blob: 194dbb08331d23b8f8a511d0e6376e3a8ffe7708 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Red Hat
* Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Author: Rob Clark <robdclark@gmail.com>
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/debugfs.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc.h>
#include <drm/drm_file.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_framebuffer.h>
#include "msm_drv.h"
#include "dpu_kms.h"
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_hw_ctl.h"
#include "dpu_hw_dspp.h"
#include "dpu_hw_dsc.h"
#include "dpu_hw_merge3d.h"
#include "dpu_hw_cdm.h"
#include "dpu_formats.h"
#include "dpu_encoder_phys.h"
#include "dpu_crtc.h"
#include "dpu_trace.h"
#include "dpu_core_irq.h"
#include "disp/msm_disp_snapshot.h"
#define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
#define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
/*
* Two to anticipate panels that can do cmd/vid dynamic switching
* plan is to create all possible physical encoder types, and switch between
* them at runtime
*/
#define NUM_PHYS_ENCODER_TYPES 2
#define MAX_PHYS_ENCODERS_PER_VIRTUAL \
(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
#define MAX_CHANNELS_PER_ENC 2
#define IDLE_SHORT_TIMEOUT 1
#define MAX_HDISPLAY_SPLIT 1080
/* timeout in frames waiting for frame done */
#define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
/**
* enum dpu_enc_rc_events - events for resource control state machine
* @DPU_ENC_RC_EVENT_KICKOFF:
* This event happens at NORMAL priority.
* Event that signals the start of the transfer. When this event is
* received, enable MDP/DSI core clocks. Regardless of the previous
* state, the resource should be in ON state at the end of this event.
* @DPU_ENC_RC_EVENT_FRAME_DONE:
* This event happens at INTERRUPT level.
* Event signals the end of the data transfer after the PP FRAME_DONE
* event. At the end of this event, a delayed work is scheduled to go to
* IDLE_PC state after IDLE_TIMEOUT time.
* @DPU_ENC_RC_EVENT_PRE_STOP:
* This event happens at NORMAL priority.
* This event, when received during the ON state, leave the RC STATE
* in the PRE_OFF state. It should be followed by the STOP event as
* part of encoder disable.
* If received during IDLE or OFF states, it will do nothing.
* @DPU_ENC_RC_EVENT_STOP:
* This event happens at NORMAL priority.
* When this event is received, disable all the MDP/DSI core clocks, and
* disable IRQs. It should be called from the PRE_OFF or IDLE states.
* IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
* PRE_OFF is expected when PRE_STOP was executed during the ON state.
* Resource state should be in OFF at the end of the event.
* @DPU_ENC_RC_EVENT_ENTER_IDLE:
* This event happens at NORMAL priority from a work item.
* Event signals that there were no frame updates for IDLE_TIMEOUT time.
* This would disable MDP/DSI core clocks and change the resource state
* to IDLE.
*/
enum dpu_enc_rc_events {
DPU_ENC_RC_EVENT_KICKOFF = 1,
DPU_ENC_RC_EVENT_FRAME_DONE,
DPU_ENC_RC_EVENT_PRE_STOP,
DPU_ENC_RC_EVENT_STOP,
DPU_ENC_RC_EVENT_ENTER_IDLE
};
/*
* enum dpu_enc_rc_states - states that the resource control maintains
* @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
* @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
* @DPU_ENC_RC_STATE_ON: Resource is in ON state
* @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
* @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
*/
enum dpu_enc_rc_states {
DPU_ENC_RC_STATE_OFF,
DPU_ENC_RC_STATE_PRE_OFF,
DPU_ENC_RC_STATE_ON,
DPU_ENC_RC_STATE_IDLE
};
/**
* struct dpu_encoder_virt - virtual encoder. Container of one or more physical
* encoders. Virtual encoder manages one "logical" display. Physical
* encoders manage one intf block, tied to a specific panel/sub-panel.
* Virtual encoder defers as much as possible to the physical encoders.
* Virtual encoder registers itself with the DRM Framework as the encoder.
* @base: drm_encoder base class for registration with DRM
* @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
* @enabled: True if the encoder is active, protected by enc_lock
* @num_phys_encs: Actual number of physical encoders contained.
* @phys_encs: Container of physical encoders managed.
* @cur_master: Pointer to the current master in this mode. Optimization
* Only valid after enable. Cleared as disable.
* @cur_slave: As above but for the slave encoder.
* @hw_pp: Handle to the pingpong blocks used for the display. No.
* pingpong blocks can be different than num_phys_encs.
* @hw_dsc: Handle to the DSC blocks used for the display.
* @dsc_mask: Bitmask of used DSC blocks.
* @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
* for partial update right-only cases, such as pingpong
* split where virtual pingpong does not generate IRQs
* @crtc: Pointer to the currently assigned crtc. Normally you
* would use crtc->state->encoder_mask to determine the
* link between encoder/crtc. However in this case we need
* to track crtc in the disable() hook which is called
* _after_ encoder_mask is cleared.
* @connector: If a mode is set, cached pointer to the active connector
* @enc_lock: Lock around physical encoder
* create/destroy/enable/disable
* @frame_busy_mask: Bitmask tracking which phys_enc we are still
* busy processing current command.
* Bit0 = phys_encs[0] etc.
* @crtc_frame_event_cb: callback handler for frame event
* @crtc_frame_event_cb_data: callback handler private data
* @frame_done_timeout_ms: frame done timeout in ms
* @frame_done_timeout_cnt: atomic counter tracking the number of frame
* done timeouts
* @frame_done_timer: watchdog timer for frame done event
* @disp_info: local copy of msm_display_info struct
* @idle_pc_supported: indicate if idle power collaps is supported
* @rc_lock: resource control mutex lock to protect
* virt encoder over various state changes
* @rc_state: resource controller state
* @delayed_off_work: delayed worker to schedule disabling of
* clks and resources after IDLE_TIMEOUT time.
