| /* |
| * Copyright (c) 2008-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <asm/unaligned.h> |
| #include "hw.h" |
| #include "ar9002_phy.h" |
| |
| static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah) |
| { |
| return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF); |
| } |
| |
| static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah) |
| { |
| return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF); |
| } |
| |
| #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) |
| |
| static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) |
| { |
| u16 *eep_data = (u16 *)&ah->eeprom.map4k; |
| int addr, eep_start_loc = 64; |
| |
| for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { |
| if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) |
| return false; |
| eep_data++; |
| } |
| |
| return true; |
| } |
| |
| static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah) |
| { |
| u16 *eep_data = (u16 *)&ah->eeprom.map4k; |
| |
| ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n"); |
| } |
| |
| if (common->bus_ops->ath_bus_type == ATH_USB) |
| return __ath9k_hw_usb_4k_fill_eeprom(ah); |
| else |
| return __ath9k_hw_4k_fill_eeprom(ah); |
| } |
| |
| #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS) |
| static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size, |
| struct modal_eep_4k_header *modal_hdr) |
| { |
| PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]); |
| PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon); |
| PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); |
| PR_EEP("Switch Settle", modal_hdr->switchSettling); |
| PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); |
| PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); |
| PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); |
| PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize); |
| PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]); |
| PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); |
| PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); |
| PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); |
| PR_EEP("CCA Threshold)", modal_hdr->thresh62); |
| PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); |
| PR_EEP("xpdGain", modal_hdr->xpdGain); |
| PR_EEP("External PD", modal_hdr->xpd); |
| PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); |
| PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); |
| PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); |
| PR_EEP("O/D Bias Version", modal_hdr->version); |
| PR_EEP("CCK OutputBias", modal_hdr->ob_0); |
| PR_EEP("BPSK OutputBias", modal_hdr->ob_1); |
| PR_EEP("QPSK OutputBias", modal_hdr->ob_2); |
| PR_EEP("16QAM OutputBias", modal_hdr->ob_3); |
| PR_EEP("64QAM OutputBias", modal_hdr->ob_4); |
| PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0); |
| PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1); |
| PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2); |
| PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3); |
| PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4); |
| PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0); |
| PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1); |
| PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2); |
| PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3); |
| PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4); |
| PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); |
| PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); |
| PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); |
| PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); |
| PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); |
| PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); |
| PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); |
| PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]); |
| PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]); |
| PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1); |
| PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2); |
| PR_EEP("TX Diversity", modal_hdr->tx_diversity); |
| |
| return len; |
| } |
| |
| static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, |
| u8 *buf, u32 len, u32 size) |
| { |
| struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; |
| struct base_eep_header_4k *pBase = &eep->baseEepHeader; |
| |
| if (!dump_base_hdr) { |
| len += snprintf(buf + len, size - len, |
| "%20s :\n", "2GHz modal Header"); |
| len = ath9k_dump_4k_modal_eeprom(buf, len, size, |
| &eep->modalHeader); |
| goto out; |
| } |
| |
| PR_EEP("Major Version", pBase->version >> 12); |
| PR_EEP("Minor Version", pBase->version & 0xFFF); |
