| /* |
| * SN2 Platform specific SMP Support |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/spinlock.h> |
| #include <linux/threads.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/mmzone.h> |
| #include <linux/module.h> |
| #include <linux/bitops.h> |
| #include <linux/nodemask.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/sal.h> |
| #include <asm/delay.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/tlb.h> |
| #include <asm/numa.h> |
| #include <asm/hw_irq.h> |
| #include <asm/current.h> |
| #include <asm/sn/sn_cpuid.h> |
| #include <asm/sn/sn_sal.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/shub_mmr.h> |
| #include <asm/sn/nodepda.h> |
| #include <asm/sn/rw_mmr.h> |
| #include <asm/sn/sn_feature_sets.h> |
| |
| DEFINE_PER_CPU(struct ptc_stats, ptcstats); |
| DECLARE_PER_CPU(struct ptc_stats, ptcstats); |
| |
| static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock); |
| |
| /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */ |
| static int sn2_flush_opt = 0; |
| |
| extern unsigned long |
| sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long, |
| volatile unsigned long *, unsigned long, |
| volatile unsigned long *, unsigned long); |
| void |
| sn2_ptc_deadlock_recovery(short *, short, short, int, |
| volatile unsigned long *, unsigned long, |
| volatile unsigned long *, unsigned long); |
| |
| /* |
| * Note: some is the following is captured here to make degugging easier |
| * (the macros make more sense if you see the debug patch - not posted) |
| */ |
| #define sn2_ptctest 0 |
| #define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0) |
| #define max_active_pio(sh1) ((sh1) ? 32 : 7) |
| #define reset_max_active_on_deadlock() 1 |
| #define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock) |
| |
| struct ptc_stats { |
| unsigned long ptc_l; |
| unsigned long change_rid; |
| unsigned long shub_ptc_flushes; |
| unsigned long nodes_flushed; |
| unsigned long deadlocks; |
| unsigned long deadlocks2; |
| unsigned long lock_itc_clocks; |
| unsigned long shub_itc_clocks; |
| unsigned long shub_itc_clocks_max; |
| unsigned long shub_ptc_flushes_not_my_mm; |
| unsigned long shub_ipi_flushes; |
| unsigned long shub_ipi_flushes_itc_clocks; |
| }; |
| |
| #define sn2_ptctest 0 |
| |
| static inline unsigned long wait_piowc(void) |
| { |
| volatile unsigned long *piows; |
| unsigned long zeroval, ws; |
| |
| piows = pda->pio_write_status_addr; |
| zeroval = pda->pio_write_status_val; |
| do { |
| cpu_relax(); |
| } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval); |
| return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0; |
| } |
| |
| /** |
| * sn_migrate - SN-specific task migration actions |
| * @task: Task being migrated to new CPU |
| * |
| * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order. |
| * Context switching user threads which have memory-mapped MMIO may cause |
| * PIOs to issue from separate CPUs, thus the PIO writes must be drained |
| * from the previous CPU's Shub before execution resumes on the new CPU. |
| */ |
| void sn_migrate(struct task_struct *task) |
| { |
| pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu); |
| volatile unsigned long *adr = last_pda->pio_write_status_addr; |
| unsigned long val = last_pda->pio_write_status_val; |
| |
| /* Drain PIO writes from old CPU's Shub */ |
| while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) |
| != val)) |
| cpu_relax(); |
| } |
| |
| void sn_tlb_migrate_finish(struct mm_struct *mm) |
| { |
| /* flush_tlb_mm is inefficient if more than 1 users of mm */ |
| if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1) |
| flush_tlb_mm(mm); |
| } |
| |
| static void |
| sn2_ipi_flush_all_tlb(struct mm_struct *mm) |
| { |
| unsigned long itc; |
| |
| itc = ia64_get_itc(); |
| smp_flush_tlb_cpumask(*mm_cpumask(mm)); |
| itc = ia64_get_itc() - itc; |
| __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc; |
| __get_cpu_var(ptcstats).shub_ipi_flushes++; |
| } |
| |
| /** |
| * sn2_global_tlb_purge - globally purge translation cache of virtual address range |