* @topology: topology of the display
* @idle_timeout: idle timeout duration in milliseconds
* @wide_bus_en: wide bus is enabled on this interface
* @dsc: drm_dsc_config pointer, for DSC-enabled encoders
*/
struct dpu_encoder_virt {
struct drm_encoder base;
spinlock_t enc_spinlock;
bool enabled;
unsigned int num_phys_encs;
struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
struct dpu_encoder_phys *cur_master;
struct dpu_encoder_phys *cur_slave;
struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
unsigned int dsc_mask;
bool intfs_swapped;
struct drm_crtc *crtc;
struct drm_connector *connector;
struct mutex enc_lock;
DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
void (*crtc_frame_event_cb)(void *, u32 event);
void *crtc_frame_event_cb_data;
atomic_t frame_done_timeout_ms;
atomic_t frame_done_timeout_cnt;
struct timer_list frame_done_timer;
struct msm_display_info disp_info;
bool idle_pc_supported;
struct mutex rc_lock;
enum dpu_enc_rc_states rc_state;
struct delayed_work delayed_off_work;
struct msm_display_topology topology;
u32 idle_timeout;
bool wide_bus_en;
/* DSC configuration */
struct drm_dsc_config *dsc;
};
#define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
static u32 dither_matrix[DITHER_MATRIX_SZ] = {
15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
};
bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
{
const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
return dpu_enc->wide_bus_en;
}
bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
{
const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
return dpu_enc->dsc ? true : false;
}
int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
int i, num_intf = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->hw_intf && phys->hw_intf->ops.setup_misr
&& phys->hw_intf->ops.collect_misr)
num_intf++;
}
return num_intf;
}
void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
int i;
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
continue;
phys->hw_intf->ops.setup_misr(phys->hw_intf);
}
}
int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
{
struct dpu_encoder_virt *dpu_enc;
int i, rc = 0, entries_added = 0;
if (!drm_enc->crtc) {
DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
continue;
rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
if (rc)
return rc;
entries_added++;
}
return entries_added;
}
static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
{
struct dpu_hw_dither_cfg dither_cfg = { 0 };
if (!hw_pp->ops.setup_dither)
return;
switch (bpc) {
case 6:
dither_cfg.c0_bitdepth = 6;
dither_cfg.c1_bitdepth = 6;
dither_cfg.c2_bitdepth = 6;
dither_cfg.c3_bitdepth = 6;
dither_cfg.temporal_en = 0;
break;
default:
hw_pp->ops.setup_dither(hw_pp, NULL);
return;
}
memcpy(&dither_cfg.matrix, dither_matrix,
sizeof(u32) * DITHER_MATRIX_SZ);
hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
}
static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
{
switch (intf_mode) {
case INTF_MODE_VIDEO:
return "INTF_MODE_VIDEO";
case INTF_MODE_CMD:
return "INTF_MODE_CMD";
case INTF_MODE_WB_BLOCK:
return "INTF_MODE_WB_BLOCK";
case INTF_MODE_WB_LINE:
return "INTF_MODE_WB_LINE";
default:
return "INTF_MODE_UNKNOWN";
}
}
void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
enum dpu_intr_idx intr_idx)
{
DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
DRMID(phys_enc->parent),
dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
DPU_ENCODER_FRAME_EVENT_ERROR);
}
static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
u32 irq_idx, struct dpu_encoder_wait_info *info);
int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
unsigned int irq_idx,
void (*func)(void *arg),
struct dpu_encoder_wait_info *wait_info)
{
u32 irq_status;
int ret;
if (!wait_info) {
DPU_ERROR("invalid params\n");
return -EINVAL;
}
/* note: do master / slave checking outside */
/* return EWOULDBLOCK since we know the wait isn't necessary */
if (phys_enc->enable_state == DPU_ENC_DISABLED) {
DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
DRMID(phys_enc->parent), func,
DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
return -EWOULDBLOCK;
}
if (irq_idx < 0) {
DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
DRMID(phys_enc->parent), func);
return 0;
}
DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
DRMID(phys_enc->parent), func,
DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
ret = dpu_encoder_helper_wait_event_timeout(
DRMID(phys_enc->parent),
irq_idx,
wait_info);
if (ret <= 0) {
irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
if (irq_status) {
unsigned long flags;
DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
DRMID(phys_enc->parent), func,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
local_irq_save(flags);
func(phys_enc);
local_irq_restore(flags);
ret = 0;
} else {
ret = -ETIMEDOUT;
DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
DRMID(phys_enc->parent), func,
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
} else {
ret = 0;
trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
phys_enc->hw_pp->idx - PINGPONG_0,
atomic_read(wait_info->atomic_cnt));
}
return ret;
}
int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
return phys ? atomic_read(&phys->vsync_cnt) : 0;
}
int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
int linecount = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
phys = dpu_enc ? dpu_enc->cur_master : NULL;
if (phys && phys->ops.get_line_count)
linecount = phys->ops.get_line_count(phys);
return linecount;
}
void dpu_encoder_helper_split_config(
struct dpu_encoder_phys *phys_enc,
enum dpu_intf interface)
{
struct dpu_encoder_virt *dpu_enc;
struct split_pipe_cfg cfg = { 0 };
struct dpu_hw_mdp *hw_mdptop;
struct msm_display_info *disp_info;
if (!phys_enc->hw_mdptop || !phys_enc->parent) {
DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
return;
}
dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
hw_mdptop = phys_enc->hw_mdptop;
disp_info = &dpu_enc->disp_info;
if (disp_info->intf_type != INTF_DSI)
return;
/**
* disable split modes since encoder will be operating in as the only
* encoder, either for the entire use case in the case of, for example,
* single DSI, or for this frame in the case of left/right only partial
* update.
*/
if (phys_enc->split_role == ENC_ROLE_SOLO) {
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
return;
}
cfg.en = true;
cfg.mode = phys_enc->intf_mode;
cfg.intf = interface;
if (cfg.en && phys_enc->ops.needs_single_flush &&
phys_enc->ops.needs_single_flush(phys_enc))
cfg.split_flush_en = true;
if (phys_enc->split_role == ENC_ROLE_MASTER) {
DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
if (hw_mdptop->ops.setup_split_pipe)
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
}
}
bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
int i, intf_count = 0, num_dsc = 0;
for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
if (dpu_enc->phys_encs[i])
intf_count++;
/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
if (dpu_enc->dsc)
num_dsc = 2;
return (num_dsc > 0) && (num_dsc > intf_count);
}
static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv = drm_enc->dev->dev_private;
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
int index = dpu_enc->disp_info.h_tile_instance[0];
if (dpu_enc->disp_info.intf_type == INTF_DSI)
return msm_dsi_get_dsc_config(priv->dsi[index]);
return NULL;
}
static struct msm_display_topology dpu_encoder_get_topology(
struct dpu_encoder_virt *dpu_enc,
struct dpu_kms *dpu_kms,
struct drm_display_mode *mode,
struct drm_crtc_state *crtc_state,
struct drm_dsc_config *dsc)
{
struct msm_display_topology topology = {0};
int i, intf_count = 0;
for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
if (dpu_enc->phys_encs[i])
intf_count++;
/* Datapath topology selection
*
* Dual display
* 2 LM, 2 INTF ( Split display using 2 interfaces)
*
* Single display
* 1 LM, 1 INTF
* 2 LM, 1 INTF (stream merge to support high resolution interfaces)
*
* Add dspps to the reservation requirements if ctm is requested
*/
if (intf_count == 2)
topology.num_lm = 2;
else if (!dpu_kms->catalog->caps->has_3d_merge)
topology.num_lm = 1;
else
topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
if (crtc_state->ctm)
topology.num_dspp = topology.num_lm;
topology.num_intf = intf_count;
if (dsc) {
/*
* In case of Display Stream Compression (DSC), we would use
* 2 DSC encoders, 2 layer mixers and 1 interface
* this is power optimal and can drive up to (including) 4k
* screens
*/
topology.num_dsc = 2;
topology.num_lm = 2;
topology.num_intf = 1;
}
return topology;
}
static int dpu_encoder_virt_atomic_check(
struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct drm_display_mode *adj_mode;
struct msm_display_topology topology;
struct dpu_global_state *global_state;
struct drm_framebuffer *fb;
struct drm_dsc_config *dsc;
int ret = 0;
if (!drm_enc || !crtc_state || !conn_state) {
DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
adj_mode = &crtc_state->adjusted_mode;
global_state = dpu_kms_get_global_state(crtc_state->state);
if (IS_ERR(global_state))
return PTR_ERR(global_state);
trace_dpu_enc_atomic_check(DRMID(drm_enc));
dsc = dpu_encoder_get_dsc_config(drm_enc);
topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
/*
* Use CDM only for writeback at the moment as other interfaces cannot handle it.