| PR_EEP("Checksum", pBase->checksum); |
| PR_EEP("Length", pBase->length); |
| PR_EEP("RegDomain1", pBase->regDmn[0]); |
| PR_EEP("RegDomain2", pBase->regDmn[1]); |
| PR_EEP("TX Mask", pBase->txMask); |
| PR_EEP("RX Mask", pBase->rxMask); |
| PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); |
| PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); |
| PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & |
| AR5416_OPFLAGS_N_2G_HT20)); |
| PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & |
| AR5416_OPFLAGS_N_2G_HT40)); |
| PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & |
| AR5416_OPFLAGS_N_5G_HT20)); |
| PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & |
| AR5416_OPFLAGS_N_5G_HT40)); |
| PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01)); |
| PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF); |
| PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF); |
| PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF); |
| PR_EEP("TX Gain type", pBase->txGainType); |
| |
| len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", |
| pBase->macAddr); |
| |
| out: |
| if (len > size) |
| len = size; |
| |
| return len; |
| } |
| #else |
| static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, |
| u8 *buf, u32 len, u32 size) |
| { |
| return 0; |
| } |
| #endif |
| |
| |
| #undef SIZE_EEPROM_4K |
| |
| static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah) |
| { |
| #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; |
| u16 *eepdata, temp, magic, magic2; |
| u32 sum = 0, el; |
| bool need_swap = false; |
| int i, addr; |
| |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, |
| &magic)) { |
| ath_err(common, "Reading Magic # failed\n"); |
| return false; |
| } |
| |
| ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic); |
| |
| if (magic != AR5416_EEPROM_MAGIC) { |
| magic2 = swab16(magic); |
| |
| if (magic2 == AR5416_EEPROM_MAGIC) { |
| need_swap = true; |
| eepdata = (u16 *) (&ah->eeprom); |
| |
| for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { |
| temp = swab16(*eepdata); |
| *eepdata = temp; |
| eepdata++; |
| } |
| } else { |
| ath_err(common, |
| "Invalid EEPROM Magic. Endianness mismatch.\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| ath_dbg(common, EEPROM, "need_swap = %s\n", |
| need_swap ? "True" : "False"); |
| |
| if (need_swap) |
| el = swab16(ah->eeprom.map4k.baseEepHeader.length); |
| else |
| el = ah->eeprom.map4k.baseEepHeader.length; |
| |
| if (el > sizeof(struct ar5416_eeprom_4k)) |
| el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16); |
| else |
| el = el / sizeof(u16); |
| |
| eepdata = (u16 *)(&ah->eeprom); |
| |
| for (i = 0; i < el; i++) |
| sum ^= *eepdata++; |
| |
| if (need_swap) { |
| u32 integer; |
| u16 word; |
| |
| ath_dbg(common, EEPROM, |
| "EEPROM Endianness is not native.. Changing\n"); |
| |
| word = swab16(eep->baseEepHeader.length); |
| eep->baseEepHeader.length = word; |
| |
| word = swab16(eep->baseEepHeader.checksum); |
| eep->baseEepHeader.checksum = word; |
| |
| word = swab16(eep->baseEepHeader.version); |
| eep->baseEepHeader.version = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[0]); |
| eep->baseEepHeader.regDmn[0] = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[1]); |
| eep->baseEepHeader.regDmn[1] = word; |
| |
| word = swab16(eep->baseEepHeader.rfSilent); |
| eep->baseEepHeader.rfSilent = word; |
| |
| word = swab16(eep->baseEepHeader.blueToothOptions); |
| eep->baseEepHeader.blueToothOptions = word; |
| |
| word = swab16(eep->baseEepHeader.deviceCap); |
| eep->baseEepHeader.deviceCap = word; |
| |
| integer = swab32(eep->modalHeader.antCtrlCommon); |
| eep->modalHeader.antCtrlCommon = integer; |
| |
| for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { |
| integer = swab32(eep->modalHeader.antCtrlChain[i]); |
| eep->modalHeader.antCtrlChain[i] = integer; |
| } |
| |
| for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { |
| word = swab16(eep->modalHeader.spurChans[i].spurChan); |
| eep->modalHeader.spurChans[i].spurChan = word; |
| } |
| } |
| |
| if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER || |
| ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { |
| ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", |
| sum, ah->eep_ops->get_eeprom_ver(ah)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| #undef EEPROM_4K_SIZE |
| } |
| |
| static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah, |
| enum eeprom_param param) |
| { |
| struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; |
| struct modal_eep_4k_header *pModal = &eep->modalHeader; |
| struct base_eep_header_4k *pBase = &eep->baseEepHeader; |
| u16 ver_minor; |
| |
| ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK; |
| |
| switch (param) { |
| case EEP_NFTHRESH_2: |
| return pModal->noiseFloorThreshCh[0]; |
| case EEP_MAC_LSW: |
| return get_unaligned_be16(pBase->macAddr); |
| case EEP_MAC_MID: |
| return get_unaligned_be16(pBase->macAddr + 2); |
| case EEP_MAC_MSW: |
| return get_unaligned_be16(pBase->macAddr + 4); |
| case EEP_REG_0: |
| return pBase->regDmn[0]; |
| case EEP_OP_CAP: |
| return pBase->deviceCap; |
| case EEP_OP_MODE: |
| return pBase->opCapFlags; |
| case EEP_RF_SILENT: |
| return pBase->rfSilent; |
| case EEP_OB_2: |
| return pModal->ob_0; |
| case EEP_DB_2: |
| return pModal->db1_1; |
| case EEP_MINOR_REV: |
| return ver_minor; |
| case EEP_TX_MASK: |
| return pBase->txMask; |
| case EEP_RX_MASK: |
| return pBase->rxMask; |
| case EEP_FRAC_N_5G: |
| return 0; |
| case EEP_PWR_TABLE_OFFSET: |
| return AR5416_PWR_TABLE_OFFSET_DB; |
| case EEP_MODAL_VER: |
| return pModal->version; |
| case EEP_ANT_DIV_CTL1: |
| return pModal->antdiv_ctl1; |
| case EEP_TXGAIN_TYPE: |
| return pBase->txGainType; |
| case EEP_ANTENNA_GAIN_2G: |
| return pModal->antennaGainCh[0]; |
| default: |
| return 0; |
| } |
| } |
| |
| static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; |
| struct cal_data_per_freq_4k *pRawDataset; |
| u8 *pCalBChans = NULL; |
| u16 pdGainOverlap_t2; |
| static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; |
| u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; |
| u16 numPiers, i, j; |
| u16 numXpdGain, xpdMask; |
| u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 }; |
| u32 reg32, regOffset, regChainOffset; |
| |
| xpdMask = pEepData->modalHeader.xpdGain; |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| pdGainOverlap_t2 = |
| pEepData->modalHeader.pdGainOverlap; |
| } else { |
| pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); |
| } |
| |
| pCalBChans = pEepData->calFreqPier2G; |
| numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS; |
| |
| numXpdGain = 0; |
| |
| for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { |
| if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { |
| if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS) |
| break; |
| xpdGainValues[numXpdGain] = |
| (u16)(AR5416_PD_GAINS_IN_MASK - i); |
| numXpdGain++; |
| } |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| (numXpdGain - 1) & 0x3); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, |
| xpdGainValues[0]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, |
| xpdGainValues[1]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0); |
| |
| for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { |
| regChainOffset = i * 0x1000; |
| |
| if (pEepData->baseEepHeader.txMask & (1 << i)) { |
| pRawDataset = pEepData->calPierData2G[i]; |
| |
| ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, |
| pRawDataset, pCalBChans, |
| numPiers, pdGainOverlap_t2, |
| gainBoundaries, |
| pdadcValues, numXpdGain); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, |
| SM(pdGainOverlap_t2, |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
| | SM(gainBoundaries[0], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
| | SM(gainBoundaries[1], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
| | SM(gainBoundaries[2], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
| | SM(gainBoundaries[3], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
| |
| regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; |
| for (j = 0; j < 32; j++) { |
| reg32 = get_unaligned_le32(&pdadcValues[4 * j]); |
| REG_WRITE(ah, regOffset, reg32); |
| |
| ath_dbg(common, EEPROM, |
| "PDADC (%d,%4x): %4.4x %8.8x\n", |
| i, regChainOffset, regOffset, |
| reg32); |
| ath_dbg(common, EEPROM, |
| "PDADC: Chain %d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d |\n", |
| i, 4 * j, pdadcValues[4 * j], |
| 4 * j + 1, pdadcValues[4 * j + 1], |
| 4 * j + 2, pdadcValues[4 * j + 2], |
| 4 * j + 3, pdadcValues[4 * j + 3]); |
| |
| regOffset += 4; |
| } |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| } |
| } |
| |
| static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| int16_t *ratesArray, |
| u16 cfgCtl, |
| u16 antenna_reduction, |
| u16 powerLimit) |
| { |
| #define CMP_TEST_GRP \ |
| (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \ |
| pEepData->ctlIndex[i]) \ |
| || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ |
| ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL)) |
| |
| int i; |
| u16 twiceMinEdgePower; |
| u16 twiceMaxEdgePower; |
| u16 scaledPower = 0, minCtlPower; |
| u16 numCtlModes; |
| const u16 *pCtlMode; |
| u16 ctlMode, freq; |
| struct chan_centers centers; |
| struct cal_ctl_data_4k *rep; |
| struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; |
| struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { |
| 0, { 0, 0, 0, 0} |
| }; |
| struct cal_target_power_leg targetPowerOfdmExt = { |
| 0, { 0, 0, 0, 0} }, targetPowerCckExt = { |
| 0, { 0, 0, 0, 0 } |
| }; |
| struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { |
| 0, {0, 0, 0, 0} |
| }; |
| static const u16 ctlModesFor11g[] = { |
| CTL_11B, CTL_11G, CTL_2GHT20, |
| CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 |
| }; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| scaledPower = powerLimit - antenna_reduction; |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; |
| pCtlMode = ctlModesFor11g; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCck, 4, false); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, false); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT20, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, false); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT40, |
| AR5416_NUM_2G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, true); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCckExt, 4, true); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, true); |
| } |
| |
| for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { |
| bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || |
| (pCtlMode[ctlMode] == CTL_2GHT40); |
| |
| if (isHt40CtlMode) |
| freq = centers.synth_center; |
| else if (pCtlMode[ctlMode] & EXT_ADDITIVE) |
| freq = centers.ext_center; |
| else |
| freq = centers.ctl_center; |
| |
| twiceMaxEdgePower = MAX_RATE_POWER; |
| |
| for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) && |
| pEepData->ctlIndex[i]; i++) { |
| |
| if (CMP_TEST_GRP) { |
| rep = &(pEepData->ctlData[i]); |
| |
| twiceMinEdgePower = ath9k_hw_get_max_edge_power( |
| freq, |
| rep->ctlEdges[ |
| ar5416_get_ntxchains(ah->txchainmask) - 1], |
| IS_CHAN_2GHZ(chan), |
| AR5416_EEP4K_NUM_BAND_EDGES); |
| |
| if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { |
| twiceMaxEdgePower = |
| min(twiceMaxEdgePower, |
| twiceMinEdgePower); |
| } else { |
| twiceMaxEdgePower = twiceMinEdgePower; |
| break; |
| } |
| } |
| } |
| |
| minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); |
| |
| switch (pCtlMode[ctlMode]) { |
| case CTL_11B: |
| for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { |
| targetPowerCck.tPow2x[i] = |
| min((u16)targetPowerCck.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11G: |
| for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { |
| targetPowerOfdm.tPow2x[i] = |
| min((u16)targetPowerOfdm.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_2GHT20: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { |
| targetPowerHt20.tPow2x[i] = |
| min((u16)targetPowerHt20.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11B_EXT: |
| targetPowerCckExt.tPow2x[0] = |
| min((u16)targetPowerCckExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_11G_EXT: |
| targetPowerOfdmExt.tPow2x[0] = |
| min((u16)targetPowerOfdmExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_2GHT40: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| targetPowerHt40.tPow2x[i] = |
| min((u16)targetPowerHt40.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| ratesArray[rate6mb] = |
| ratesArray[rate9mb] = |
| ratesArray[rate12mb] = |
| ratesArray[rate18mb] = |
| ratesArray[rate24mb] = |
| targetPowerOfdm.tPow2x[0]; |
| |
| ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; |
| ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; |
| ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; |
| ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; |
| |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) |
| ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; |
| |
| ratesArray[rate1l] = targetPowerCck.tPow2x[0]; |
| ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; |
| ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; |
| ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; |
| |
| if (IS_CHAN_HT40(chan)) { |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| ratesArray[rateHt40_0 + i] = |
| targetPowerHt40.tPow2x[i]; |
| } |
| ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; |
| ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; |
| } |
| |
| #undef CMP_TEST_GRP |
| } |
| |
| static void ath9k_hw_4k_set_txpower(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| u16 cfgCtl, |
| u8 twiceAntennaReduction, |
| u8 powerLimit, bool test) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; |
| struct modal_eep_4k_header *pModal = &pEepData->modalHeader; |
| int16_t ratesArray[Ar5416RateSize]; |
| u8 ht40PowerIncForPdadc = 2; |
| int i; |
| |
