blob: f1ba7bb792ea2696719e660a1d1d4f4b62ec8c9e [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "dcn35_dccg.h"
#define TO_DCN_DCCG(dccg)\
container_of(dccg, struct dcn_dccg, base)
#define REG(reg) \
(dccg_dcn->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name
#define CTX \
dccg_dcn->base.ctx
#define DC_LOGGER \
dccg->ctx->logger
static void dcn35_set_dppclk_enable(struct dccg *dccg,
uint32_t dpp_inst, uint32_t enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (dpp_inst) {
case 0:
REG_UPDATE(DPPCLK_CTRL, DPPCLK0_EN, enable);
break;
case 1:
REG_UPDATE(DPPCLK_CTRL, DPPCLK1_EN, enable);
break;
case 2:
REG_UPDATE(DPPCLK_CTRL, DPPCLK2_EN, enable);
break;
case 3:
REG_UPDATE(DPPCLK_CTRL, DPPCLK3_EN, enable);
break;
default:
break;
}
}
static void dccg35_update_dpp_dto(struct dccg *dccg, int dpp_inst,
int req_dppclk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst]) {
/*
* Do not update the DPPCLK DTO if the clock is stopped.
*/
return;
}
if (dccg->ref_dppclk && req_dppclk) {
int ref_dppclk = dccg->ref_dppclk;
int modulo, phase;
// phase / modulo = dpp pipe clk / dpp global clk
modulo = 0xff; // use FF at the end
phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk;
if (phase > 0xff) {
ASSERT(false);
phase = 0xff;
}
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, phase,
DPPCLK0_DTO_MODULO, modulo);
dcn35_set_dppclk_enable(dccg, dpp_inst, true);
} else
dcn35_set_dppclk_enable(dccg, dpp_inst, false);
dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk;
}
static void dccg35_get_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
enum pixel_rate_div *k1,
enum pixel_rate_div *k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t val_k1 = PIXEL_RATE_DIV_NA, val_k2 = PIXEL_RATE_DIV_NA;
*k1 = PIXEL_RATE_DIV_NA;
*k2 = PIXEL_RATE_DIV_NA;
switch (otg_inst) {
case 0:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, &val_k1,
OTG0_PIXEL_RATE_DIVK2, &val_k2);
break;
case 1:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, &val_k1,
OTG1_PIXEL_RATE_DIVK2, &val_k2);
break;
case 2:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, &val_k1,
OTG2_PIXEL_RATE_DIVK2, &val_k2);
break;
case 3:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, &val_k1,
OTG3_PIXEL_RATE_DIVK2, &val_k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
*k1 = (enum pixel_rate_div)val_k1;
*k2 = (enum pixel_rate_div)val_k2;
}
static void dccg35_set_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
enum pixel_rate_div k1,
enum pixel_rate_div k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
enum pixel_rate_div cur_k1 = PIXEL_RATE_DIV_NA, cur_k2 = PIXEL_RATE_DIV_NA;
// Don't program 0xF into the register field. Not valid since
// K1 / K2 field is only 1 / 2 bits wide
if (k1 == PIXEL_RATE_DIV_NA || k2 == PIXEL_RATE_DIV_NA) {
BREAK_TO_DEBUGGER();
return;
}
dccg35_get_pixel_rate_div(dccg, otg_inst, &cur_k1, &cur_k2);
if (k1 == cur_k1 && k2 == cur_k2)
return;
switch (otg_inst) {
case 0:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, k1,
OTG0_PIXEL_RATE_DIVK2, k2);
break;
case 1:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, k1,
OTG1_PIXEL_RATE_DIVK2, k2);
break;
case 2:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, k1,
OTG2_PIXEL_RATE_DIVK2, k2);
break;
case 3:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, k1,
OTG3_PIXEL_RATE_DIVK2, k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_dtbclk_p_src(
struct dccg *dccg,
enum streamclk_source src,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t p_src_sel = 0; /* selects dprefclk */
if (src == DTBCLK0)
p_src_sel = 2; /* selects dtbclk0 */
switch (otg_inst) {
case 0:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P0_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P0_SRC_SEL, p_src_sel,
DTBCLK_P0_EN, 1);
break;
case 1:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P1_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P1_SRC_SEL, p_src_sel,
DTBCLK_P1_EN, 1);
break;
case 2:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P2_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P2_SRC_SEL, p_src_sel,
DTBCLK_P2_EN, 1);
break;
case 3:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P3_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P3_SRC_SEL, p_src_sel,
DTBCLK_P3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
/* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */
static void dccg35_set_dtbclk_dto(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* DTO Output Rate / Pixel Rate = 1/4 */
int req_dtbclk_khz = params->pixclk_khz / 4;
if (params->ref_dtbclk_khz && req_dtbclk_khz) {
uint32_t modulo, phase;
switch (params->otg_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 1);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 1);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 1);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 1);
break;
}
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = req_dtbclk_khz * 1000;
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 1);
REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1,
1, 100);
/* program OTG_PIXEL_RATE_DIV for DIVK1 and DIVK2 fields */
dccg35_set_pixel_rate_div(dccg, params->otg_inst, PIXEL_RATE_DIV_BY_1, PIXEL_RATE_DIV_BY_1);
/* The recommended programming sequence to enable DTBCLK DTO to generate
* valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should
* be set only after DTO is enabled
*/
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