| * @mm: mm_struct containing virtual address range |
| * @start: start of virtual address range |
| * @end: end of virtual address range |
| * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) |
| * |
| * Purges the translation caches of all processors of the given virtual address |
| * range. |
| * |
| * Note: |
| * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context. |
| * - cpu_vm_mask is converted into a nodemask of the nodes containing the |
| * cpus in cpu_vm_mask. |
| * - if only one bit is set in cpu_vm_mask & it is the current cpu & the |
| * process is purging its own virtual address range, then only the |
| * local TLB needs to be flushed. This flushing can be done using |
| * ptc.l. This is the common case & avoids the global spinlock. |
| * - if multiple cpus have loaded the context, then flushing has to be |
| * done with ptc.g/MMRs under protection of the global ptc_lock. |
| */ |
| |
| void |
| sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start, |
| unsigned long end, unsigned long nbits) |
| { |
| int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid; |
| int mymm = (mm == current->active_mm && mm == current->mm); |
| int use_cpu_ptcga; |
| volatile unsigned long *ptc0, *ptc1; |
| unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0; |
| short nasids[MAX_NUMNODES], nix; |
| nodemask_t nodes_flushed; |
| int active, max_active, deadlock, flush_opt = sn2_flush_opt; |
| |
| if (flush_opt > 2) { |
| sn2_ipi_flush_all_tlb(mm); |
| return; |
| } |
| |
| nodes_clear(nodes_flushed); |
| i = 0; |
| |
| for_each_cpu(cpu, mm_cpumask(mm)) { |
| cnode = cpu_to_node(cpu); |
| node_set(cnode, nodes_flushed); |
| lcpu = cpu; |
| i++; |
| } |
| |
| if (i == 0) |
| return; |
| |
| preempt_disable(); |
| |
| if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) { |
| do { |
| ia64_ptcl(start, nbits << 2); |
| start += (1UL << nbits); |
| } while (start < end); |
| ia64_srlz_i(); |
| __get_cpu_var(ptcstats).ptc_l++; |
| preempt_enable(); |
| return; |
| } |
| |
| if (atomic_read(&mm->mm_users) == 1 && mymm) { |
| flush_tlb_mm(mm); |
| __get_cpu_var(ptcstats).change_rid++; |
| preempt_enable(); |
| return; |
| } |
| |
| if (flush_opt == 2) { |
| sn2_ipi_flush_all_tlb(mm); |
| preempt_enable(); |
| return; |
| } |
| |
| itc = ia64_get_itc(); |
| nix = 0; |
| for_each_node_mask(cnode, nodes_flushed) |
| nasids[nix++] = cnodeid_to_nasid(cnode); |
| |
| rr_value = (mm->context << 3) | REGION_NUMBER(start); |
| |
| shub1 = is_shub1(); |
| if (shub1) { |
| data0 = (1UL << SH1_PTC_0_A_SHFT) | |
| (nbits << SH1_PTC_0_PS_SHFT) | |
| (rr_value << SH1_PTC_0_RID_SHFT) | |
| (1UL << SH1_PTC_0_START_SHFT); |
| ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0); |
| ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1); |
| } else { |
| data0 = (1UL << SH2_PTC_A_SHFT) | |
| (nbits << SH2_PTC_PS_SHFT) | |
| (1UL << SH2_PTC_START_SHFT); |
| ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + |
| (rr_value << SH2_PTC_RID_SHFT)); |
| ptc1 = NULL; |
| } |
| |
| |
| mynasid = get_nasid(); |
| use_cpu_ptcga = local_node_uses_ptc_ga(shub1); |
| max_active = max_active_pio(shub1); |
| |
| itc = ia64_get_itc(); |
| spin_lock_irqsave(PTC_LOCK(shub1), flags); |
| itc2 = ia64_get_itc(); |
| |
| __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc; |
| __get_cpu_var(ptcstats).shub_ptc_flushes++; |
| __get_cpu_var(ptcstats).nodes_flushed += nix; |
| if (!mymm) |
| __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++; |
| |
| if (use_cpu_ptcga && !mymm) { |
| old_rr = ia64_get_rr(start); |
| ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8)); |
| ia64_srlz_d(); |
| } |
| |
| wait_piowc(); |
| do { |
| if (shub1) |
| data1 = start | (1UL << SH1_PTC_1_START_SHFT); |
| else |
| data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK); |
| deadlock = 0; |
| active = 0; |
| for (ibegin = 0, i = 0; i < nix; i++) { |
| nasid = nasids[i]; |
| if (use_cpu_ptcga && unlikely(nasid == mynasid)) { |
| ia64_ptcga(start, nbits << 2); |
