blob: 71ae20df674e53f051834f20319f3c48fae1358b [file] [log] [blame]
/*
* arch/s390/mm/vmem.c
*
* Copyright IBM Corp. 2006
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
*/
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
static DEFINE_MUTEX(vmem_mutex);
struct memory_segment {
struct list_head list;
unsigned long start;
unsigned long size;
};
static LIST_HEAD(mem_segs);
static void __ref *vmem_alloc_pages(unsigned int order)
{
if (slab_is_available())
return (void *)__get_free_pages(GFP_KERNEL, order);
return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
}
static inline pud_t *vmem_pud_alloc(void)
{
pud_t *pud = NULL;
#ifdef CONFIG_64BIT
pud = vmem_alloc_pages(2);
if (!pud)
return NULL;
clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
#endif
return pud;
}
static inline pmd_t *vmem_pmd_alloc(void)
{
pmd_t *pmd = NULL;
#ifdef CONFIG_64BIT
pmd = vmem_alloc_pages(2);
if (!pmd)
return NULL;
clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
#endif
return pmd;
}
static pte_t __ref *vmem_pte_alloc(unsigned long address)
{
pte_t *pte;
if (slab_is_available())
pte = (pte_t *) page_table_alloc(&init_mm, address);
else
pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
if (!pte)
return NULL;
clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
PTRS_PER_PTE * sizeof(pte_t));
return pte;
}
/*
* Add a physical memory range to the 1:1 mapping.
*/
static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
{
unsigned long address;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pte_t pte;
int ret = -ENOMEM;
for (address = start; address < start + size; address += PAGE_SIZE) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
pu_dir = vmem_pud_alloc();
if (!pu_dir)
goto out;
pgd_populate(&init_mm, pg_dir, pu_dir);
}
pu_dir = pud_offset(pg_dir, address);
if (pud_none(*pu_dir)) {
pm_dir = vmem_pmd_alloc();
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
pm_dir = pmd_offset(pu_dir, address);
#ifdef CONFIG_64BIT
if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
(address + HPAGE_SIZE <= start + size) &&
(address >= HPAGE_SIZE)) {
pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
pmd_val(*pm_dir) = pte_val(pte);
address += HPAGE_SIZE - PAGE_SIZE;
continue;
}
#endif
if (pmd_none(*pm_dir)) {
pt_dir = vmem_pte_alloc(address);
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
}
pt_dir = pte_offset_kernel(pm_dir, address);
*pt_dir = pte;
}
ret = 0;
out:
flush_tlb_kernel_range(start, start + size);
return ret;
}
/*
* Remove a physical memory range from the 1:1 mapping.
* Currently only invalidates page table entries.
*/
static void vmem_remove_range(unsigned long start, unsigned long size)
{
unsigned long address;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pte_t pte;
pte_val(pte) = _PAGE_TYPE_EMPTY;
for (address = start; address < start + size; address += PAGE_SIZE) {
pg_dir = pgd_offset_k(address);
pu_dir = pud_offset(pg_dir, address);
if (pud_none(*pu_dir))
continue;
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir))
continue;
if (pmd_huge(*pm_dir)) {
pmd_clear(pm_dir);
address += HPAGE_SIZE - PAGE_SIZE;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
*pt_dir = pte;
}
flush_tlb_kernel_range(start, start + size);
}
/*
* Add a backed mem_map array to the virtual mem_map array.
*/
int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
{
unsigned long address, start_addr, end_addr;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pte_t pte;
int ret = -ENOMEM;
start_addr = (unsigned long) start;
end_addr = (unsigned long) (start + nr);
for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
pu_dir = vmem_pud_alloc();
if (!pu_dir)
goto out;
pgd_populate(&init_mm, pg_dir, pu_dir);
}
pu_dir = pud_offset(pg_dir, address);
if (pud_none(*pu_dir)) {
pm_dir = vmem_pmd_alloc();
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
pt_dir = vmem_pte_alloc(address);
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
}
pt_dir = pte_offset_kernel(pm_dir, address);
if (pte_none(*pt_dir)) {
unsigned long new_page;
new_page =__pa(vmem_alloc_pages(0));
if (!new_page)
goto out;
pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
*pt_dir = pte;
}
}
memset(start, 0, nr * sizeof(struct page));
ret = 0;
out:
flush_tlb_kernel_range(start_addr, end_addr);
return ret;
}
/*
* Add memory segment to the segment list if it doesn't overlap with
* an already present segment.
