struct key_vector *oldtnode) |
| { |
| struct key_vector *n, *tp; |
| unsigned long i; |
| |
| /* scan the tnode looking for that one child that might still exist */ |
| for (n = NULL, i = child_length(oldtnode); !n && i;) |
| n = get_child(oldtnode, --i); |
| |
| /* compress one level */ |
| tp = node_parent(oldtnode); |
| put_child_root(tp, oldtnode->key, n); |
| node_set_parent(n, tp); |
| |
| /* drop dead node */ |
| node_free(oldtnode); |
| |
| return tp; |
| } |
| |
| static unsigned char update_suffix(struct key_vector *tn) |
| { |
| unsigned char slen = tn->pos; |
| unsigned long stride, i; |
| |
| /* search though the list of children looking for nodes that might |
| * have a suffix greater than the one we currently have. This is |
| * why we start with a stride of 2 since a stride of 1 would |
| * represent the nodes with suffix length equal to tn->pos |
| */ |
| for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { |
| struct key_vector *n = get_child(tn, i); |
| |
| if (!n || (n->slen <= slen)) |
| continue; |
| |
| /* update stride and slen based on new value */ |
| stride <<= (n->slen - slen); |
| slen = n->slen; |
| i &= ~(stride - 1); |
| |
| /* if slen covers all but the last bit we can stop here |
| * there will be nothing longer than that since only node |
| * 0 and 1 << (bits - 1) could have that as their suffix |
| * length. |
| */ |
| if ((slen + 1) >= (tn->pos + tn->bits)) |
| break; |
| } |
| |
| tn->slen = slen; |
| |
| return slen; |
| } |
| |
| /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
| * the Helsinki University of Technology and Matti Tikkanen of Nokia |
| * Telecommunications, page 6: |
| * "A node is doubled if the ratio of non-empty children to all |
| * children in the *doubled* node is at least 'high'." |
| * |
| * 'high' in this instance is the variable 'inflate_threshold'. It |
| * is expressed as a percentage, so we multiply it with |
| * child_length() and instead of multiplying by 2 (since the |
| * child array will be doubled by inflate()) and multiplying |
| * the left-hand side by 100 (to handle the percentage thing) we |
| * multiply the left-hand side by 50. |
| * |
| * The left-hand side may look a bit weird: child_length(tn) |
| * - tn->empty_children is of course the number of non-null children |
| * in the current node. tn->full_children is the number of "full" |
| * children, that is non-null tnodes with a skip value of 0. |
| * All of those will be doubled in the resulting inflated tnode, so |
| * we just count them one extra time here. |
| * |
| * A clearer way to write this would be: |
| * |
| * to_be_doubled = tn->full_children; |
| * not_to_be_doubled = child_length(tn) - tn->empty_children - |
| * tn->full_children; |
| * |
| * new_child_length = child_length(tn) * 2; |
| * |
| * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
| * new_child_length; |
| * if (new_fill_factor >= inflate_threshold) |
| * |
| * ...and so on, tho it would mess up the while () loop. |
| * |
| * anyway, |
| * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= |
| * inflate_threshold |
| * |
| * avoid a division: |
| * 100 * (not_to_be_doubled + 2*to_be_doubled) >= |
| * inflate_threshold * new_child_length |
| * |
| * expand not_to_be_doubled and to_be_doubled, and shorten: |
| * 100 * (child_length(tn) - tn->empty_children + |
| * tn->full_children) >= inflate_threshold * new_child_length |
| * |
| * expand new_child_length: |
| * 100 * (child_length(tn) - tn->empty_children + |
| * tn->full_children) >= |
| * inflate_threshold * child_length(tn) * 2 |
| * |
| * shorten again: |
| * 50 * (tn->full_children + child_length(tn) - |
| * tn->empty_children) >= inflate_threshold * |
| * child_length(tn) |
| * |
| */ |
| static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) |
| { |
| unsigned long used = child_length(tn); |
| unsigned long threshold = used; |
| |
| /* Keep root node larger */ |
| threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; |
| used -= tn_info(tn)->empty_children; |
| used += tn_info(tn)->full_children; |
| |
| /* if bits == KEYLENGTH then pos = 0, and will fail below */ |
| |
| return (used > 1) && tn->pos && ((50 * used) >= threshold); |
| } |
| |
| static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) |
| { |
| unsigned long used = child_length(tn); |
| unsigned long threshold = used; |
| |
| /* Keep root node larger */ |
| threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; |
| used -= tn_info(tn)->empty_children; |
| |
| /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ |
| |
| return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); |
| } |
| |
| static inline bool should_collapse(struct key_vector *tn) |
| { |
| unsigned long used = child_length(tn); |
| |
| used -= tn_info(tn)->empty_children; |
| |
| /* account for bits == KEYLENGTH case */ |
| if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) |
| used -= KEY_MAX; |
| |
| /* One child or none, time to drop us from the trie */ |
| return used < 2; |
| } |
| |
| #define MAX_WORK 10 |
| static struct key_vector *resize(struct trie *t, struct key_vector *tn) |
| { |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| struct trie_use_stats __percpu *stats = t->stats; |
| #endif |
| struct key_vector *tp = node_parent(tn); |
| unsigned long cindex = get_index(tn->key, tp); |
| int max_work = MAX_WORK; |
| |
| pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
| tn, inflate_threshold, halve_threshold); |
| |
| /* track the tnode via the pointer from the parent instead of |
| * doing it ourselves. This way we can let RCU fully do its |
| * thing without us interfering |
| */ |
| BUG_ON(tn != get_child(tp, cindex)); |
| |
| /* Double as long as the resulting node has a number of |
| * nonempty nodes that are above the threshold. |
| */ |
| while (should_inflate(tp, tn) && max_work) { |
| tp = inflate(t, tn); |
| if (!tp) { |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->resize_node_skipped); |
| #endif |
| break; |
| } |
| |
| max_work--; |
| tn = get_child(tp, cindex); |
| } |
| |
| /* update parent in case inflate failed */ |
| tp = node_parent(tn); |
| |
| /* Return if at least one inflate is run */ |
| if (max_work != MAX_WORK) |
| return tp; |
| |
| /* Halve as long as the number of empty children in this |