| memset(ratesArray, 0, sizeof(ratesArray)); |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; |
| } |
| |
| ath9k_hw_set_4k_power_per_rate_table(ah, chan, |
| &ratesArray[0], cfgCtl, |
| twiceAntennaReduction, |
| powerLimit); |
| |
| ath9k_hw_set_4k_power_cal_table(ah, chan); |
| |
| regulatory->max_power_level = 0; |
| for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { |
| if (ratesArray[i] > MAX_RATE_POWER) |
| ratesArray[i] = MAX_RATE_POWER; |
| |
| if (ratesArray[i] > regulatory->max_power_level) |
| regulatory->max_power_level = ratesArray[i]; |
| } |
| |
| if (test) |
| return; |
| |
| for (i = 0; i < Ar5416RateSize; i++) |
| ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| /* OFDM power per rate */ |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, |
| ATH9K_POW_SM(ratesArray[rate18mb], 24) |
| | ATH9K_POW_SM(ratesArray[rate12mb], 16) |
| | ATH9K_POW_SM(ratesArray[rate9mb], 8) |
| | ATH9K_POW_SM(ratesArray[rate6mb], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, |
| ATH9K_POW_SM(ratesArray[rate54mb], 24) |
| | ATH9K_POW_SM(ratesArray[rate48mb], 16) |
| | ATH9K_POW_SM(ratesArray[rate36mb], 8) |
| | ATH9K_POW_SM(ratesArray[rate24mb], 0)); |
| |
| /* CCK power per rate */ |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, |
| ATH9K_POW_SM(ratesArray[rate2s], 24) |
| | ATH9K_POW_SM(ratesArray[rate2l], 16) |
| | ATH9K_POW_SM(ratesArray[rateXr], 8) |
| | ATH9K_POW_SM(ratesArray[rate1l], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, |
| ATH9K_POW_SM(ratesArray[rate11s], 24) |
| | ATH9K_POW_SM(ratesArray[rate11l], 16) |
| | ATH9K_POW_SM(ratesArray[rate5_5s], 8) |
| | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); |
| |
| /* HT20 power per rate */ |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, |
| ATH9K_POW_SM(ratesArray[rateHt20_3], 24) |
| | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) |
| | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) |
| | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, |
| ATH9K_POW_SM(ratesArray[rateHt20_7], 24) |
| | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) |
| | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) |
| | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); |
| |
| /* HT40 power per rate */ |
| if (IS_CHAN_HT40(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, |
| ATH9K_POW_SM(ratesArray[rateHt40_3] + |
| ht40PowerIncForPdadc, 24) |
| | ATH9K_POW_SM(ratesArray[rateHt40_2] + |
| ht40PowerIncForPdadc, 16) |
| | ATH9K_POW_SM(ratesArray[rateHt40_1] + |
| ht40PowerIncForPdadc, 8) |
| | ATH9K_POW_SM(ratesArray[rateHt40_0] + |
| ht40PowerIncForPdadc, 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, |
| ATH9K_POW_SM(ratesArray[rateHt40_7] + |
| ht40PowerIncForPdadc, 24) |
| | ATH9K_POW_SM(ratesArray[rateHt40_6] + |
| ht40PowerIncForPdadc, 16) |
| | ATH9K_POW_SM(ratesArray[rateHt40_5] + |
| ht40PowerIncForPdadc, 8) |
| | ATH9K_POW_SM(ratesArray[rateHt40_4] + |
| ht40PowerIncForPdadc, 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, |
| ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) |
| | ATH9K_POW_SM(ratesArray[rateExtCck], 16) |
| | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) |
| | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); |
| } |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| static void ath9k_hw_4k_set_gain(struct ath_hw *ah, |
| struct modal_eep_4k_header *pModal, |
| struct ar5416_eeprom_4k *eep, |
| u8 txRxAttenLocal) |
| { |
| REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, |
| pModal->antCtrlChain[0]); |
| |
| REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), |
| (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & |
| ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | |
| SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | |
| SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_3) { |
| txRxAttenLocal = pModal->txRxAttenCh[0]; |
| |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, |
| AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, |
| AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, |
| AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, |
| pModal->xatten2Margin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, |
| AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); |
| |
| /* Set the block 1 value to block 0 value */ |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, |
| AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, |
| pModal->bswMargin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, |
| AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, |
| AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, |
| pModal->xatten2Margin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, |