* if writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
* earlier.
*/
if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
fb = conn_state->writeback_job->fb;
if (fb && DPU_FORMAT_IS_YUV(to_dpu_format(msm_framebuffer_format(fb))))
topology.needs_cdm = true;
if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
crtc_state->mode_changed = true;
else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
crtc_state->mode_changed = true;
}
/*
* Release and Allocate resources on every modeset
* Dont allocate when active is false.
*/
if (drm_atomic_crtc_needs_modeset(crtc_state)) {
dpu_rm_release(global_state, drm_enc);
if (!crtc_state->active_changed || crtc_state->enable)
ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
drm_enc, crtc_state, topology);
}
trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
return ret;
}
static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
struct msm_display_info *disp_info)
{
struct dpu_vsync_source_cfg vsync_cfg = { 0 };
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_hw_mdp *hw_mdptop;
struct drm_encoder *drm_enc;
struct dpu_encoder_phys *phys_enc;
int i;
if (!dpu_enc || !disp_info) {
DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
dpu_enc != NULL, disp_info != NULL);
return;
} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
DPU_ERROR("invalid num phys enc %d/%d\n",
dpu_enc->num_phys_encs,
(int) ARRAY_SIZE(dpu_enc->hw_pp));
return;
}
drm_enc = &dpu_enc->base;
/* this pointers are checked in virt_enable_helper */
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
hw_mdptop = dpu_kms->hw_mdp;
if (!hw_mdptop) {
DPU_ERROR("invalid mdptop\n");
return;
}
if (hw_mdptop->ops.setup_vsync_source &&
disp_info->is_cmd_mode) {
for (i = 0; i < dpu_enc->num_phys_encs; i++)
vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
vsync_cfg.pp_count = dpu_enc->num_phys_encs;
vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
if (disp_info->is_te_using_watchdog_timer)
vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
else
vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys_enc = dpu_enc->phys_encs[i];
if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
vsync_cfg.vsync_source);
}
}
}
static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
int i;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
phys->ops.irq_enable(phys);
}
}
static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
int i;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
phys->ops.irq_disable(phys);
}
}
static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_encoder_virt *dpu_enc;
dpu_enc = to_dpu_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
trace_dpu_enc_rc_enable(DRMID(drm_enc));
if (!dpu_enc->cur_master) {
DPU_ERROR("encoder master not set\n");
return;
}
/* enable DPU core clks */
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* enable all the irq */
_dpu_encoder_irq_enable(drm_enc);
}
static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
{
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_encoder_virt *dpu_enc;
dpu_enc = to_dpu_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
trace_dpu_enc_rc_disable(DRMID(drm_enc));
if (!dpu_enc->cur_master) {
DPU_ERROR("encoder master not set\n");
return;
}
/* disable all the irq */
_dpu_encoder_irq_disable(drm_enc);
/* disable DPU core clks */
pm_runtime_put_sync(&dpu_kms->pdev->dev);
}
static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
u32 sw_event)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
bool is_vid_mode = false;
if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
DPU_ERROR("invalid parameters\n");
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
priv = drm_enc->dev->dev_private;
is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
/*
* when idle_pc is not supported, process only KICKOFF, STOP and MODESET
* events and return early for other events (ie wb display).