| * node is above threshold. |
| */ |
| while (should_halve(tp, tn) && max_work) { |
| tp = halve(t, tn); |
| if (!tp) { |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->resize_node_skipped); |
| #endif |
| break; |
| } |
| |
| max_work--; |
| tn = get_child(tp, cindex); |
| } |
| |
| /* Only one child remains */ |
| if (should_collapse(tn)) |
| return collapse(t, tn); |
| |
| /* update parent in case halve failed */ |
| tp = node_parent(tn); |
| |
| /* Return if at least one deflate was run */ |
| if (max_work != MAX_WORK) |
| return tp; |
| |
| /* push the suffix length to the parent node */ |
| if (tn->slen > tn->pos) { |
| unsigned char slen = update_suffix(tn); |
| |
| if (slen > tp->slen) |
| tp->slen = slen; |
| } |
| |
| return tp; |
| } |
| |
| static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) |
| { |
| while ((tp->slen > tp->pos) && (tp->slen > l->slen)) { |
| if (update_suffix(tp) > l->slen) |
| break; |
| tp = node_parent(tp); |
| } |
| } |
| |
| static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) |
| { |
| /* if this is a new leaf then tn will be NULL and we can sort |
| * out parent suffix lengths as a part of trie_rebalance |
| */ |
| while (tn->slen < l->slen) { |
| tn->slen = l->slen; |
| tn = node_parent(tn); |
| } |
| } |
| |
| /* rcu_read_lock needs to be hold by caller from readside */ |
| static struct key_vector *fib_find_node(struct trie *t, |
| struct key_vector **tp, u32 key) |
| { |
| struct key_vector *pn, *n = t->kv; |
| unsigned long index = 0; |
| |
| do { |
| pn = n; |
| n = get_child_rcu(n, index); |
| |
| if (!n) |
| break; |
| |
| index = get_cindex(key, n); |
| |
| /* This bit of code is a bit tricky but it combines multiple |
| * checks into a single check. The prefix consists of the |
| * prefix plus zeros for the bits in the cindex. The index |
| * is the difference between the key and this value. From |
| * this we can actually derive several pieces of data. |
| * if (index >= (1ul << bits)) |
| * we have a mismatch in skip bits and failed |
| * else |
| * we know the value is cindex |
| * |
| * This check is safe even if bits == KEYLENGTH due to the |
| * fact that we can only allocate a node with 32 bits if a |
| * long is greater than 32 bits. |
| */ |
| if (index >= (1ul << n->bits)) { |
| n = NULL; |
| break; |
| } |
| |
| /* keep searching until we find a perfect match leaf or NULL */ |
| } while (IS_TNODE(n)); |
| |
| *tp = pn; |
| |
| return n; |
| } |
| |
| /* Return the first fib alias matching TOS with |
| * priority less than or equal to PRIO. |
| */ |
| static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, |
| u8 tos, u32 prio, u32 tb_id) |
| { |
| struct fib_alias *fa; |
| |
| if (!fah) |
| return NULL; |
| |
| hlist_for_each_entry(fa, fah, fa_list) { |
| if (fa->fa_slen < slen) |
| continue; |
| if (fa->fa_slen != slen) |
| break; |
| if (fa->tb_id > tb_id) |
| continue; |
| if (fa->tb_id != tb_id) |
| break; |
| if (fa->fa_tos > tos) |
| continue; |
| if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) |
| return fa; |
| } |
| |
| return NULL; |
| } |
| |
| static void trie_rebalance(struct trie *t, struct key_vector *tn) |
| { |
| while (!IS_TRIE(tn)) |
| tn = resize(t, tn); |
| } |
| |
| static int fib_insert_node(struct trie *t, struct key_vector *tp, |
| struct fib_alias *new, t_key key) |
| { |
| struct key_vector *n, *l; |
| |
| l = leaf_new(key, new); |
| if (!l) |
| goto noleaf; |
| |
| /* retrieve child from parent node */ |
| n = get_child(tp, get_index(key, tp)); |
| |
| /* Case 2: n is a LEAF or a TNODE and the key doesn't match. |
| * |
| * Add a new tnode here |
| * first tnode need some special handling |
| * leaves us in position for handling as case 3 |
| */ |
| if (n) { |
| struct key_vector *tn; |
| |
| tn = tnode_new(key, __fls(key ^ n->key), 1); |
| if (!tn) |
| goto notnode; |
| |
| /* initialize routes out of node */ |
| NODE_INIT_PARENT(tn, tp); |
| put_child(tn, get_index(key, tn) ^ 1, n); |
| |
| /* start adding routes into the node */ |
| put_child_root(tp, key, tn); |
| node_set_parent(n, tn); |
| |
| /* parent now has a NULL spot where the leaf can go */ |
| tp = tn; |
| } |
| |
| /* Case 3: n is NULL, and will just insert a new leaf */ |
| NODE_INIT_PARENT(l, tp); |
| put_child_root(tp, key, l); |
| trie_rebalance(t, tp); |
| |
| return 0; |
| notnode: |
| node_free(l); |
| noleaf: |
| return -ENOMEM; |
| } |
| |
| static int fib_insert_alias(struct trie *t, struct key_vector *tp, |
| struct key_vector *l, struct fib_alias *new, |
| struct fib_alias *fa, t_key key) |
| { |
| if (!l) |
| return fib_insert_node(t, tp, new, key); |
| |
| if (fa) { |
| hlist_add_before_rcu(&new->fa_list, &fa->fa_list); |
| } else { |
| struct fib_alias *last; |
| |
| hlist_for_each_entry(last, &l->leaf, fa_list) { |
| if (new->fa_slen < last->fa_slen) |
| break; |
| if ((new->fa_slen == last->fa_slen) && |
| (new->tb_id > last->tb_id)) |
| break; |
| fa = last; |
| } |
| |
| if (fa) |
| hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); |
| else |
| hlist_add_head_rcu(&new->fa_list, &l->leaf); |
| } |
| |
| /* if we added to the tail node then we need to update slen */ |
| if (l->slen < new->fa_slen) { |
| l->slen = new->fa_slen; |
| leaf_push_suffix(tp, l); |
| } |
| |
| return 0; |
| } |
| |
| /* Caller must hold RTNL. */ |
| int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) |
| { |
| struct trie *t = (struct trie *)tb->tb_data; |
| struct fib_alias *fa, *new_fa; |
| struct key_vector *l, *tp; |
| struct fib_info *fi; |
| u8 plen = cfg->fc_dst_len; |
| u8 slen = KEYLENGTH - plen; |
| u8 tos = cfg->fc_tos; |
| u32 key; |
| int err; |
| |
| if (plen > KEYLENGTH) |
| return -EINVAL; |
| |
| key = ntohl(cfg->fc_dst); |
| |
| pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
| |
| if ((plen < KEYLENGTH) && (key << plen)) |
| return -EINVAL; |
| |
| fi = fib_create_info(cfg); |
| if (IS_ERR(fi)) { |
| err = PTR_ERR(fi); |
| goto err; |
| } |
| |
| l = fib_find_node(t, &tp, key); |
| fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, |
| tb->tb_id) : NULL; |
| |
| /* Now fa, if non-NULL, points to the first fib alias |
| * with the same keys [prefix,tos,priority], if such key already |
| * exists or to the node before which we will insert new one. |