| ia64_srlz_i(); |
| } else { |
| ptc0 = CHANGE_NASID(nasid, ptc0); |
| if (ptc1) |
| ptc1 = CHANGE_NASID(nasid, ptc1); |
| pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1); |
| active++; |
| } |
| if (active >= max_active || i == (nix - 1)) { |
| if ((deadlock = wait_piowc())) { |
| if (flush_opt == 1) |
| goto done; |
| sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1); |
| if (reset_max_active_on_deadlock()) |
| max_active = 1; |
| } |
| active = 0; |
| ibegin = i + 1; |
| } |
| } |
| start += (1UL << nbits); |
| } while (start < end); |
| |
| done: |
| itc2 = ia64_get_itc() - itc2; |
| __get_cpu_var(ptcstats).shub_itc_clocks += itc2; |
| if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max) |
| __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2; |
| |
| if (old_rr) { |
| ia64_set_rr(start, old_rr); |
| ia64_srlz_d(); |
| } |
| |
| spin_unlock_irqrestore(PTC_LOCK(shub1), flags); |
| |
| if (flush_opt == 1 && deadlock) { |
| __get_cpu_var(ptcstats).deadlocks++; |
| sn2_ipi_flush_all_tlb(mm); |
| } |
| |
| preempt_enable(); |
| } |
| |
| /* |
| * sn2_ptc_deadlock_recovery |
| * |
| * Recover from PTC deadlocks conditions. Recovery requires stepping thru each |
| * TLB flush transaction. The recovery sequence is somewhat tricky & is |
| * coded in assembly language. |
| */ |
| |
| void |
| sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid, |
| volatile unsigned long *ptc0, unsigned long data0, |
| volatile unsigned long *ptc1, unsigned long data1) |
| { |
| short nasid, i; |
| unsigned long *piows, zeroval, n; |
| |
| __get_cpu_var(ptcstats).deadlocks++; |
| |
| piows = (unsigned long *) pda->pio_write_status_addr; |
| zeroval = pda->pio_write_status_val; |
| |
| |
| for (i=ib; i <= ie; i++) { |
| nasid = nasids[i]; |
| if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid) |
| continue; |
| ptc0 = CHANGE_NASID(nasid, ptc0); |
| if (ptc1) |
| ptc1 = CHANGE_NASID(nasid, ptc1); |
| |
| n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval); |
| __get_cpu_var(ptcstats).deadlocks2 += n; |
| } |
| |
| } |
| |
| /** |
| * sn_send_IPI_phys - send an IPI to a Nasid and slice |
| * @nasid: nasid to receive the interrupt (may be outside partition) |
| * @physid: physical cpuid to receive the interrupt. |
| * @vector: command to send |
| * @delivery_mode: delivery mechanism |
| * |
| * Sends an IPI (interprocessor interrupt) to the processor specified by |
| * @physid |
| * |
| * @delivery_mode can be one of the following |
| * |
| * %IA64_IPI_DM_INT - pend an interrupt |
| * %IA64_IPI_DM_PMI - pend a PMI |
| * %IA64_IPI_DM_NMI - pend an NMI |
| * %IA64_IPI_DM_INIT - pend an INIT interrupt |
| */ |
| void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode) |
| { |
| long val; |
| unsigned long flags = 0; |
| volatile long *p; |
| |
| p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT); |
| val = (1UL << SH_IPI_INT_SEND_SHFT) | |
| (physid << SH_IPI_INT_PID_SHFT) | |
| ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) | |
| ((long)vector << SH_IPI_INT_IDX_SHFT) | |
| (0x000feeUL << SH_IPI_INT_BASE_SHFT); |
| |
| mb(); |
| if (enable_shub_wars_1_1()) { |
| spin_lock_irqsave(&sn2_global_ptc_lock, flags); |
| } |
| pio_phys_write_mmr(p, val); |
| if (enable_shub_wars_1_1()) { |
| wait_piowc(); |
| spin_unlock_irqrestore(&sn2_global_ptc_lock, flags); |
| } |
| |
| } |
| |
| EXPORT_SYMBOL(sn_send_IPI_phys); |
| |
| /** |
| * sn2_send_IPI - send an IPI to a processor |
| * @cpuid: target of the IPI |
| * @vector: command to send |
| * @delivery_mode: delivery mechanism |
| * @redirect: redirect the IPI? |
| * |
| * Sends an IPI (InterProcessor Interrupt) to the processor specified by |
| * @cpuid. @vector specifies the command to send, while @delivery_mode can |
| * be one of the following |
| * |
| * %IA64_IPI_DM_INT - pend an interrupt |
| * %IA64_IPI_DM_PMI - pend a PMI |
| * %IA64_IPI_DM_NMI - pend an NMI |
| * %IA64_IPI_DM_INIT - pend an INIT interrupt |
| */ |
| void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect) |
| { |