*/
if (!dpu_enc->idle_pc_supported &&
(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
sw_event != DPU_ENC_RC_EVENT_STOP &&
sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
return 0;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
dpu_enc->rc_state, "begin");
switch (sw_event) {
case DPU_ENC_RC_EVENT_KICKOFF:
/* cancel delayed off work, if any */
if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&dpu_enc->rc_lock);
/* return if the resource control is already in ON state */
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
DRMID(drm_enc), sw_event);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return -EINVAL;
}
if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
_dpu_encoder_irq_enable(drm_enc);
else
_dpu_encoder_resource_enable(drm_enc);
dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"kickoff");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_FRAME_DONE:
/*
* mutex lock is not used as this event happens at interrupt
* context. And locking is not required as, the other events
* like KICKOFF and STOP does a wait-for-idle before executing
* the resource_control
*/
if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
return -EINVAL;
}
/*
* schedule off work item only when there are no
* frames pending
*/
if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
DRM_DEBUG_KMS("id:%d skip schedule work\n",
DRMID(drm_enc));
return 0;
}
queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
msecs_to_jiffies(dpu_enc->idle_timeout));
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"frame done");
break;
case DPU_ENC_RC_EVENT_PRE_STOP:
/* cancel delayed off work, if any */
if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
sw_event);
mutex_lock(&dpu_enc->rc_lock);
if (is_vid_mode &&
dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
_dpu_encoder_irq_enable(drm_enc);
}
/* skip if is already OFF or IDLE, resources are off already */
else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
DRMID(drm_enc), sw_event,
dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"pre stop");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_STOP:
mutex_lock(&dpu_enc->rc_lock);
/* return if the resource control is already in OFF state */
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
DRMID(drm_enc), sw_event);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return -EINVAL;
}
/**
* expect to arrive here only if in either idle state or pre-off
* and in IDLE state the resources are already disabled
*/
if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
_dpu_encoder_resource_disable(drm_enc);
dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"stop");
mutex_unlock(&dpu_enc->rc_lock);
break;
case DPU_ENC_RC_EVENT_ENTER_IDLE:
mutex_lock(&dpu_enc->rc_lock);
if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
/*
* if we are in ON but a frame was just kicked off,
* ignore the IDLE event, it's probably a stale timer event
*/
if (dpu_enc->frame_busy_mask[0]) {
DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
DRMID(drm_enc), sw_event, dpu_enc->rc_state);
mutex_unlock(&dpu_enc->rc_lock);
return 0;
}
if (is_vid_mode)
_dpu_encoder_irq_disable(drm_enc);
else
_dpu_encoder_resource_disable(drm_enc);
dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"idle");
mutex_unlock(&dpu_enc->rc_lock);
break;
default:
DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
sw_event);
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"error");
break;
}
trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
dpu_enc->idle_pc_supported, dpu_enc->rc_state,
"end");
return 0;
}
void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
struct drm_writeback_job *job)
{
struct dpu_encoder_virt *dpu_enc;
int i;
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.prepare_wb_job)
phys->ops.prepare_wb_job(phys, job);
}
}
void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
struct drm_writeback_job *job)
{
struct dpu_encoder_virt *dpu_enc;
int i;
dpu_enc = to_dpu_encoder_virt(drm_enc);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.cleanup_wb_job)
phys->ops.cleanup_wb_job(phys, job);
}
}
static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct dpu_encoder_virt *dpu_enc;
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
struct dpu_crtc_state *cstate;
struct dpu_global_state *global_state;
struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
int num_lm, num_ctl, num_pp, num_dsc;
unsigned int dsc_mask = 0;
int i;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
priv = drm_enc->dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
global_state = dpu_kms_get_existing_global_state(dpu_kms);
if (IS_ERR_OR_NULL(global_state)) {
DPU_ERROR("Failed to get global state");
return;
}
trace_dpu_enc_mode_set(DRMID(drm_enc));
/* Query resource that have been reserved in atomic check step. */
num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
ARRAY_SIZE(hw_pp));
num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
ARRAY_SIZE(hw_dspp));
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
: NULL;
num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_DSC,
hw_dsc, ARRAY_SIZE(hw_dsc));
for (i = 0; i < num_dsc; i++) {
dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
}
dpu_enc->dsc_mask = dsc_mask;
if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
struct dpu_hw_blk *hw_cdm = NULL;
dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
drm_enc->base.id, DPU_HW_BLK_CDM,
&hw_cdm, 1);
dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
}
cstate = to_dpu_crtc_state(crtc_state);
for (i = 0; i < num_lm; i++) {
int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
}
cstate->num_mixers = num_lm;
dpu_enc->connector = conn_state->connector;
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (!dpu_enc->hw_pp[i]) {
DPU_ERROR_ENC(dpu_enc,
"no pp block assigned at idx: %d\n", i);
return;
}
if (!hw_ctl[i]) {
DPU_ERROR_ENC(dpu_enc,
"no ctl block assigned at idx: %d\n", i);
return;
}
phys->hw_pp = dpu_enc->hw_pp[i];
phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
phys->cached_mode = crtc_state->adjusted_mode;
}
}
static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int i;
if (!drm_enc || !drm_enc->dev) {
DPU_ERROR("invalid parameters\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
if (!dpu_enc || !dpu_enc->cur_master) {
DPU_ERROR("invalid dpu encoder/master\n");
return;
}
if (dpu_enc->disp_info.intf_type == INTF_DP &&
dpu_enc->cur_master->hw_mdptop &&
dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
dpu_enc->cur_master->hw_mdptop);
_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
if (dpu_enc->disp_info.intf_type == INTF_DSI &&
!WARN_ON(dpu_enc->num_phys_encs == 0)) {
unsigned bpc = dpu_enc->connector->display_info.bpc;
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
if (!dpu_enc->hw_pp[i])
continue;
_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
}
}
}
void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
mutex_lock(&dpu_enc->enc_lock);
if (!dpu_enc->enabled)
goto out;
if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
_dpu_encoder_virt_enable_helper(drm_enc);
out:
mutex_unlock(&dpu_enc->enc_lock);
}
static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
struct drm_atomic_state *state)
{
struct dpu_encoder_virt *dpu_enc = NULL;
int ret = 0;
struct drm_display_mode *cur_mode = NULL;
struct msm_drm_private *priv = drm_enc->dev->dev_private;
struct msm_display_info *disp_info;
int index;
dpu_enc = to_dpu_encoder_virt(drm_enc);
disp_info = &dpu_enc->disp_info;
index = disp_info->h_tile_instance[0];
dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
if (disp_info->intf_type == INTF_DP)
dpu_enc->wide_bus_en = msm_dp_wide_bus_available(priv->dp[index]);
else if (disp_info->intf_type == INTF_DSI)
dpu_enc->wide_bus_en = msm_dsi_wide_bus_enabled(priv->dsi[index]);
mutex_lock(&dpu_enc->enc_lock);
cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
cur_mode->vdisplay);
/* always enable slave encoder before master */
if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
if (ret) {
DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
ret);
goto out;
}
_dpu_encoder_virt_enable_helper(drm_enc);
dpu_enc->enabled = true;
out:
mutex_unlock(&dpu_enc->enc_lock);
}
static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
struct drm_atomic_state *state)
{
struct dpu_encoder_virt *dpu_enc = NULL;
struct drm_crtc *crtc;
struct drm_crtc_state *old_state = NULL;
int i = 0;
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
if (crtc)
old_state = drm_atomic_get_old_crtc_state(state, crtc);
/*
* The encoder is already disabled if self refresh mode was set earlier,
* in the old_state for the corresponding crtc.