| * |
| * If fa is NULL, we will need to allocate a new one and |
| * insert to the tail of the section matching the suffix length |
| * of the new alias. |
| */ |
| |
| if (fa && fa->fa_tos == tos && |
| fa->fa_info->fib_priority == fi->fib_priority) { |
| struct fib_alias *fa_first, *fa_match; |
| |
| err = -EEXIST; |
| if (cfg->fc_nlflags & NLM_F_EXCL) |
| goto out; |
| |
| /* We have 2 goals: |
| * 1. Find exact match for type, scope, fib_info to avoid |
| * duplicate routes |
| * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it |
| */ |
| fa_match = NULL; |
| fa_first = fa; |
| hlist_for_each_entry_from(fa, fa_list) { |
| if ((fa->fa_slen != slen) || |
| (fa->tb_id != tb->tb_id) || |
| (fa->fa_tos != tos)) |
| break; |
| if (fa->fa_info->fib_priority != fi->fib_priority) |
| break; |
| if (fa->fa_type == cfg->fc_type && |
| fa->fa_info == fi) { |
| fa_match = fa; |
| break; |
| } |
| } |
| |
| if (cfg->fc_nlflags & NLM_F_REPLACE) { |
| struct fib_info *fi_drop; |
| u8 state; |
| |
| fa = fa_first; |
| if (fa_match) { |
| if (fa == fa_match) |
| err = 0; |
| goto out; |
| } |
| err = -ENOBUFS; |
| new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| if (!new_fa) |
| goto out; |
| |
| fi_drop = fa->fa_info; |
| new_fa->fa_tos = fa->fa_tos; |
| new_fa->fa_info = fi; |
| new_fa->fa_type = cfg->fc_type; |
| state = fa->fa_state; |
| new_fa->fa_state = state & ~FA_S_ACCESSED; |
| new_fa->fa_slen = fa->fa_slen; |
| new_fa->tb_id = tb->tb_id; |
| |
| err = switchdev_fib_ipv4_add(key, plen, fi, |
| new_fa->fa_tos, |
| cfg->fc_type, |
| cfg->fc_nlflags, |
| tb->tb_id); |
| if (err) { |
| switchdev_fib_ipv4_abort(fi); |
| kmem_cache_free(fn_alias_kmem, new_fa); |
| goto out; |
| } |
| |
| hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
| |
| alias_free_mem_rcu(fa); |
| |
| fib_release_info(fi_drop); |
| if (state & FA_S_ACCESSED) |
| rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
| tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); |
| |
| goto succeeded; |
| } |
| /* Error if we find a perfect match which |
| * uses the same scope, type, and nexthop |
| * information. |
| */ |
| if (fa_match) |
| goto out; |
| |
| if (!(cfg->fc_nlflags & NLM_F_APPEND)) |
| fa = fa_first; |
| } |
| err = -ENOENT; |
| if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
| goto out; |
| |
| err = -ENOBUFS; |
| new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| if (!new_fa) |
| goto out; |
| |
| new_fa->fa_info = fi; |
| new_fa->fa_tos = tos; |
| new_fa->fa_type = cfg->fc_type; |
| new_fa->fa_state = 0; |
| new_fa->fa_slen = slen; |
| new_fa->tb_id = tb->tb_id; |
| |
| /* (Optionally) offload fib entry to switch hardware. */ |
| err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type, |
| cfg->fc_nlflags, tb->tb_id); |
| if (err) { |
| switchdev_fib_ipv4_abort(fi); |
| goto out_free_new_fa; |
| } |
| |
| /* Insert new entry to the list. */ |
| err = fib_insert_alias(t, tp, l, new_fa, fa, key); |
| if (err) |
| goto out_sw_fib_del; |
| |
| if (!plen) |
| tb->tb_num_default++; |
| |
| rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, |
| &cfg->fc_nlinfo, 0); |
| succeeded: |
| return 0; |
| |
| out_sw_fib_del: |
| switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); |
| out_free_new_fa: |
| kmem_cache_free(fn_alias_kmem, new_fa); |
| out: |
| fib_release_info(fi); |
| err: |
| return err; |
| } |
| |
| static inline t_key prefix_mismatch(t_key key, struct key_vector *n) |
| { |
| t_key prefix = n->key; |
| |
| return (key ^ prefix) & (prefix | -prefix); |
| } |
| |
| /* should be called with rcu_read_lock */ |
| int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
| struct fib_result *res, int fib_flags) |
| { |
| struct trie *t = (struct trie *) tb->tb_data; |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| struct trie_use_stats __percpu *stats = t->stats; |
| #endif |
| const t_key key = ntohl(flp->daddr); |
| struct key_vector *n, *pn; |
| struct fib_alias *fa; |
| unsigned long index; |
| t_key cindex; |
| |
| pn = t->kv; |
| cindex = 0; |
| |
| n = get_child_rcu(pn, cindex); |
| if (!n) |
| return -EAGAIN; |
| |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->gets); |
| #endif |
| |
| /* Step 1: Travel to the longest prefix match in the trie */ |
| for (;;) { |
| index = get_cindex(key, n); |
| |
| /* This bit of code is a bit tricky but it combines multiple |
| * checks into a single check. The prefix consists of the |
| * prefix plus zeros for the "bits" in the prefix. The index |
| * is the difference between the key and this value. From |
| * this we can actually derive several pieces of data. |
| * if (index >= (1ul << bits)) |
| * we have a mismatch in skip bits and failed |
| * else |
| * we know the value is cindex |
| * |
| * This check is safe even if bits == KEYLENGTH due to the |
| * fact that we can only allocate a node with 32 bits if a |
| * long is greater than 32 bits. |
| */ |
| if (index >= (1ul << n->bits)) |
| break; |
| |
| /* we have found a leaf. Prefixes have already been compared */ |
| if (IS_LEAF(n)) |
| goto found; |
| |
| /* only record pn and cindex if we are going to be chopping |
| * bits later. Otherwise we are just wasting cycles. |
| */ |
| if (n->slen > n->pos) { |
| pn = n; |
| cindex = index; |
| } |
| |
| n = get_child_rcu(n, index); |
| if (unlikely(!n)) |
| goto backtrace; |
| } |
| |
| /* Step 2: Sort out leaves and begin backtracing for longest prefix */ |
| for (;;) { |
| /* record the pointer where our next node pointer is stored */ |
| struct key_vector __rcu **cptr = n->tnode; |
| |
| /* This test verifies that none of the bits that differ |
| * between the key and the prefix exist in the region of |
| * the lsb and higher in the prefix. |
| */ |
| if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) |
| goto backtrace; |
| |
| /* exit out and process leaf */ |
| if (unlikely(IS_LEAF(n))) |
| break; |
| |
| /* Don't bother recording parent info. Since we are in |
| * prefix match mode we will have to come back to wherever |
| * we started this traversal anyway |
| */ |
| |
| while ((n = rcu_dereference(*cptr)) == NULL) { |
| backtrace: |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| if (!n) |
| this_cpu_inc(stats->null_node_hit); |
| #endif |