| long physid; |
| int nasid; |
| |
| physid = cpu_physical_id(cpuid); |
| nasid = cpuid_to_nasid(cpuid); |
| |
| /* the following is used only when starting cpus at boot time */ |
| if (unlikely(nasid == -1)) |
| ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL); |
| |
| sn_send_IPI_phys(nasid, physid, vector, delivery_mode); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /** |
| * sn_cpu_disable_allowed - Determine if a CPU can be disabled. |
| * @cpu - CPU that is requested to be disabled. |
| * |
| * CPU disable is only allowed on SHub2 systems running with a PROM |
| * that supports CPU disable. It is not permitted to disable the boot processor. |
| */ |
| bool sn_cpu_disable_allowed(int cpu) |
| { |
| if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) { |
| if (cpu != 0) |
| return true; |
| else |
| printk(KERN_WARNING |
| "Disabling the boot processor is not allowed.\n"); |
| |
| } else |
| printk(KERN_WARNING |
| "CPU disable is not supported on this system.\n"); |
| |
| return false; |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| #ifdef CONFIG_PROC_FS |
| |
| #define PTC_BASENAME "sgi_sn/ptc_statistics" |
| |
| static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset) |
| { |
| if (*offset < nr_cpu_ids) |
| return offset; |
| return NULL; |
| } |
| |
| static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset) |
| { |
| (*offset)++; |
| if (*offset < nr_cpu_ids) |
| return offset; |
| return NULL; |
| } |
| |
| static void sn2_ptc_seq_stop(struct seq_file *file, void *data) |
| { |
| } |
| |
| static int sn2_ptc_seq_show(struct seq_file *file, void *data) |
| { |
| struct ptc_stats *stat; |
| int cpu; |
| |
| cpu = *(loff_t *) data; |
| |
| if (!cpu) { |
| seq_printf(file, |
| "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n"); |
| seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt); |
| } |
| |
| if (cpu < nr_cpu_ids && cpu_online(cpu)) { |
| stat = &per_cpu(ptcstats, cpu); |
| seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l, |
| stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed, |
| stat->deadlocks, |
| 1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, |
| 1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, |
| 1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec, |
| stat->shub_ptc_flushes_not_my_mm, |
| stat->deadlocks2, |
| stat->shub_ipi_flushes, |
| 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec); |
| } |
| return 0; |
| } |
| |
| static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) |
| { |
| int cpu; |
| char optstr[64]; |
| |
| if (count == 0 || count > sizeof(optstr)) |
| return -EINVAL; |
| if (copy_from_user(optstr, user, count)) |
| return -EFAULT; |
| optstr[count - 1] = '\0'; |
| sn2_flush_opt = simple_strtoul(optstr, NULL, 0); |
| |
| for_each_online_cpu(cpu) |
| memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats)); |
| |
| return count; |
| } |
| |
| static const struct seq_operations sn2_ptc_seq_ops = { |
| .start = sn2_ptc_seq_start, |
| .next = sn2_ptc_seq_next, |
| .stop = sn2_ptc_seq_stop, |
| .show = sn2_ptc_seq_show |
| }; |
| |
| static int sn2_ptc_proc_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &sn2_ptc_seq_ops); |
| } |
| |
| static const struct file_operations proc_sn2_ptc_operations = { |
| .open = sn2_ptc_proc_open, |
| .read = seq_read, |
| .write = sn2_ptc_proc_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static struct proc_dir_entry *proc_sn2_ptc; |
| |
| static int __init sn2_ptc_init(void) |
| { |
| if (!ia64_platform_is("sn2")) |
| return 0; |
| |
| proc_sn2_ptc = proc_create(PTC_BASENAME, 0444, |
| NULL, &proc_sn2_ptc_operations); |
| if (!proc_sn2_ptc) { |
| printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME); |
| return -EINVAL; |
| } |
| spin_lock_init(&sn2_global_ptc_lock); |
| return 0; |
| } |
| |
| static void __exit sn2_ptc_exit(void) |
| { |
| remove_proc_entry(PTC_BASENAME, NULL); |
| } |
| |
| module_init(sn2_ptc_init); |
| module_exit(sn2_ptc_exit); |
| #endif /* CONFIG_PROC_FS */ |
| |