PIPE_DTO_SRC_SEL[params->otg_inst], 2);
} else {
switch (params->otg_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 0);
break;
}
REG_UPDATE_2(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 0,
PIPE_DTO_SRC_SEL[params->otg_inst], params->is_hdmi ? 0 : 1);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0);
}
}
static void dccg35_set_dpstreamclk(
struct dccg *dccg,
enum streamclk_source src,
int otg_inst,
int dp_hpo_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set the dtbclk_p source */
dccg35_set_dtbclk_p_src(dccg, src, otg_inst);
/* enabled to select one of the DTBCLKs for pipe */
switch (dp_hpo_inst) {
case 0:
REG_UPDATE_2(DPSTREAMCLK_CNTL,
DPSTREAMCLK0_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK0_SRC_SEL, otg_inst);
break;
case 1:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK1_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK1_SRC_SEL, otg_inst);
break;
case 2:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK2_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK2_SRC_SEL, otg_inst);
break;
case 3:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK3_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK3_SRC_SEL, otg_inst);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk_root_clock_gating(
struct dccg *dccg,
int phy_inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
return;
switch (phy_inst) {
case 0:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYASYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 1:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYBSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 2:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYCSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 3:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYDSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
case 4:
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYESYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_physymclk(
struct dccg *dccg,
int phy_inst,
enum physymclk_clock_source clk_src,
bool force_enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* Force PHYSYMCLK on and Select phyd32clk as the source of clock which is output to PHY through DCIO */
switch (phy_inst) {
case 0:
if (force_enable) {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_EN, 1,
PHYASYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_EN, 0,
PHYASYMCLK_SRC_SEL, 0);
}
break;
case 1:
if (force_enable) {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_EN, 1,
PHYBSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_EN, 0,
PHYBSYMCLK_SRC_SEL, 0);
}
break;
case 2:
if (force_enable) {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_EN, 1,
PHYCSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_EN, 0,
PHYCSYMCLK_SRC_SEL, 0);
}
break;
case 3:
if (force_enable) {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_EN, 1,
PHYDSYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_EN, 0,
PHYDSYMCLK_SRC_SEL, 0);
}
break;
case 4:
if (force_enable) {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_EN, 1,
PHYESYMCLK_SRC_SEL, clk_src);
} else {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_EN, 0,
PHYESYMCLK_SRC_SEL, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_set_valid_pixel_rate(
struct dccg *dccg,
int ref_dtbclk_khz,
int otg_inst,
int pixclk_khz)
{
struct dtbclk_dto_params dto_params = {0};
dto_params.ref_dtbclk_khz = ref_dtbclk_khz;
dto_params.otg_inst = otg_inst;
dto_params.pixclk_khz = pixclk_khz;
dto_params.is_hdmi = true;
dccg35_set_dtbclk_dto(dccg, &dto_params);
}
static void dccg35_dpp_root_clock_control(
struct dccg *dccg,
unsigned int dpp_inst,
bool clock_on)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst] == clock_on)
return;
if (clock_on) {
/* turn off the DTO and leave phase/modulo at max */
dcn35_set_dppclk_enable(dccg, dpp_inst, 0);
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, 0xFF,
DPPCLK0_DTO_MODULO, 0xFF);
} else {
dcn35_set_dppclk_enable(dccg, dpp_inst, 1);
/* turn on the DTO to generate a 0hz clock */
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, 0,
DPPCLK0_DTO_MODULO, 1);
}
dccg->dpp_clock_gated[dpp_inst] = !clock_on;
}
static void dccg35_disable_symclk32_se(
struct dccg *dccg,
int hpo_se_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set refclk as the source for symclk32_se */
switch (hpo_se_inst) {
case 0:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE0_SRC_SEL, 0,
SYMCLK32_SE0_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE0_GATE_DISABLE, 0);
}
break;
case 1:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE1_SRC_SEL, 0,
SYMCLK32_SE1_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE1_GATE_DISABLE, 0);
}
break;
case 2:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE2_SRC_SEL, 0,
SYMCLK32_SE2_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE2_GATE_DISABLE, 0);
}
break;
case 3:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE3_SRC_SEL, 0,
SYMCLK32_SE3_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) {
REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, 0);
// REG_UPDATE(DCCG_GATE_DISABLE_CNTL3,
// SYMCLK32_ROOT_SE3_GATE_DISABLE, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg35_init(struct dccg *dccg)
{
int otg_inst;
/* Set HPO stream encoder to use refclk to avoid case where PHY is
* disabled and SYMCLK32 for HPO SE is sourced from PHYD32CLK which
* will cause DCN to hang.