*/
if (old_state && old_state->self_refresh_active)
return;
mutex_lock(&dpu_enc->enc_lock);
dpu_enc->enabled = false;
trace_dpu_enc_disable(DRMID(drm_enc));
/* wait for idle */
dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.disable)
phys->ops.disable(phys);
}
/* after phys waits for frame-done, should be no more frames pending */
if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
del_timer_sync(&dpu_enc->frame_done_timer);
}
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
dpu_enc->connector = NULL;
DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
mutex_unlock(&dpu_enc->enc_lock);
}
static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
struct dpu_rm *dpu_rm,
enum dpu_intf_type type, u32 controller_id)
{
int i = 0;
if (type == INTF_WB)
return NULL;
for (i = 0; i < catalog->intf_count; i++) {
if (catalog->intf[i].type == type
&& catalog->intf[i].controller_id == controller_id) {
return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
}
}
return NULL;
}
void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phy_enc)
{
struct dpu_encoder_virt *dpu_enc = NULL;
unsigned long lock_flags;
if (!drm_enc || !phy_enc)
return;
DPU_ATRACE_BEGIN("encoder_vblank_callback");
dpu_enc = to_dpu_encoder_virt(drm_enc);
atomic_inc(&phy_enc->vsync_cnt);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
if (dpu_enc->crtc)
dpu_crtc_vblank_callback(dpu_enc->crtc);
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
DPU_ATRACE_END("encoder_vblank_callback");
}
void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phy_enc)
{
if (!phy_enc)
return;
DPU_ATRACE_BEGIN("encoder_underrun_callback");
atomic_inc(&phy_enc->underrun_cnt);
/* trigger dump only on the first underrun */
if (atomic_read(&phy_enc->underrun_cnt) == 1)
msm_disp_snapshot_state(drm_enc->dev);
trace_dpu_enc_underrun_cb(DRMID(drm_enc),
atomic_read(&phy_enc->underrun_cnt));
DPU_ATRACE_END("encoder_underrun_callback");
}
void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
/* crtc should always be cleared before re-assigning */
WARN_ON(crtc && dpu_enc->crtc);
dpu_enc->crtc = crtc;
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
struct drm_crtc *crtc, bool enable)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
int i;
trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
if (dpu_enc->crtc != crtc) {
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
return;
}
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->ops.control_vblank_irq)
phys->ops.control_vblank_irq(phys, enable);
}
}
void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
void (*frame_event_cb)(void *, u32 event),
void *frame_event_cb_data)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned long lock_flags;
bool enable;
enable = frame_event_cb ? true : false;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
dpu_enc->crtc_frame_event_cb = frame_event_cb;
dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
void dpu_encoder_frame_done_callback(
struct drm_encoder *drm_enc,
struct dpu_encoder_phys *ready_phys, u32 event)
{
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
unsigned int i;
if (event & (DPU_ENCODER_FRAME_EVENT_DONE
| DPU_ENCODER_FRAME_EVENT_ERROR
| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
if (!dpu_enc->frame_busy_mask[0]) {
/**
* suppress frame_done without waiter,
* likely autorefresh
*/
trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
return;
}
/* One of the physical encoders has become idle */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
if (dpu_enc->phys_encs[i] == ready_phys) {
trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
dpu_enc->frame_busy_mask[0]);
clear_bit(i, dpu_enc->frame_busy_mask);
}
}
if (!dpu_enc->frame_busy_mask[0]) {
atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
del_timer(&dpu_enc->frame_done_timer);
dpu_encoder_resource_control(drm_enc,
DPU_ENC_RC_EVENT_FRAME_DONE);
if (dpu_enc->crtc_frame_event_cb)
dpu_enc->crtc_frame_event_cb(
dpu_enc->crtc_frame_event_cb_data,
event);
}
} else {
if (dpu_enc->crtc_frame_event_cb)
dpu_enc->crtc_frame_event_cb(
dpu_enc->crtc_frame_event_cb_data, event);
}
}
static void dpu_encoder_off_work(struct work_struct *work)
{
struct dpu_encoder_virt *dpu_enc = container_of(work,
struct dpu_encoder_virt, delayed_off_work.work);
dpu_encoder_resource_control(&dpu_enc->base,
DPU_ENC_RC_EVENT_ENTER_IDLE);
dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
DPU_ENCODER_FRAME_EVENT_IDLE);
}
/**
* _dpu_encoder_trigger_flush - trigger flush for a physical encoder
* @drm_enc: Pointer to drm encoder structure
* @phys: Pointer to physical encoder structure
* @extra_flush_bits: Additional bit mask to include in flush trigger
*/
static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
{
struct dpu_hw_ctl *ctl;
int pending_kickoff_cnt;
u32 ret = UINT_MAX;
if (!phys->hw_pp) {
DPU_ERROR("invalid pingpong hw\n");
return;
}
ctl = phys->hw_ctl;
if (!ctl->ops.trigger_flush) {
DPU_ERROR("missing trigger cb\n");
return;
}
pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
if (extra_flush_bits && ctl->ops.update_pending_flush)
ctl->ops.update_pending_flush(ctl, extra_flush_bits);
ctl->ops.trigger_flush(ctl);
if (ctl->ops.get_pending_flush)
ret = ctl->ops.get_pending_flush(ctl);
trace_dpu_enc_trigger_flush(DRMID(drm_enc),
dpu_encoder_helper_get_intf_type(phys->intf_mode),
phys->hw_intf ? phys->hw_intf->idx : -1,
phys->hw_wb ? phys->hw_wb->idx : -1,
pending_kickoff_cnt, ctl->idx,
extra_flush_bits, ret);
}
/**
* _dpu_encoder_trigger_start - trigger start for a physical encoder
* @phys: Pointer to physical encoder structure
*/
static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
{
if (!phys) {
DPU_ERROR("invalid argument(s)\n");
return;
}
if (!phys->hw_pp) {
DPU_ERROR("invalid pingpong hw\n");
return;
}
if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
phys->ops.trigger_start(phys);
}
void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *ctl;
ctl = phys_enc->hw_ctl;
if (ctl->ops.trigger_start) {
ctl->ops.trigger_start(ctl);
trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
}
}
static int dpu_encoder_helper_wait_event_timeout(
int32_t drm_id,
unsigned int irq_idx,
struct dpu_encoder_wait_info *info)
{
int rc = 0;
s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
s64 jiffies = msecs_to_jiffies(info->timeout_ms);
s64 time;
do {
rc = wait_event_timeout(*(info->wq),
atomic_read(info->atomic_cnt) == 0, jiffies);
time = ktime_to_ms(ktime_get());
trace_dpu_enc_wait_event_timeout(drm_id,
DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
rc, time,
expected_time,
atomic_read(info->atomic_cnt));
/* If we timed out, counter is valid and time is less, wait again */
} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
(time < expected_time));
return rc;
}
static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_hw_ctl *ctl;
int rc;
struct drm_encoder *drm_enc;
dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
ctl = phys_enc->hw_ctl;
drm_enc = phys_enc->parent;
if (!ctl->ops.reset)
return;
DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
ctl->idx);
rc = ctl->ops.reset(ctl);
if (rc) {
DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
msm_disp_snapshot_state(drm_enc->dev);
}
phys_enc->enable_state = DPU_ENC_ENABLED;
}
/**
* _dpu_encoder_kickoff_phys - handle physical encoder kickoff
* Iterate through the physical encoders and perform consolidated flush
* and/or control start triggering as needed. This is done in the virtual
* encoder rather than the individual physical ones in order to handle
* use cases that require visibility into multiple physical encoders at
* a time.