| /* If we are at cindex 0 there are no more bits for |
| * us to strip at this level so we must ascend back |
| * up one level to see if there are any more bits to |
| * be stripped there. |
| */ |
| while (!cindex) { |
| t_key pkey = pn->key; |
| |
| /* If we don't have a parent then there is |
| * nothing for us to do as we do not have any |
| * further nodes to parse. |
| */ |
| if (IS_TRIE(pn)) |
| return -EAGAIN; |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->backtrack); |
| #endif |
| /* Get Child's index */ |
| pn = node_parent_rcu(pn); |
| cindex = get_index(pkey, pn); |
| } |
| |
| /* strip the least significant bit from the cindex */ |
| cindex &= cindex - 1; |
| |
| /* grab pointer for next child node */ |
| cptr = &pn->tnode[cindex]; |
| } |
| } |
| |
| found: |
| /* this line carries forward the xor from earlier in the function */ |
| index = key ^ n->key; |
| |
| /* Step 3: Process the leaf, if that fails fall back to backtracing */ |
| hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
| struct fib_info *fi = fa->fa_info; |
| int nhsel, err; |
| |
| if ((index >= (1ul << fa->fa_slen)) && |
| ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH))) |
| continue; |
| if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
| continue; |
| if (fi->fib_dead) |
| continue; |
| if (fa->fa_info->fib_scope < flp->flowi4_scope) |
| continue; |
| fib_alias_accessed(fa); |
| err = fib_props[fa->fa_type].error; |
| if (unlikely(err < 0)) { |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->semantic_match_passed); |
| #endif |
| return err; |
| } |
| if (fi->fib_flags & RTNH_F_DEAD) |
| continue; |
| for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { |
| const struct fib_nh *nh = &fi->fib_nh[nhsel]; |
| |
| if (nh->nh_flags & RTNH_F_DEAD) |
| continue; |
| if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) |
| continue; |
| |
| if (!(fib_flags & FIB_LOOKUP_NOREF)) |
| atomic_inc(&fi->fib_clntref); |
| |
| res->prefixlen = KEYLENGTH - fa->fa_slen; |
| res->nh_sel = nhsel; |
| res->type = fa->fa_type; |
| res->scope = fi->fib_scope; |
| res->fi = fi; |
| res->table = tb; |
| res->fa_head = &n->leaf; |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->semantic_match_passed); |
| #endif |
| return err; |
| } |
| } |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| this_cpu_inc(stats->semantic_match_miss); |
| #endif |
| goto backtrace; |
| } |
| EXPORT_SYMBOL_GPL(fib_table_lookup); |
| |
| static void fib_remove_alias(struct trie *t, struct key_vector *tp, |
| struct key_vector *l, struct fib_alias *old) |
| { |
| /* record the location of the previous list_info entry */ |
| struct hlist_node **pprev = old->fa_list.pprev; |
| struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); |
| |
| /* remove the fib_alias from the list */ |
| hlist_del_rcu(&old->fa_list); |
| |
| /* if we emptied the list this leaf will be freed and we can sort |
| * out parent suffix lengths as a part of trie_rebalance |
| */ |
| if (hlist_empty(&l->leaf)) { |
| put_child_root(tp, l->key, NULL); |
| node_free(l); |
| trie_rebalance(t, tp); |
| return; |
| } |
| |
| /* only access fa if it is pointing at the last valid hlist_node */ |
| if (*pprev) |
| return; |
| |
| /* update the trie with the latest suffix length */ |
| l->slen = fa->fa_slen; |
| leaf_pull_suffix(tp, l); |
| } |
| |
| /* Caller must hold RTNL. */ |
| int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) |
| { |
| struct trie *t = (struct trie *) tb->tb_data; |
| struct fib_alias *fa, *fa_to_delete; |
| struct key_vector *l, *tp; |
| u8 plen = cfg->fc_dst_len; |
| u8 slen = KEYLENGTH - plen; |
| u8 tos = cfg->fc_tos; |
| u32 key; |
| |
| if (plen > KEYLENGTH) |
| return -EINVAL; |
| |
| key = ntohl(cfg->fc_dst); |
| |
| if ((plen < KEYLENGTH) && (key << plen)) |
| return -EINVAL; |
| |
| l = fib_find_node(t, &tp, key); |
| if (!l) |
| return -ESRCH; |
| |
| fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); |
| if (!fa) |
| return -ESRCH; |
| |
| pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
| |
| fa_to_delete = NULL; |
| hlist_for_each_entry_from(fa, fa_list) { |
| struct fib_info *fi = fa->fa_info; |
| |
| if ((fa->fa_slen != slen) || |
| (fa->tb_id != tb->tb_id) || |
| (fa->fa_tos != tos)) |
| break; |
| |
| if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
| (cfg->fc_scope == RT_SCOPE_NOWHERE || |
| fa->fa_info->fib_scope == cfg->fc_scope) && |
| (!cfg->fc_prefsrc || |
| fi->fib_prefsrc == cfg->fc_prefsrc) && |
| (!cfg->fc_protocol || |
| fi->fib_protocol == cfg->fc_protocol) && |
| fib_nh_match(cfg, fi) == 0) { |
| fa_to_delete = fa; |
| break; |
| } |
| } |
| |
| if (!fa_to_delete) |
| return -ESRCH; |
| |
| switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, |
| cfg->fc_type, tb->tb_id); |
| |
| rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, |
| &cfg->fc_nlinfo, 0); |
| |
| if (!plen) |
| tb->tb_num_default--; |
| |
| fib_remove_alias(t, tp, l, fa_to_delete); |
| |
| if (fa_to_delete->fa_state & FA_S_ACCESSED) |
| rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| |
| fib_release_info(fa_to_delete->fa_info); |
| alias_free_mem_rcu(fa_to_delete); |
| return 0; |
| } |
| |
| /* Scan for the next leaf starting at the provided key value */ |
| static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) |
| { |
| struct key_vector *pn, *n = *tn; |
| unsigned long cindex; |
| |
| /* this loop is meant to try and find the key in the trie */ |
| do { |
| /* record parent and next child index */ |
| pn = n; |
| cindex = key ? get_index(key, pn) : 0; |
| |
| if (cindex >> pn->bits) |
| break; |
| |
| /* descend into the next child */ |
| n = get_child_rcu(pn, cindex++); |
| if (!n) |
| break; |
| |
| /* guarantee forward progress on the keys */ |
| if (IS_LEAF(n) && (n->key >= key)) |
| goto found; |
| } while (IS_TNODE(n)); |
| |
| /* this loop will search for the next leaf with a greater key */ |
| while (!IS_TRIE(pn)) { |
| /* if we exhausted the parent node we will need to climb */ |
| if (cindex >= (1ul << pn->bits)) { |
| t_key pkey = pn->key; |
| |
| pn = node_parent_rcu(pn); |
| cindex = get_index(pkey, pn) + 1; |
| continue; |
| } |
| |
| /* grab the next available node */ |
| n = get_child_rcu(pn, cindex++); |
| if (!n) |
| continue; |
| |