*/
for (otg_inst = 0; otg_inst < 4; otg_inst++)
dccg35_disable_symclk32_se(dccg, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
for (otg_inst = 0; otg_inst < 2; otg_inst++)
dccg31_disable_symclk32_le(dccg, otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
for (otg_inst = 0; otg_inst < 4; otg_inst++)
dccg314_set_dpstreamclk(dccg, REFCLK, otg_inst,
otg_inst);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
for (otg_inst = 0; otg_inst < 5; otg_inst++)
dccg35_set_physymclk_root_clock_gating(dccg, otg_inst,
false);
/*
dccg35_enable_global_fgcg_rep(
dccg, dccg->ctx->dc->debug.enable_fine_grain_clock_gating.bits
.dccg_global_fgcg_rep);*/
}
void dccg35_enable_global_fgcg_rep(struct dccg *dccg, bool value)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(DCCG_GLOBAL_FGCG_REP_CNTL, DCCG_GLOBAL_FGCG_REP_DIS, !value);
}
static void dccg35_enable_dscclk(struct dccg *dccg, int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
//Disable DTO
switch (inst) {
case 0:
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 1);
break;
case 1:
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 1);
break;
case 2:
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 1);
break;
case 3:
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg35_disable_dscclk(struct dccg *dccg,
int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
return;
switch (inst) {
case 0:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 0);
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 1);
break;
case 1:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 0);
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 1);
break;
case 2:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 0);
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 1);
break;
case 3:
REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 0);
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 1);
break;
default:
return;
}
}
static void dccg35_enable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (link_enc_inst) {
case 0:
REG_UPDATE(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_CLOCK_ENABLE, 1);
break;
case 1:
REG_UPDATE(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_CLOCK_ENABLE, 1);
break;
case 2:
REG_UPDATE(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_CLOCK_ENABLE, 1);
break;
case 3:
REG_UPDATE(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_CLOCK_ENABLE, 1);
break;
case 4:
REG_UPDATE(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_CLOCK_ENABLE, 1);
break;
}
switch (stream_enc_inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_FE_EN, 1,
SYMCLKA_FE_SRC_SEL, link_enc_inst);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_FE_EN, 1,
SYMCLKB_FE_SRC_SEL, link_enc_inst);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_FE_EN, 1,
SYMCLKC_FE_SRC_SEL, link_enc_inst);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_FE_EN, 1,
SYMCLKD_FE_SRC_SEL, link_enc_inst);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_FE_EN, 1,
SYMCLKE_FE_SRC_SEL, link_enc_inst);
break;
}
}
/*get other front end connected to this backend*/
static uint8_t dccg35_get_other_enabled_symclk_fe(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
uint8_t num_enabled_symclk_fe = 0;
uint32_t be_clk_en = 0, fe_clk_en[5] = {0}, be_clk_sel[5] = {0};
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (link_enc_inst) {
case 0:
REG_GET_3(SYMCLKA_CLOCK_ENABLE, SYMCLKA_CLOCK_ENABLE, &be_clk_en,
SYMCLKA_FE_EN, &fe_clk_en[0],
SYMCLKA_FE_SRC_SEL, &be_clk_sel[0]);
break;
case 1:
REG_GET_3(SYMCLKB_CLOCK_ENABLE, SYMCLKB_CLOCK_ENABLE, &be_clk_en,
SYMCLKB_FE_EN, &fe_clk_en[1],
SYMCLKB_FE_SRC_SEL, &be_clk_sel[1]);
break;
case 2:
REG_GET_3(SYMCLKC_CLOCK_ENABLE, SYMCLKC_CLOCK_ENABLE, &be_clk_en,
SYMCLKC_FE_EN, &fe_clk_en[2],
SYMCLKC_FE_SRC_SEL, &be_clk_sel[2]);
break;
case 3:
REG_GET_3(SYMCLKD_CLOCK_ENABLE, SYMCLKD_CLOCK_ENABLE, &be_clk_en,
SYMCLKD_FE_EN, &fe_clk_en[3],
SYMCLKD_FE_SRC_SEL, &be_clk_sel[3]);
break;
case 4:
REG_GET_3(SYMCLKE_CLOCK_ENABLE, SYMCLKE_CLOCK_ENABLE, &be_clk_en,
SYMCLKE_FE_EN, &fe_clk_en[4],
SYMCLKE_FE_SRC_SEL, &be_clk_sel[4]);
break;
}
if (be_clk_en) {
/* for DPMST, this backend could be used by multiple front end.