*/
static int insert_memory_segment(struct memory_segment *seg)
{
struct memory_segment *tmp;
if (seg->start + seg->size > VMEM_MAX_PHYS ||
seg->start + seg->size < seg->start)
return -ERANGE;
list_for_each_entry(tmp, &mem_segs, list) {
if (seg->start >= tmp->start + tmp->size)
continue;
if (seg->start + seg->size <= tmp->start)
continue;
return -ENOSPC;
}
list_add(&seg->list, &mem_segs);
return 0;
}
/*
* Remove memory segment from the segment list.
*/
static void remove_memory_segment(struct memory_segment *seg)
{
list_del(&seg->list);
}
static void __remove_shared_memory(struct memory_segment *seg)
{
remove_memory_segment(seg);
vmem_remove_range(seg->start, seg->size);
}
int vmem_remove_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOENT;
list_for_each_entry(seg, &mem_segs, list) {
if (seg->start == start && seg->size == size)
break;
}
if (seg->start != start || seg->size != size)
goto out;
ret = 0;
__remove_shared_memory(seg);
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
int vmem_add_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOMEM;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
goto out;
seg->start = start;
seg->size = size;
ret = insert_memory_segment(seg);
if (ret)
goto out_free;
ret = vmem_add_mem(start, size, 0);
if (ret)
goto out_remove;
goto out;
out_remove:
__remove_shared_memory(seg);
out_free:
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
/*
* map whole physical memory to virtual memory (identity mapping)
* we reserve enough space in the vmalloc area for vmemmap to hotplug
* additional memory segments.
*/
void __init vmem_map_init(void)
{
unsigned long ro_start, ro_end;
unsigned long start, end;
int i;
ro_start = ((unsigned long)&_stext) & PAGE_MASK;
ro_end = PFN_ALIGN((unsigned long)&_eshared);
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
if (memory_chunk[i].type == CHUNK_CRASHK ||
memory_chunk[i].type == CHUNK_OLDMEM)
continue;
start = memory_chunk[i].addr;
end = memory_chunk[i].addr + memory_chunk[i].size;
if (start >= ro_end || end <= ro_start)
vmem_add_mem(start, end - start, 0);
else if (start >= ro_start && end <= ro_end)
vmem_add_mem(start, end - start, 1);
else if (start >= ro_start) {
vmem_add_mem(start, ro_end - start, 1);
vmem_add_mem(ro_end, end - ro_end, 0);
} else if (end < ro_end) {
vmem_add_mem(start, ro_start - start, 0);
vmem_add_mem(ro_start, end - ro_start, 1);
} else {
vmem_add_mem(start, ro_start - start, 0);
vmem_add_mem(ro_start, ro_end - ro_start, 1);
vmem_add_mem(ro_end, end - ro_end, 0);
}
}
}
/*
* Convert memory chunk array to a memory segment list so there is a single
* list that contains both r/w memory and shared memory segments.
*/
static int __init vmem_convert_memory_chunk(void)
{
struct memory_segment *seg;
int i;
mutex_lock(&vmem_mutex);
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (!memory_chunk[i].size)
continue;
if (memory_chunk[i].type == CHUNK_CRASHK ||
memory_chunk[i].type == CHUNK_OLDMEM)
continue;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
panic("Out of memory...\n");
seg->start = memory_chunk[i].addr;
seg->size = memory_chunk[i].size;
insert_memory_segment(seg);
}
mutex_unlock(&vmem_mutex);
return 0;
}
core_initcall(vmem_convert_memory_chunk);