| /* no need to compare keys since we bumped the index */ |
| if (IS_LEAF(n)) |
| goto found; |
| |
| /* Rescan start scanning in new node */ |
| pn = n; |
| cindex = 0; |
| } |
| |
| *tn = pn; |
| return NULL; /* Root of trie */ |
| found: |
| /* if we are at the limit for keys just return NULL for the tnode */ |
| *tn = pn; |
| return n; |
| } |
| |
| static void fib_trie_free(struct fib_table *tb) |
| { |
| struct trie *t = (struct trie *)tb->tb_data; |
| struct key_vector *pn = t->kv; |
| unsigned long cindex = 1; |
| struct hlist_node *tmp; |
| struct fib_alias *fa; |
| |
| /* walk trie in reverse order and free everything */ |
| for (;;) { |
| struct key_vector *n; |
| |
| if (!(cindex--)) { |
| t_key pkey = pn->key; |
| |
| if (IS_TRIE(pn)) |
| break; |
| |
| n = pn; |
| pn = node_parent(pn); |
| |
| /* drop emptied tnode */ |
| put_child_root(pn, n->key, NULL); |
| node_free(n); |
| |
| cindex = get_index(pkey, pn); |
| |
| continue; |
| } |
| |
| /* grab the next available node */ |
| n = get_child(pn, cindex); |
| if (!n) |
| continue; |
| |
| if (IS_TNODE(n)) { |
| /* record pn and cindex for leaf walking */ |
| pn = n; |
| cindex = 1ul << n->bits; |
| |
| continue; |
| } |
| |
| hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| hlist_del_rcu(&fa->fa_list); |
| alias_free_mem_rcu(fa); |
| } |
| |
| put_child_root(pn, n->key, NULL); |
| node_free(n); |
| } |
| |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| free_percpu(t->stats); |
| #endif |
| kfree(tb); |
| } |
| |
| struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) |
| { |
| struct trie *ot = (struct trie *)oldtb->tb_data; |
| struct key_vector *l, *tp = ot->kv; |
| struct fib_table *local_tb; |
| struct fib_alias *fa; |
| struct trie *lt; |
| t_key key = 0; |
| |
| if (oldtb->tb_data == oldtb->__data) |
| return oldtb; |
| |
| local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); |
| if (!local_tb) |
| return NULL; |
| |
| lt = (struct trie *)local_tb->tb_data; |
| |
| while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
| struct key_vector *local_l = NULL, *local_tp; |
| |
| hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
| struct fib_alias *new_fa; |
| |
| if (local_tb->tb_id != fa->tb_id) |
| continue; |
| |
| /* clone fa for new local table */ |
| new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| if (!new_fa) |
| goto out; |
| |
| memcpy(new_fa, fa, sizeof(*fa)); |
| |
| /* insert clone into table */ |
| if (!local_l) |
| local_l = fib_find_node(lt, &local_tp, l->key); |
| |
| if (fib_insert_alias(lt, local_tp, local_l, new_fa, |
| NULL, l->key)) |
| goto out; |
| } |
| |
| /* stop loop if key wrapped back to 0 */ |
| key = l->key + 1; |
| if (key < l->key) |
| break; |
| } |
| |
| return local_tb; |
| out: |
| fib_trie_free(local_tb); |
| |
| return NULL; |
| } |
| |
| /* Caller must hold RTNL */ |
| void fib_table_flush_external(struct fib_table *tb) |
| { |
| struct trie *t = (struct trie *)tb->tb_data; |
| struct key_vector *pn = t->kv; |
| unsigned long cindex = 1; |
| struct hlist_node *tmp; |
| struct fib_alias *fa; |
| |
| /* walk trie in reverse order */ |
| for (;;) { |
| unsigned char slen = 0; |
| struct key_vector *n; |
| |
| if (!(cindex--)) { |
| t_key pkey = pn->key; |
| |
| /* cannot resize the trie vector */ |
| if (IS_TRIE(pn)) |
| break; |
| |
| /* resize completed node */ |
| pn = resize(t, pn); |
| cindex = get_index(pkey, pn); |
| |
| continue; |
| } |
| |
| /* grab the next available node */ |
| n = get_child(pn, cindex); |
| if (!n) |
| continue; |
| |
| if (IS_TNODE(n)) { |
| /* record pn and cindex for leaf walking */ |
| pn = n; |
| cindex = 1ul << n->bits; |
| |
| continue; |
| } |
| |
| hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| struct fib_info *fi = fa->fa_info; |
| |
| /* if alias was cloned to local then we just |
| * need to remove the local copy from main |
| */ |
| if (tb->tb_id != fa->tb_id) { |
| hlist_del_rcu(&fa->fa_list); |
| alias_free_mem_rcu(fa); |
| continue; |
| } |
| |
| /* record local slen */ |
| slen = fa->fa_slen; |
| |
| if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD)) |
| continue; |
| |
| switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, |
| fi, fa->fa_tos, fa->fa_type, |
| tb->tb_id); |
| } |
| |
| /* update leaf slen */ |
| n->slen = slen; |
| |
| if (hlist_empty(&n->leaf)) { |
| put_child_root(pn, n->key, NULL); |
| node_free(n); |
| } else { |
| leaf_pull_suffix(pn, n); |
| } |
| } |
| } |
| |
| /* Caller must hold RTNL. */ |
| int fib_table_flush(struct fib_table *tb) |
| { |
| struct trie *t = (struct trie *)tb->tb_data; |
| struct key_vector *pn = t->kv; |
| unsigned long cindex = 1; |
| struct hlist_node *tmp; |
| struct fib_alias *fa; |
| int found = 0; |
| |
| /* walk trie in reverse order */ |
| for (;;) { |
| unsigned char slen = 0; |
| struct key_vector *n; |
| |
| if (!(cindex--)) { |
| t_key pkey = pn->key; |
| |
| /* cannot resize the trie vector */ |
| if (IS_TRIE(pn)) |
| break; |
| |
| /* resize completed node */ |
| pn = resize(t, pn); |
| cindex = get_index(pkey, pn); |
| |
| continue; |
| } |
| |
| /* grab the next available node */ |
| n = get_child(pn, cindex); |
| if (!n) |
| continue; |
| |
| if (IS_TNODE(n)) { |
| /* record pn and cindex for leaf walking */ |
| pn = n; |
| cindex = 1ul << n->bits; |
| |
| continue; |
| } |
| |
| hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| struct fib_info *fi = fa->fa_info; |
| |
| if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { |
| slen = fa->fa_slen; |
| continue; |
| } |
| |
| switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, |
| fi, fa->fa_tos, fa->fa_type, |
| tb->tb_id); |
| hlist_del_rcu(&fa->fa_list); |
| fib_release_info(fa->fa_info); |
| alias_free_mem_rcu(fa); |
| found++; |
| } |
| |
| /* update leaf slen */ |
| n->slen = slen; |
| |
| if (hlist_empty(&n->leaf)) { |
| put_child_root(pn, n->key, NULL); |
| node_free(n); |
| } else { |
| leaf_pull_suffix(pn, n); |
| } |
| } |
| |
| pr_debug("trie_flush found=%d\n", found); |
| return found; |
| } |
| |
| static void __trie_free_rcu(struct rcu_head *head) |
| { |
| struct fib_table *tb = container_of(head, struct fib_table, rcu); |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| struct trie *t = (struct trie *)tb->tb_data; |