* @dpu_enc: Pointer to virtual encoder structure
*/
static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
{
struct dpu_hw_ctl *ctl;
uint32_t i, pending_flush;
unsigned long lock_flags;
pending_flush = 0x0;
/* update pending counts and trigger kickoff ctl flush atomically */
spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
/* don't perform flush/start operations for slave encoders */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
if (phys->enable_state == DPU_ENC_DISABLED)
continue;
ctl = phys->hw_ctl;
/*
* This is cleared in frame_done worker, which isn't invoked
* for async commits. So don't set this for async, since it'll
* roll over to the next commit.
*/
if (phys->split_role != ENC_ROLE_SLAVE)
set_bit(i, dpu_enc->frame_busy_mask);
if (!phys->ops.needs_single_flush ||
!phys->ops.needs_single_flush(phys))
_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
else if (ctl->ops.get_pending_flush)
pending_flush |= ctl->ops.get_pending_flush(ctl);
}
/* for split flush, combine pending flush masks and send to master */
if (pending_flush && dpu_enc->cur_master) {
_dpu_encoder_trigger_flush(
&dpu_enc->base,
dpu_enc->cur_master,
pending_flush);
}
_dpu_encoder_trigger_start(dpu_enc->cur_master);
spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
}
void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
unsigned int i;
struct dpu_hw_ctl *ctl;
struct msm_display_info *disp_info;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
disp_info = &dpu_enc->disp_info;
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
ctl = phys->hw_ctl;
if (ctl->ops.clear_pending_flush)
ctl->ops.clear_pending_flush(ctl);
/* update only for command mode primary ctl */
if ((phys == dpu_enc->cur_master) &&
disp_info->is_cmd_mode
&& ctl->ops.trigger_pending)
ctl->ops.trigger_pending(ctl);
}
}
static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
struct drm_display_mode *mode)
{
u64 pclk_rate;
u32 pclk_period;
u32 line_time;
/*
* For linetime calculation, only operate on master encoder.
*/
if (!dpu_enc->cur_master)
return 0;
if (!dpu_enc->cur_master->ops.get_line_count) {
DPU_ERROR("get_line_count function not defined\n");
return 0;
}
pclk_rate = mode->clock; /* pixel clock in kHz */
if (pclk_rate == 0) {
DPU_ERROR("pclk is 0, cannot calculate line time\n");
return 0;
}
pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
if (pclk_period == 0) {
DPU_ERROR("pclk period is 0\n");
return 0;
}
/*
* Line time calculation based on Pixel clock and HTOTAL.
* Final unit is in ns.
*/
line_time = (pclk_period * mode->htotal) / 1000;
if (line_time == 0) {
DPU_ERROR("line time calculation is 0\n");
return 0;
}
DPU_DEBUG_ENC(dpu_enc,
"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
pclk_rate, pclk_period, line_time);
return line_time;
}
int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
{
struct drm_display_mode *mode;
struct dpu_encoder_virt *dpu_enc;
u32 cur_line;
u32 line_time;
u32 vtotal, time_to_vsync;
ktime_t cur_time;
dpu_enc = to_dpu_encoder_virt(drm_enc);
if (!drm_enc->crtc || !drm_enc->crtc->state) {
DPU_ERROR("crtc/crtc state object is NULL\n");
return -EINVAL;
}
mode = &drm_enc->crtc->state->adjusted_mode;
line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
if (!line_time)
return -EINVAL;
cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
vtotal = mode->vtotal;
if (cur_line >= vtotal)
time_to_vsync = line_time * vtotal;
else
time_to_vsync = line_time * (vtotal - cur_line);
if (time_to_vsync == 0) {
DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
vtotal);
return -EINVAL;
}
cur_time = ktime_get();
*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
DPU_DEBUG_ENC(dpu_enc,
"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
cur_line, vtotal, time_to_vsync,
ktime_to_ms(cur_time),
ktime_to_ms(*wakeup_time));
return 0;
}
static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
u32 enc_ip_width)
{
int ssm_delay, total_pixels, soft_slice_per_enc;
soft_slice_per_enc = enc_ip_width / dsc->slice_width;
/*
* minimum number of initial line pixels is a sum of:
* 1. sub-stream multiplexer delay (83 groups for 8bpc,
* 91 for 10 bpc) * 3
* 2. for two soft slice cases, add extra sub-stream multiplexer * 3
* 3. the initial xmit delay
* 4. total pipeline delay through the "lock step" of encoder (47)
* 5. 6 additional pixels as the output of the rate buffer is
* 48 bits wide
*/
ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
if (soft_slice_per_enc > 1)
total_pixels += (ssm_delay * 3);
return DIV_ROUND_UP(total_pixels, dsc->slice_width);
}
static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
struct dpu_hw_dsc *hw_dsc,
struct dpu_hw_pingpong *hw_pp,
struct drm_dsc_config *dsc,
u32 common_mode,
u32 initial_lines)
{
if (hw_dsc->ops.dsc_config)
hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
if (hw_dsc->ops.dsc_config_thresh)
hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
if (hw_pp->ops.setup_dsc)
hw_pp->ops.setup_dsc(hw_pp);
if (hw_dsc->ops.dsc_bind_pingpong_blk)
hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
if (hw_pp->ops.enable_dsc)
hw_pp->ops.enable_dsc(hw_pp);
if (ctl->ops.update_pending_flush_dsc)
ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
}
static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
struct drm_dsc_config *dsc)
{
/* coding only for 2LM, 2enc, 1 dsc config */
struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
int this_frame_slices;
int intf_ip_w, enc_ip_w;
int dsc_common_mode;
int pic_width;
u32 initial_lines;
int i;
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
hw_pp[i] = dpu_enc->hw_pp[i];
hw_dsc[i] = dpu_enc->hw_dsc[i];
if (!hw_pp[i] || !hw_dsc[i]) {
DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
return;
}
}
dsc_common_mode = 0;
pic_width = dsc->pic_width;
dsc_common_mode = DSC_MODE_SPLIT_PANEL;
if (dpu_encoder_use_dsc_merge(enc_master->parent))
dsc_common_mode |= DSC_MODE_MULTIPLEX;
if (enc_master->intf_mode == INTF_MODE_VIDEO)
dsc_common_mode |= DSC_MODE_VIDEO;
this_frame_slices = pic_width / dsc->slice_width;
intf_ip_w = this_frame_slices * dsc->slice_width;
/*
* dsc merge case: when using 2 encoders for the same stream,
* no. of slices need to be same on both the encoders.