| AR_PHY_GAIN_2GHZ_XATTEN2_DB, |
| pModal->xatten2Db[0]); |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN, |
| AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN, |
| AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); |
| |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, |
| AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, |
| AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); |
| } |
| |
| /* |
| * Read EEPROM header info and program the device for correct operation |
| * given the channel value. |
| */ |
| static void ath9k_hw_4k_set_board_values(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct modal_eep_4k_header *pModal; |
| struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; |
| struct base_eep_header_4k *pBase = &eep->baseEepHeader; |
| u8 txRxAttenLocal; |
| u8 ob[5], db1[5], db2[5]; |
| u8 ant_div_control1, ant_div_control2; |
| u8 bb_desired_scale; |
| u32 regVal; |
| |
| pModal = &eep->modalHeader; |
| txRxAttenLocal = 23; |
| |
| REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); |
| |
| /* Single chain for 4K EEPROM*/ |
| ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal); |
| |
| /* Initialize Ant Diversity settings from EEPROM */ |
| if (pModal->version >= 3) { |
| ant_div_control1 = pModal->antdiv_ctl1; |
| ant_div_control2 = pModal->antdiv_ctl2; |
| |
| regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); |
| regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); |
| |
| regVal |= SM(ant_div_control1, |
| AR_PHY_9285_ANT_DIV_CTL); |
| regVal |= SM(ant_div_control2, |
| AR_PHY_9285_ANT_DIV_ALT_LNACONF); |
| regVal |= SM((ant_div_control2 >> 2), |
| AR_PHY_9285_ANT_DIV_MAIN_LNACONF); |
| regVal |= SM((ant_div_control1 >> 1), |
| AR_PHY_9285_ANT_DIV_ALT_GAINTB); |
| regVal |= SM((ant_div_control1 >> 2), |
| AR_PHY_9285_ANT_DIV_MAIN_GAINTB); |
| |
| |
| REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal); |
| regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); |
| regVal = REG_READ(ah, AR_PHY_CCK_DETECT); |
| regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); |
| regVal |= SM((ant_div_control1 >> 3), |
| AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); |
| |
| REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal); |
| regVal = REG_READ(ah, AR_PHY_CCK_DETECT); |
| |
| if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { |
| /* |
| * If diversity combining is enabled, |
| * set MAIN to LNA1 and ALT to LNA2 initially. |
| */ |
| regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); |
| regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | |
| AR_PHY_9285_ANT_DIV_ALT_LNACONF)); |
| |
| regVal |= (ATH_ANT_DIV_COMB_LNA1 << |
| AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S); |
| regVal |= (ATH_ANT_DIV_COMB_LNA2 << |
| AR_PHY_9285_ANT_DIV_ALT_LNACONF_S); |
| regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS)); |
| regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S); |
| REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal); |
| } |
| } |
| |
| if (pModal->version >= 2) { |
| ob[0] = pModal->ob_0; |
| ob[1] = pModal->ob_1; |
| ob[2] = pModal->ob_2; |
| ob[3] = pModal->ob_3; |
| ob[4] = pModal->ob_4; |
| |
| db1[0] = pModal->db1_0; |
| db1[1] = pModal->db1_1; |
| db1[2] = pModal->db1_2; |
| db1[3] = pModal->db1_3; |
| db1[4] = pModal->db1_4; |
| |
| db2[0] = pModal->db2_0; |
| db2[1] = pModal->db2_1; |
| db2[2] = pModal->db2_2; |
| db2[3] = pModal->db2_3; |
| db2[4] = pModal->db2_4; |
| } else if (pModal->version == 1) { |
| ob[0] = pModal->ob_0; |
| ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1; |
| db1[0] = pModal->db1_0; |
| db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1; |
| db2[0] = pModal->db2_0; |
| db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1; |
| } else { |
| int i; |
| |
| for (i = 0; i < 5; i++) { |
| ob[i] = pModal->ob_0; |
| db1[i] = pModal->db1_0; |
| db2[i] = pModal->db1_0; |
| } |
| } |
| |
| if (AR_SREV_9271(ah)) { |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9271_AN_RF2G3_OB_cck, |
| AR9271_AN_RF2G3_OB_cck_S, |
| ob[0]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9271_AN_RF2G3_OB_psk, |
| AR9271_AN_RF2G3_OB_psk_S, |
| ob[1]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9271_AN_RF2G3_OB_qam, |
| AR9271_AN_RF2G3_OB_qam_S, |
| ob[2]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9271_AN_RF2G3_DB_1, |
| AR9271_AN_RF2G3_DB_1_S, |
| db1[0]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9271_AN_RF2G4_DB_2, |
| AR9271_AN_RF2G4_DB_2_S, |
| db2[0]); |
| } else { |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_OB_0, |
| AR9285_AN_RF2G3_OB_0_S, |
| ob[0]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_OB_1, |