| |
| if (tb->tb_data == tb->__data) |
| free_percpu(t->stats); |
| #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
| kfree(tb); |
| } |
| |
| void fib_free_table(struct fib_table *tb) |
| { |
| call_rcu(&tb->rcu, __trie_free_rcu); |
| } |
| |
| static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, |
| struct sk_buff *skb, struct netlink_callback *cb) |
| { |
| __be32 xkey = htonl(l->key); |
| struct fib_alias *fa; |
| int i, s_i; |
| |
| s_i = cb->args[4]; |
| i = 0; |
| |
| /* rcu_read_lock is hold by caller */ |
| hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
| if (i < s_i) { |
| i++; |
| continue; |
| } |
| |
| if (tb->tb_id != fa->tb_id) { |
| i++; |
| continue; |
| } |
| |
| if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, |
| cb->nlh->nlmsg_seq, |
| RTM_NEWROUTE, |
| tb->tb_id, |
| fa->fa_type, |
| xkey, |
| KEYLENGTH - fa->fa_slen, |
| fa->fa_tos, |
| fa->fa_info, NLM_F_MULTI) < 0) { |
| cb->args[4] = i; |
| return -1; |
| } |
| i++; |
| } |
| |
| cb->args[4] = i; |
| return skb->len; |
| } |
| |
| /* rcu_read_lock needs to be hold by caller from readside */ |
| int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
| struct netlink_callback *cb) |
| { |
| struct trie *t = (struct trie *)tb->tb_data; |
| struct key_vector *l, *tp = t->kv; |
| /* Dump starting at last key. |
| * Note: 0.0.0.0/0 (ie default) is first key. |
| */ |
| int count = cb->args[2]; |
| t_key key = cb->args[3]; |
| |
| while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
| if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { |
| cb->args[3] = key; |
| cb->args[2] = count; |
| return -1; |
| } |
| |
| ++count; |
| key = l->key + 1; |
| |
| memset(&cb->args[4], 0, |
| sizeof(cb->args) - 4*sizeof(cb->args[0])); |
| |
| /* stop loop if key wrapped back to 0 */ |
| if (key < l->key) |
| break; |
| } |
| |
| cb->args[3] = key; |
| cb->args[2] = count; |
| |
| return skb->len; |
| } |
| |
| void __init fib_trie_init(void) |
| { |
| fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
| sizeof(struct fib_alias), |
| 0, SLAB_PANIC, NULL); |
| |
| trie_leaf_kmem = kmem_cache_create("ip_fib_trie", |
| LEAF_SIZE, |
| 0, SLAB_PANIC, NULL); |
| } |
| |
| struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) |
| { |
| struct fib_table *tb; |
| struct trie *t; |
| size_t sz = sizeof(*tb); |
| |
| if (!alias) |
| sz += sizeof(struct trie); |
| |
| tb = kzalloc(sz, GFP_KERNEL); |
| if (!tb) |
| return NULL; |
| |
| tb->tb_id = id; |
| tb->tb_default = -1; |
| tb->tb_num_default = 0; |
| tb->tb_data = (alias ? alias->__data : tb->__data); |
| |
| if (alias) |
| return tb; |
| |
| t = (struct trie *) tb->tb_data; |
| t->kv[0].pos = KEYLENGTH; |
| t->kv[0].slen = KEYLENGTH; |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| t->stats = alloc_percpu(struct trie_use_stats); |
| if (!t->stats) { |
| kfree(tb); |
| tb = NULL; |
| } |
| #endif |
| |
| return tb; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| /* Depth first Trie walk iterator */ |
| struct fib_trie_iter { |
| struct seq_net_private p; |
| struct fib_table *tb; |
| struct key_vector *tnode; |
| unsigned int index; |
| unsigned int depth; |
| }; |
| |
| static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) |
| { |
| unsigned long cindex = iter->index; |
| struct key_vector *pn = iter->tnode; |
| t_key pkey; |
| |
| pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
| iter->tnode, iter->index, iter->depth); |
| |
| while (!IS_TRIE(pn)) { |
| while (cindex < child_length(pn)) { |
| struct key_vector *n = get_child_rcu(pn, cindex++); |
| |
| if (!n) |
| continue; |
| |
| if (IS_LEAF(n)) { |
| iter->tnode = pn; |
| iter->index = cindex; |
| } else { |
| /* push down one level */ |
| iter->tnode = n; |
| iter->index = 0; |
| ++iter->depth; |
| } |
| |
| return n; |
| } |
| |
| /* Current node exhausted, pop back up */ |
| pkey = pn->key; |
| pn = node_parent_rcu(pn); |
| cindex = get_index(pkey, pn) + 1; |
| --iter->depth; |
| } |
| |
| /* record root node so further searches know we are done */ |
| iter->tnode = pn; |
| iter->index = 0; |
| |
| return NULL; |
| } |
| |
| static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, |
| struct trie *t) |
| { |
| struct key_vector *n, *pn = t->kv; |
| |
| if (!t) |
| return NULL; |
| |
| n = rcu_dereference(pn->tnode[0]); |
| if (!n) |
| return NULL; |
| |
| if (IS_TNODE(n)) { |
| iter->tnode = n; |
| iter->index = 0; |
| iter->depth = 1; |
| } else { |
| iter->tnode = pn; |
| iter->index = 0; |
| iter->depth = 0; |
| } |
| |
| return n; |
| } |
| |
| static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
| { |
| struct key_vector *n; |
| struct fib_trie_iter iter; |
| |
| memset(s, 0, sizeof(*s)); |
| |
| rcu_read_lock(); |
| for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
| if (IS_LEAF(n)) { |
| struct fib_alias *fa; |
| |
| s->leaves++; |
| s->totdepth += iter.depth; |
| if (iter.depth > s->maxdepth) |
| s->maxdepth = iter.depth; |
| |
| hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) |
| ++s->prefixes; |
| } else { |
| s->tnodes++; |
| if (n->bits < MAX_STAT_DEPTH) |
| s->nodesizes[n->bits]++; |
| s->nullpointers += tn_info(n)->empty_children; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * This outputs /proc/net/fib_triestats |
| */ |
| static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) |
| { |
| unsigned int i, max, pointers, bytes, avdepth; |
| |
| if (stat->leaves) |
| avdepth = stat->totdepth*100 / stat->leaves; |
| else |
| avdepth = 0; |
| |
| seq_printf(seq, "\tAver depth: %u.%02d\n", |
| avdepth / 100, avdepth % 100); |
| seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
| |
| seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
| bytes = LEAF_SIZE * stat->leaves; |
| |
| seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); |
| bytes += sizeof(struct fib_alias) * stat->prefixes; |
| |
| seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
| bytes += TNODE_SIZE(0) * stat->tnodes; |
| |
| max = MAX_STAT_DEPTH; |
| while (max > 0 && stat->nodesizes[max-1] == 0) |
| max--; |
| |
| pointers = 0; |
| for (i = 1; i < max; i++) |
| if (stat->nodesizes[i] != 0) { |
| seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
| pointers += (1<<i) * stat->nodesizes[i]; |
| } |