*/
enc_ip_w = intf_ip_w / 2;
initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
dsc, dsc_common_mode, initial_lines);
}
void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
bool needs_hw_reset = false;
unsigned int i;
dpu_enc = to_dpu_encoder_virt(drm_enc);
trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
/* prepare for next kickoff, may include waiting on previous kickoff */
DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.prepare_for_kickoff)
phys->ops.prepare_for_kickoff(phys);
if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
needs_hw_reset = true;
}
DPU_ATRACE_END("enc_prepare_for_kickoff");
dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
/* if any phys needs reset, reset all phys, in-order */
if (needs_hw_reset) {
trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
}
}
if (dpu_enc->dsc)
dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
}
bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
unsigned int i;
struct dpu_encoder_phys *phys;
dpu_enc = to_dpu_encoder_virt(drm_enc);
if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
DPU_DEBUG("invalid FB not kicking off\n");
return false;
}
}
}
return true;
}
void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
{
struct dpu_encoder_virt *dpu_enc;
struct dpu_encoder_phys *phys;
unsigned long timeout_ms;
unsigned int i;
DPU_ATRACE_BEGIN("encoder_kickoff");
dpu_enc = to_dpu_encoder_virt(drm_enc);
trace_dpu_enc_kickoff(DRMID(drm_enc));
timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
mod_timer(&dpu_enc->frame_done_timer,
jiffies + msecs_to_jiffies(timeout_ms));
/* All phys encs are ready to go, trigger the kickoff */
_dpu_encoder_kickoff_phys(dpu_enc);
/* allow phys encs to handle any post-kickoff business */
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
phys = dpu_enc->phys_encs[i];
if (phys->ops.handle_post_kickoff)
phys->ops.handle_post_kickoff(phys);
}
DPU_ATRACE_END("encoder_kickoff");
}
static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_mixer_cfg mixer;
int i, num_lm;
struct dpu_global_state *global_state;
struct dpu_hw_blk *hw_lm[2];
struct dpu_hw_mixer *hw_mixer[2];
struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
memset(&mixer, 0, sizeof(mixer));
/* reset all mixers for this encoder */
if (phys_enc->hw_ctl->ops.clear_all_blendstages)
phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
for (i = 0; i < num_lm; i++) {
hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
/* clear all blendstages */
if (phys_enc->hw_ctl->ops.setup_blendstage)
phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
}
}
static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
struct dpu_hw_dsc *hw_dsc,
struct dpu_hw_pingpong *hw_pp)
{
if (hw_dsc->ops.dsc_disable)
hw_dsc->ops.dsc_disable(hw_dsc);
if (hw_pp->ops.disable_dsc)
hw_pp->ops.disable_dsc(hw_pp);
if (hw_dsc->ops.dsc_bind_pingpong_blk)
hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
if (ctl->ops.update_pending_flush_dsc)
ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
}
static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
{
/* coding only for 2LM, 2enc, 1 dsc config */
struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
int i;
for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
hw_pp[i] = dpu_enc->hw_pp[i];
hw_dsc[i] = dpu_enc->hw_dsc[i];
if (hw_pp[i] && hw_dsc[i])
dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
}
}
void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
{
struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
struct dpu_hw_intf_cfg intf_cfg = { 0 };
int i;
struct dpu_encoder_virt *dpu_enc;
dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
phys_enc->hw_ctl->ops.reset(ctl);
dpu_encoder_helper_reset_mixers(phys_enc);
/*
* TODO: move the once-only operation like CTL flush/trigger
* into dpu_encoder_virt_disable() and all operations which need
* to be done per phys encoder into the phys_disable() op.
*/
if (phys_enc->hw_wb) {
/* disable the PP block */
if (phys_enc->hw_wb->ops.bind_pingpong_blk)
phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
/* mark WB flush as pending */
if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
} else {
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
phys_enc->hw_intf->ops.bind_pingpong_blk(
dpu_enc->phys_encs[i]->hw_intf,
PINGPONG_NONE);
/* mark INTF flush as pending */
if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
dpu_enc->phys_encs[i]->hw_intf->idx);
}
}
/* reset the merge 3D HW block */
if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
BLEND_3D_NONE);
if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
phys_enc->hw_pp->merge_3d->idx);
}
if (phys_enc->hw_cdm) {
if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
PINGPONG_NONE);
if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
phys_enc->hw_cdm->idx);
}
if (dpu_enc->dsc) {
dpu_encoder_unprep_dsc(dpu_enc);
dpu_enc->dsc = NULL;
}
intf_cfg.stream_sel = 0; /* Don't care value for video mode */
intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
if (phys_enc->hw_intf)
intf_cfg.intf = phys_enc->hw_intf->idx;
if (phys_enc->hw_wb)
intf_cfg.wb = phys_enc->hw_wb->idx;
if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
if (ctl->ops.reset_intf_cfg)
ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
ctl->ops.trigger_flush(ctl);
ctl->ops.trigger_start(ctl);
ctl->ops.clear_pending_flush(ctl);
}
#ifdef CONFIG_DEBUG_FS
static int _dpu_encoder_status_show(struct seq_file *s, void *data)
{
struct drm_encoder *drm_enc = s->private;
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
int i;
mutex_lock(&dpu_enc->enc_lock);
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d",
phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
atomic_read(&phys->vsync_cnt),
atomic_read(&phys->underrun_cnt),
atomic_read(&dpu_enc->frame_done_timeout_cnt));
seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
}
mutex_unlock(&dpu_enc->enc_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
{
/* don't error check these */
debugfs_create_file("status", 0600,
root, drm_enc, &_dpu_encoder_status_fops);
}
#else
#define dpu_encoder_debugfs_init NULL
#endif
static int dpu_encoder_virt_add_phys_encs(
struct drm_device *dev,
struct msm_display_info *disp_info,
struct dpu_encoder_virt *dpu_enc,
struct dpu_enc_phys_init_params *params)
{
struct dpu_encoder_phys *enc = NULL;
DPU_DEBUG_ENC(dpu_enc, "\n");
/*
* We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
* in this function, check up-front.