only disable the backend if this stream_enc_ins is the last active stream enc connected to this back_end*/
uint8_t i;
for (i = 0; i != link_enc_inst && i < sizeof(fe_clk_en); i++) {
if (fe_clk_en[i] && be_clk_sel[i] == link_enc_inst)
num_enabled_symclk_fe++;
}
}
return num_enabled_symclk_fe;
}
static void dccg35_disable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst)
{
uint8_t num_enabled_symclk_fe = 0;
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
switch (stream_enc_inst) {
case 0:
REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_FE_EN, 0,
SYMCLKA_FE_SRC_SEL, 0);
break;
case 1:
REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_FE_EN, 0,
SYMCLKB_FE_SRC_SEL, 0);
break;
case 2:
REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_FE_EN, 0,
SYMCLKC_FE_SRC_SEL, 0);
break;
case 3:
REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_FE_EN, 0,
SYMCLKD_FE_SRC_SEL, 0);
break;
case 4:
REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_FE_EN, 0,
SYMCLKE_FE_SRC_SEL, 0);
break;
}
/*check other enabled symclk fe */
num_enabled_symclk_fe = dccg35_get_other_enabled_symclk_fe(dccg, stream_enc_inst, link_enc_inst);
/*only turn off backend clk if other front end attachecd to this backend are all off,
for mst, only turn off the backend if this is the last front end*/
if (num_enabled_symclk_fe == 0) {
switch (link_enc_inst) {
case 0:
REG_UPDATE(SYMCLKA_CLOCK_ENABLE,
SYMCLKA_CLOCK_ENABLE, 0);
break;
case 1:
REG_UPDATE(SYMCLKB_CLOCK_ENABLE,
SYMCLKB_CLOCK_ENABLE, 0);
break;
case 2:
REG_UPDATE(SYMCLKC_CLOCK_ENABLE,
SYMCLKC_CLOCK_ENABLE, 0);
break;
case 3:
REG_UPDATE(SYMCLKD_CLOCK_ENABLE,
SYMCLKD_CLOCK_ENABLE, 0);
break;
case 4:
REG_UPDATE(SYMCLKE_CLOCK_ENABLE,
SYMCLKE_CLOCK_ENABLE, 0);
break;
}
}
}
static const struct dccg_funcs dccg35_funcs = {
.update_dpp_dto = dccg35_update_dpp_dto,
.dpp_root_clock_control = dccg35_dpp_root_clock_control,
.get_dccg_ref_freq = dccg31_get_dccg_ref_freq,
.dccg_init = dccg35_init,
.set_dpstreamclk = dccg35_set_dpstreamclk,
.enable_symclk32_se = dccg31_enable_symclk32_se,
.disable_symclk32_se = dccg35_disable_symclk32_se,
.enable_symclk32_le = dccg31_enable_symclk32_le,
.disable_symclk32_le = dccg31_disable_symclk32_le,
.set_symclk32_le_root_clock_gating = dccg31_set_symclk32_le_root_clock_gating,
.set_physymclk = dccg35_set_physymclk,
.set_physymclk_root_clock_gating = dccg35_set_physymclk_root_clock_gating,
.set_dtbclk_dto = dccg35_set_dtbclk_dto,
.set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.otg_add_pixel = dccg31_otg_add_pixel,
.otg_drop_pixel = dccg31_otg_drop_pixel,
.set_dispclk_change_mode = dccg31_set_dispclk_change_mode,
.disable_dsc = dccg35_disable_dscclk,
.enable_dsc = dccg35_enable_dscclk,
.set_pixel_rate_div = dccg35_set_pixel_rate_div,
.set_valid_pixel_rate = dccg35_set_valid_pixel_rate,
.enable_symclk_se = dccg35_enable_symclk_se,
.disable_symclk_se = dccg35_disable_symclk_se,
.set_dtbclk_p_src = dccg35_set_dtbclk_p_src,
};
struct dccg *dccg35_create(
struct dc_context *ctx,
const struct dccg_registers *regs,
const struct dccg_shift *dccg_shift,
const struct dccg_mask *dccg_mask)
{
struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL);
struct dccg *base;
if (dccg_dcn == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
base = &dccg_dcn->base;
base->ctx = ctx;
base->funcs = &dccg35_funcs;
dccg_dcn->regs = regs;
dccg_dcn->dccg_shift = dccg_shift;
dccg_dcn->dccg_mask = dccg_mask;
return &dccg_dcn->base;
}