| seq_putc(seq, '\n'); |
| seq_printf(seq, "\tPointers: %u\n", pointers); |
| |
| bytes += sizeof(struct key_vector *) * pointers; |
| seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
| seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); |
| } |
| |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| static void trie_show_usage(struct seq_file *seq, |
| const struct trie_use_stats __percpu *stats) |
| { |
| struct trie_use_stats s = { 0 }; |
| int cpu; |
| |
| /* loop through all of the CPUs and gather up the stats */ |
| for_each_possible_cpu(cpu) { |
| const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); |
| |
| s.gets += pcpu->gets; |
| s.backtrack += pcpu->backtrack; |
| s.semantic_match_passed += pcpu->semantic_match_passed; |
| s.semantic_match_miss += pcpu->semantic_match_miss; |
| s.null_node_hit += pcpu->null_node_hit; |
| s.resize_node_skipped += pcpu->resize_node_skipped; |
| } |
| |
| seq_printf(seq, "\nCounters:\n---------\n"); |
| seq_printf(seq, "gets = %u\n", s.gets); |
| seq_printf(seq, "backtracks = %u\n", s.backtrack); |
| seq_printf(seq, "semantic match passed = %u\n", |
| s.semantic_match_passed); |
| seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); |
| seq_printf(seq, "null node hit= %u\n", s.null_node_hit); |
| seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); |
| } |
| #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
| |
| static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
| { |
| if (tb->tb_id == RT_TABLE_LOCAL) |
| seq_puts(seq, "Local:\n"); |
| else if (tb->tb_id == RT_TABLE_MAIN) |
| seq_puts(seq, "Main:\n"); |
| else |
| seq_printf(seq, "Id %d:\n", tb->tb_id); |
| } |
| |
| |
| static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
| { |
| struct net *net = (struct net *)seq->private; |
| unsigned int h; |
| |
| seq_printf(seq, |
| "Basic info: size of leaf:" |
| " %Zd bytes, size of tnode: %Zd bytes.\n", |
| LEAF_SIZE, TNODE_SIZE(0)); |
| |
| for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| struct fib_table *tb; |
| |
| hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| struct trie *t = (struct trie *) tb->tb_data; |
| struct trie_stat stat; |
| |
| if (!t) |
| continue; |
| |
| fib_table_print(seq, tb); |
| |
| trie_collect_stats(t, &stat); |
| trie_show_stats(seq, &stat); |
| #ifdef CONFIG_IP_FIB_TRIE_STATS |
| trie_show_usage(seq, t->stats); |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
| { |
| return single_open_net(inode, file, fib_triestat_seq_show); |
| } |
| |
| static const struct file_operations fib_triestat_fops = { |
| .owner = THIS_MODULE, |
| .open = fib_triestat_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release_net, |
| }; |
| |
| static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| struct fib_trie_iter *iter = seq->private; |
| struct net *net = seq_file_net(seq); |
| loff_t idx = 0; |
| unsigned int h; |
| |
| for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| struct fib_table *tb; |
| |
| hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| struct key_vector *n; |
| |
| for (n = fib_trie_get_first(iter, |
| (struct trie *) tb->tb_data); |
| n; n = fib_trie_get_next(iter)) |
| if (pos == idx++) { |
| iter->tb = tb; |
| return n; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
| __acquires(RCU) |
| { |
| rcu_read_lock(); |
| return fib_trie_get_idx(seq, *pos); |
| } |
| |
| static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct fib_trie_iter *iter = seq->private; |
| struct net *net = seq_file_net(seq); |
| struct fib_table *tb = iter->tb; |
| struct hlist_node *tb_node; |
| unsigned int h; |
| struct key_vector *n; |
| |
| ++*pos; |
| /* next node in same table */ |
| n = fib_trie_get_next(iter); |
| if (n) |
| return n; |
| |
| /* walk rest of this hash chain */ |
| h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); |
| while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
| tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
| n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
| if (n) |
| goto found; |
| } |
| |
| /* new hash chain */ |
| while (++h < FIB_TABLE_HASHSZ) { |
| struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
| if (n) |
| goto found; |
| } |
| } |
| return NULL; |
| |
| found: |
| iter->tb = tb; |
| return n; |
| } |
| |
| static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
| __releases(RCU) |
| { |
| rcu_read_unlock(); |
| } |
| |
| static void seq_indent(struct seq_file *seq, int n) |
| { |
| while (n-- > 0) |
| seq_puts(seq, " "); |
| } |
| |
| static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
| { |
| switch (s) { |
| case RT_SCOPE_UNIVERSE: return "universe"; |
| case RT_SCOPE_SITE: return "site"; |
| case RT_SCOPE_LINK: return "link"; |
| case RT_SCOPE_HOST: return "host"; |
| case RT_SCOPE_NOWHERE: return "nowhere"; |
| default: |
| snprintf(buf, len, "scope=%d", s); |
| return buf; |
| } |
| } |
| |
| static const char *const rtn_type_names[__RTN_MAX] = { |
| [RTN_UNSPEC] = "UNSPEC", |
| [RTN_UNICAST] = "UNICAST", |
| [RTN_LOCAL] = "LOCAL", |
| [RTN_BROADCAST] = "BROADCAST", |
| [RTN_ANYCAST] = "ANYCAST", |
| [RTN_MULTICAST] = "MULTICAST", |
| [RTN_BLACKHOLE] = "BLACKHOLE", |
| [RTN_UNREACHABLE] = "UNREACHABLE", |
| [RTN_PROHIBIT] = "PROHIBIT", |
| [RTN_THROW] = "THROW", |
| [RTN_NAT] = "NAT", |
| [RTN_XRESOLVE] = "XRESOLVE", |
| }; |
| |
| static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
| { |
| if (t < __RTN_MAX && rtn_type_names[t]) |
| return rtn_type_names[t]; |
| snprintf(buf, len, "type %u", t); |
| return buf; |
| } |
| |
| /* Pretty print the trie */ |
| static int fib_trie_seq_show(struct seq_file *seq, void *v) |
| { |
| const struct fib_trie_iter *iter = seq->private; |
| struct key_vector *n = v; |
| |
| if (IS_TRIE(node_parent_rcu(n))) |
| fib_table_print(seq, iter->tb); |
| |
| if (IS_TNODE(n)) { |
| __be32 prf = htonl(n->key); |
| |
| seq_indent(seq, iter->depth-1); |
| seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", |
| &prf, KEYLENGTH - n->pos - n->bits, n->bits, |
| tn_info(n)->full_children, |
| tn_info(n)->empty_children); |
| } else { |
| __be32 val = htonl(n->key); |
| struct fib_alias *fa; |
| |
| seq_indent(seq, iter->depth); |
| seq_printf(seq, " |-- %pI4\n", &val); |
| |
| hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