*/
if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
ARRAY_SIZE(dpu_enc->phys_encs)) {
DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
dpu_enc->num_phys_encs);
return -EINVAL;
}
if (disp_info->intf_type == INTF_WB) {
enc = dpu_encoder_phys_wb_init(dev, params);
if (IS_ERR(enc)) {
DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
PTR_ERR(enc));
return PTR_ERR(enc);
}
dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
++dpu_enc->num_phys_encs;
} else if (disp_info->is_cmd_mode) {
enc = dpu_encoder_phys_cmd_init(dev, params);
if (IS_ERR(enc)) {
DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
PTR_ERR(enc));
return PTR_ERR(enc);
}
dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
++dpu_enc->num_phys_encs;
} else {
enc = dpu_encoder_phys_vid_init(dev, params);
if (IS_ERR(enc)) {
DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
PTR_ERR(enc));
return PTR_ERR(enc);
}
dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
++dpu_enc->num_phys_encs;
}
if (params->split_role == ENC_ROLE_SLAVE)
dpu_enc->cur_slave = enc;
else
dpu_enc->cur_master = enc;
return 0;
}
static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
struct dpu_kms *dpu_kms,
struct msm_display_info *disp_info)
{
int ret = 0;
int i = 0;
struct dpu_enc_phys_init_params phys_params;
if (!dpu_enc) {
DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
return -EINVAL;
}
dpu_enc->cur_master = NULL;
memset(&phys_params, 0, sizeof(phys_params));
phys_params.dpu_kms = dpu_kms;
phys_params.parent = &dpu_enc->base;
phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
WARN_ON(disp_info->num_of_h_tiles < 1);
DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
if (disp_info->intf_type != INTF_WB)
dpu_enc->idle_pc_supported =
dpu_kms->catalog->caps->has_idle_pc;
mutex_lock(&dpu_enc->enc_lock);
for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
/*
* Left-most tile is at index 0, content is controller id
* h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
* h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
*/
u32 controller_id = disp_info->h_tile_instance[i];
if (disp_info->num_of_h_tiles > 1) {
if (i == 0)
phys_params.split_role = ENC_ROLE_MASTER;
else
phys_params.split_role = ENC_ROLE_SLAVE;
} else {
phys_params.split_role = ENC_ROLE_SOLO;
}
DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
i, controller_id, phys_params.split_role);
phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
disp_info->intf_type,
controller_id);
if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
if (!phys_params.hw_intf && !phys_params.hw_wb) {
DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
ret = -EINVAL;
break;
}
if (phys_params.hw_intf && phys_params.hw_wb) {
DPU_ERROR_ENC(dpu_enc,
"invalid phys both intf and wb block at idx: %d\n", i);
ret = -EINVAL;
break;
}
ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
dpu_enc, &phys_params);
if (ret) {
DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
break;
}
}
mutex_unlock(&dpu_enc->enc_lock);
return ret;
}
static void dpu_encoder_frame_done_timeout(struct timer_list *t)
{
struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
frame_done_timer);
struct drm_encoder *drm_enc = &dpu_enc->base;
u32 event;
if (!drm_enc->dev) {
DPU_ERROR("invalid parameters\n");
return;
}
if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
return;
} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
return;
}
DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
msm_disp_snapshot_state(drm_enc->dev);
event = DPU_ENCODER_FRAME_EVENT_ERROR;
trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
}
static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
.atomic_disable = dpu_encoder_virt_atomic_disable,
.atomic_enable = dpu_encoder_virt_atomic_enable,
.atomic_check = dpu_encoder_virt_atomic_check,
};
static const struct drm_encoder_funcs dpu_encoder_funcs = {
.debugfs_init = dpu_encoder_debugfs_init,
};
struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
int drm_enc_mode,
struct msm_display_info *disp_info)
{
struct msm_drm_private *priv = dev->dev_private;
struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
struct dpu_encoder_virt *dpu_enc;
int ret;
dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
&dpu_encoder_funcs, drm_enc_mode, NULL);
if (IS_ERR(dpu_enc))
return ERR_CAST(dpu_enc);
drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
spin_lock_init(&dpu_enc->enc_spinlock);
dpu_enc->enabled = false;
mutex_init(&dpu_enc->enc_lock);
mutex_init(&dpu_enc->rc_lock);
ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
if (ret) {
DPU_ERROR("failed to setup encoder\n");
return ERR_PTR(-ENOMEM);
}
atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
timer_setup(&dpu_enc->frame_done_timer,
dpu_encoder_frame_done_timeout, 0);
INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
dpu_encoder_off_work);
dpu_enc->idle_timeout = IDLE_TIMEOUT;
memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
DPU_DEBUG_ENC(dpu_enc, "created\n");
return &dpu_enc->base;
}
int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
enum msm_event_wait event)
{
int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
struct dpu_encoder_virt *dpu_enc = NULL;
int i, ret = 0;
if (!drm_enc) {
DPU_ERROR("invalid encoder\n");
return -EINVAL;
}
dpu_enc = to_dpu_encoder_virt(drm_enc);
DPU_DEBUG_ENC(dpu_enc, "\n");
for (i = 0; i < dpu_enc->num_phys_encs; i++) {
struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
switch (event) {
case MSM_ENC_COMMIT_DONE:
fn_wait = phys->ops.wait_for_commit_done;
break;
case MSM_ENC_TX_COMPLETE:
fn_wait = phys->ops.wait_for_tx_complete;
break;
default:
DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
event);
return -EINVAL;
}
if (fn_wait) {
DPU_ATRACE_BEGIN("wait_for_completion_event");
ret = fn_wait(phys);
DPU_ATRACE_END("wait_for_completion_event");
if (ret)
return ret;
}
}
return ret;
}
enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
{
struct dpu_encoder_virt *dpu_enc = NULL;
if (!encoder) {
DPU_ERROR("invalid encoder\n");
return INTF_MODE_NONE;
}
dpu_enc = to_dpu_encoder_virt(encoder);
if (dpu_enc->cur_master)
return dpu_enc->cur_master->intf_mode;
if (dpu_enc->num_phys_encs)
return dpu_enc->phys_encs[0]->intf_mode;
return INTF_MODE_NONE;
}
unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
{
struct drm_encoder *encoder = phys_enc->parent;
struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
return dpu_enc->dsc_mask;
}
void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
struct dpu_enc_phys_init_params *p)
{
phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
phys_enc->hw_intf = p->hw_intf;
phys_enc->hw_wb = p->hw_wb;
phys_enc->parent = p->parent;
phys_enc->dpu_kms = p->dpu_kms;
phys_enc->split_role = p->split_role;
phys_enc->enc_spinlock = p->enc_spinlock;
phys_enc->enable_state = DPU_ENC_DISABLED;
atomic_set(&phys_enc->pending_kickoff_cnt, 0);
atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
atomic_set(&phys_enc->vsync_cnt, 0);
atomic_set(&phys_enc->underrun_cnt, 0);
init_waitqueue_head(&phys_enc->pending_kickoff_wq);
}