| AR9285_AN_RF2G3_OB_1_S, |
| ob[1]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_OB_2, |
| AR9285_AN_RF2G3_OB_2_S, |
| ob[2]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_OB_3, |
| AR9285_AN_RF2G3_OB_3_S, |
| ob[3]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_OB_4, |
| AR9285_AN_RF2G3_OB_4_S, |
| ob[4]); |
| |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_DB1_0, |
| AR9285_AN_RF2G3_DB1_0_S, |
| db1[0]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_DB1_1, |
| AR9285_AN_RF2G3_DB1_1_S, |
| db1[1]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G3, |
| AR9285_AN_RF2G3_DB1_2, |
| AR9285_AN_RF2G3_DB1_2_S, |
| db1[2]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB1_3, |
| AR9285_AN_RF2G4_DB1_3_S, |
| db1[3]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB1_4, |
| AR9285_AN_RF2G4_DB1_4_S, db1[4]); |
| |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB2_0, |
| AR9285_AN_RF2G4_DB2_0_S, |
| db2[0]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB2_1, |
| AR9285_AN_RF2G4_DB2_1_S, |
| db2[1]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB2_2, |
| AR9285_AN_RF2G4_DB2_2_S, |
| db2[2]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB2_3, |
| AR9285_AN_RF2G4_DB2_3_S, |
| db2[3]); |
| ath9k_hw_analog_shift_rmw(ah, |
| AR9285_AN_RF2G4, |
| AR9285_AN_RF2G4_DB2_4, |
| AR9285_AN_RF2G4_DB2_4_S, |
| db2[4]); |
| } |
| |
| |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, |
| pModal->switchSettling); |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, |
| pModal->adcDesiredSize); |
| |
| REG_WRITE(ah, AR_PHY_RF_CTL4, |
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | |
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | |
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | |
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); |
| |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, |
| pModal->txEndToRxOn); |
| |
| if (AR_SREV_9271_10(ah)) |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, |
| pModal->txEndToRxOn); |
| REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, |
| pModal->thresh62); |
| REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, |
| pModal->thresh62); |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, |
| pModal->txFrameToDataStart); |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, |
| pModal->txFrameToPaOn); |
| } |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_3) { |
| if (IS_CHAN_HT40(chan)) |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, |
| AR_PHY_SETTLING_SWITCH, |
| pModal->swSettleHt40); |
| } |
| |
| bb_desired_scale = (pModal->bb_scale_smrt_antenna & |
| EEP_4K_BB_DESIRED_SCALE_MASK); |
| if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) { |
| u32 pwrctrl, mask, clr; |
| |
| mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25); |
| pwrctrl = mask * bb_desired_scale; |
| clr = mask * 0x1f; |
| REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr); |
| REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr); |
| REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr); |
| |
| mask = BIT(0)|BIT(5)|BIT(15); |
| pwrctrl = mask * bb_desired_scale; |
| clr = mask * 0x1f; |
| REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr); |
| |
| mask = BIT(0)|BIT(5); |
| pwrctrl = mask * bb_desired_scale; |
| clr = mask * 0x1f; |
| REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr); |
| REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr); |
| } |
| } |
| |
| static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) |
| { |
| #define EEP_MAP4K_SPURCHAN \ |
| (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan) |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| u16 spur_val = AR_NO_SPUR; |
| |
| ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n", |
| i, is2GHz, ah->config.spurchans[i][is2GHz]); |
| |
| switch (ah->config.spurmode) { |
| case SPUR_DISABLE: |
| break; |
| case SPUR_ENABLE_IOCTL: |
| spur_val = ah->config.spurchans[i][is2GHz]; |
| ath_dbg(common, ANI, "Getting spur val from new loc. %d\n", |
| spur_val); |
| break; |
| case SPUR_ENABLE_EEPROM: |
| spur_val = EEP_MAP4K_SPURCHAN; |
| break; |
| } |
| |
| return spur_val; |
| |
| #undef EEP_MAP4K_SPURCHAN |
| } |
| |
| const struct eeprom_ops eep_4k_ops = { |
| .check_eeprom = ath9k_hw_4k_check_eeprom, |
| .get_eeprom = ath9k_hw_4k_get_eeprom, |
| .fill_eeprom = ath9k_hw_4k_fill_eeprom, |
| .dump_eeprom = ath9k_hw_4k_dump_eeprom, |
| .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver, |
| .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev, |
| .set_board_values = ath9k_hw_4k_set_board_values, |
| .set_txpower = ath9k_hw_4k_set_txpower, |
| .get_spur_channel = ath9k_hw_4k_get_spur_channel |
| }; |