| char buf1[32], buf2[32]; |
| |
| seq_indent(seq, iter->depth + 1); |
| seq_printf(seq, " /%zu %s %s", |
| KEYLENGTH - fa->fa_slen, |
| rtn_scope(buf1, sizeof(buf1), |
| fa->fa_info->fib_scope), |
| rtn_type(buf2, sizeof(buf2), |
| fa->fa_type)); |
| if (fa->fa_tos) |
| seq_printf(seq, " tos=%d", fa->fa_tos); |
| seq_putc(seq, '\n'); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct seq_operations fib_trie_seq_ops = { |
| .start = fib_trie_seq_start, |
| .next = fib_trie_seq_next, |
| .stop = fib_trie_seq_stop, |
| .show = fib_trie_seq_show, |
| }; |
| |
| static int fib_trie_seq_open(struct inode *inode, struct file *file) |
| { |
| return seq_open_net(inode, file, &fib_trie_seq_ops, |
| sizeof(struct fib_trie_iter)); |
| } |
| |
| static const struct file_operations fib_trie_fops = { |
| .owner = THIS_MODULE, |
| .open = fib_trie_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_net, |
| }; |
| |
| struct fib_route_iter { |
| struct seq_net_private p; |
| struct fib_table *main_tb; |
| struct key_vector *tnode; |
| loff_t pos; |
| t_key key; |
| }; |
| |
| static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, |
| loff_t pos) |
| { |
| struct fib_table *tb = iter->main_tb; |
| struct key_vector *l, **tp = &iter->tnode; |
| struct trie *t; |
| t_key key; |
| |
| /* use cache location of next-to-find key */ |
| if (iter->pos > 0 && pos >= iter->pos) { |
| pos -= iter->pos; |
| key = iter->key; |
| } else { |
| t = (struct trie *)tb->tb_data; |
| iter->tnode = t->kv; |
| iter->pos = 0; |
| key = 0; |
| } |
| |
| while ((l = leaf_walk_rcu(tp, key)) != NULL) { |
| key = l->key + 1; |
| iter->pos++; |
| |
| if (pos-- <= 0) |
| break; |
| |
| l = NULL; |
| |
| /* handle unlikely case of a key wrap */ |
| if (!key) |
| break; |
| } |
| |
| if (l) |
| iter->key = key; /* remember it */ |
| else |
| iter->pos = 0; /* forget it */ |
| |
| return l; |
| } |
| |
| static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) |
| __acquires(RCU) |
| { |
| struct fib_route_iter *iter = seq->private; |
| struct fib_table *tb; |
| struct trie *t; |
| |
| rcu_read_lock(); |
| |
| tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
| if (!tb) |
| return NULL; |
| |
| iter->main_tb = tb; |
| |
| if (*pos != 0) |
| return fib_route_get_idx(iter, *pos); |
| |
| t = (struct trie *)tb->tb_data; |
| iter->tnode = t->kv; |
| iter->pos = 0; |
| iter->key = 0; |
| |
| return SEQ_START_TOKEN; |
| } |
| |
| static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct fib_route_iter *iter = seq->private; |
| struct key_vector *l = NULL; |
| t_key key = iter->key; |
| |
| ++*pos; |
| |
| /* only allow key of 0 for start of sequence */ |
| if ((v == SEQ_START_TOKEN) || key) |
| l = leaf_walk_rcu(&iter->tnode, key); |
| |
| if (l) { |
| iter->key = l->key + 1; |
| iter->pos++; |
| } else { |
| iter->pos = 0; |
| } |
| |
| return l; |
| } |
| |
| static void fib_route_seq_stop(struct seq_file *seq, void *v) |
| __releases(RCU) |
| { |
| rcu_read_unlock(); |
| } |
| |
| static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
| { |
| unsigned int flags = 0; |
| |
| if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
| flags = RTF_REJECT; |
| if (fi && fi->fib_nh->nh_gw) |
| flags |= RTF_GATEWAY; |
| if (mask == htonl(0xFFFFFFFF)) |
| flags |= RTF_HOST; |
| flags |= RTF_UP; |
| return flags; |
| } |
| |
| /* |
| * This outputs /proc/net/route. |
| * The format of the file is not supposed to be changed |
| * and needs to be same as fib_hash output to avoid breaking |
| * legacy utilities |
| */ |
| static int fib_route_seq_show(struct seq_file *seq, void *v) |
| { |
| struct fib_route_iter *iter = seq->private; |
| struct fib_table *tb = iter->main_tb; |
| struct fib_alias *fa; |
| struct key_vector *l = v; |
| __be32 prefix; |
| |
| if (v == SEQ_START_TOKEN) { |
| seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " |
| "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" |
| "\tWindow\tIRTT"); |
| return 0; |
| } |
| |
| prefix = htonl(l->key); |
| |
| hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
| const struct fib_info *fi = fa->fa_info; |
| __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); |
| unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); |
| |
| if ((fa->fa_type == RTN_BROADCAST) || |
| (fa->fa_type == RTN_MULTICAST)) |
| continue; |
| |
| if (fa->tb_id != tb->tb_id) |
| continue; |
| |
| seq_setwidth(seq, 127); |
| |
| if (fi) |
| seq_printf(seq, |
| "%s\t%08X\t%08X\t%04X\t%d\t%u\t" |
| "%d\t%08X\t%d\t%u\t%u", |
| fi->fib_dev ? fi->fib_dev->name : "*", |
| prefix, |
| fi->fib_nh->nh_gw, flags, 0, 0, |
| fi->fib_priority, |
| mask, |
| (fi->fib_advmss ? |
| fi->fib_advmss + 40 : 0), |
| fi->fib_window, |
| fi->fib_rtt >> 3); |
| else |
| seq_printf(seq, |
| "*\t%08X\t%08X\t%04X\t%d\t%u\t" |
| "%d\t%08X\t%d\t%u\t%u", |
| prefix, 0, flags, 0, 0, 0, |
| mask, 0, 0, 0); |
| |
| seq_pad(seq, '\n'); |
| } |
| |
| return 0; |
| } |
| |
| static const struct seq_operations fib_route_seq_ops = { |
| .start = fib_route_seq_start, |
| .next = fib_route_seq_next, |
| .stop = fib_route_seq_stop, |
| .show = fib_route_seq_show, |
| }; |
| |
| static int fib_route_seq_open(struct inode *inode, struct file *file) |
| { |
| return seq_open_net(inode, file, &fib_route_seq_ops, |
| sizeof(struct fib_route_iter)); |
| } |
| |
| static const struct file_operations fib_route_fops = { |
| .owner = THIS_MODULE, |
| .open = fib_route_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_net, |
| }; |
| |
| int __net_init fib_proc_init(struct net *net) |
| { |
| if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) |
| goto out1; |
| |
| if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, |
| &fib_triestat_fops)) |
| goto out2; |
| |
| if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) |
| goto out3; |
| |
| return 0; |
| |
| out3: |
| remove_proc_entry("fib_triestat", net->proc_net); |
| out2: |
| remove_proc_entry("fib_trie", net->proc_net); |
| out1: |
| return -ENOMEM; |
| } |
| |
| void __net_exit fib_proc_exit(struct net *net) |
| { |
| remove_proc_entry("fib_trie", net->proc_net); |
| remove_proc_entry("fib_triestat", net->proc_net); |
| remove_proc_entry("route", net->proc_net); |
| } |
| |
| #endif /* CONFIG_PROC_FS */ |