blob: 1ad711f8d2a8bfccc14bc4f6dfc06b4758c85b7e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Jyri Sarha <jsarha@ti.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sys_soc.h>
#include <drm/drm_blend.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_panel.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_irq.h"
#include "tidss_plane.h"
#include "tidss_dispc_regs.h"
#include "tidss_scale_coefs.h"
static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x00,
[DSS_SYSCONFIG_OFF] = 0x04,
[DSS_SYSSTATUS_OFF] = 0x08,
[DISPC_IRQ_EOI_OFF] = 0x20,
[DISPC_IRQSTATUS_RAW_OFF] = 0x24,
[DISPC_IRQSTATUS_OFF] = 0x28,
[DISPC_IRQENABLE_SET_OFF] = 0x2c,
[DISPC_IRQENABLE_CLR_OFF] = 0x30,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40,
[DISPC_GLOBAL_BUFFER_OFF] = 0x44,
[DISPC_DBG_CONTROL_OFF] = 0x4c,
[DISPC_DBG_STATUS_OFF] = 0x50,
[DISPC_CLKGATING_DISABLE_OFF] = 0x54,
};
const struct dispc_features dispc_k2g_feats = {
.min_pclk_khz = 4375,
.max_pclk_khz = {
[DISPC_VP_DPI] = 150000,
},
/*
* XXX According TRM the RGB input buffer width up to 2560 should
* work on 3 taps, but in practice it only works up to 1280.
*/
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 1280,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 2560,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_K2G,
.common = "common",
.common_regs = tidss_k2g_common_regs,
.num_vps = 1,
.vp_name = { "vp1" },
.ovr_name = { "ovr1" },
.vpclk_name = { "vp1" },
.vp_bus_type = { DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 1,
.vid_name = { "vid1" },
.vid_lite = { false },
.vid_order = { 0 },
};
static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x4,
[DSS_SYSCONFIG_OFF] = 0x8,
[DSS_SYSSTATUS_OFF] = 0x20,
[DISPC_IRQ_EOI_OFF] = 0x24,
[DISPC_IRQSTATUS_RAW_OFF] = 0x28,
[DISPC_IRQSTATUS_OFF] = 0x2c,
[DISPC_IRQENABLE_SET_OFF] = 0x30,
[DISPC_IRQENABLE_CLR_OFF] = 0x40,
[DISPC_VID_IRQENABLE_OFF] = 0x44,
[DISPC_VID_IRQSTATUS_OFF] = 0x58,
[DISPC_VP_IRQENABLE_OFF] = 0x70,
[DISPC_VP_IRQSTATUS_OFF] = 0x7c,
[WB_IRQENABLE_OFF] = 0x88,
[WB_IRQSTATUS_OFF] = 0x8c,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90,
[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94,
[DISPC_GLOBAL_BUFFER_OFF] = 0x98,
[DSS_CBA_CFG_OFF] = 0x9c,
[DISPC_DBG_CONTROL_OFF] = 0xa0,
[DISPC_DBG_STATUS_OFF] = 0xa4,
[DISPC_CLKGATING_DISABLE_OFF] = 0xa8,
[DISPC_SECURE_DISABLE_OFF] = 0xac,
};
const struct dispc_features dispc_am65x_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 165000,
[DISPC_VP_OLDI] = 165000,
},
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 2560,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_AM65X,
.common = "common",
.common_regs = tidss_am65x_common_regs,
.num_vps = 2,
.vp_name = { "vp1", "vp2" },
.ovr_name = { "ovr1", "ovr2" },
.vpclk_name = { "vp1", "vp2" },
.vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 2,
/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
.vid_name = { "vid", "vidl1" },
.vid_lite = { false, true, },
.vid_order = { 1, 0 },
};
static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x4,
[DSS_SYSCONFIG_OFF] = 0x8,
[DSS_SYSSTATUS_OFF] = 0x20,
[DISPC_IRQ_EOI_OFF] = 0x80,
[DISPC_IRQSTATUS_RAW_OFF] = 0x28,
[DISPC_IRQSTATUS_OFF] = 0x2c,
[DISPC_IRQENABLE_SET_OFF] = 0x30,
[DISPC_IRQENABLE_CLR_OFF] = 0x34,
[DISPC_VID_IRQENABLE_OFF] = 0x38,
[DISPC_VID_IRQSTATUS_OFF] = 0x48,
[DISPC_VP_IRQENABLE_OFF] = 0x58,
[DISPC_VP_IRQSTATUS_OFF] = 0x68,
[WB_IRQENABLE_OFF] = 0x78,
[WB_IRQSTATUS_OFF] = 0x7c,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98,
[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c,
[DISPC_GLOBAL_BUFFER_OFF] = 0xa0,
[DSS_CBA_CFG_OFF] = 0xa4,
[DISPC_DBG_CONTROL_OFF] = 0xa8,
[DISPC_DBG_STATUS_OFF] = 0xac,
[DISPC_CLKGATING_DISABLE_OFF] = 0xb0,
[DISPC_SECURE_DISABLE_OFF] = 0x90,
[FBDC_REVISION_1_OFF] = 0xb8,
[FBDC_REVISION_2_OFF] = 0xbc,
[FBDC_REVISION_3_OFF] = 0xc0,
[FBDC_REVISION_4_OFF] = 0xc4,
[FBDC_REVISION_5_OFF] = 0xc8,
[FBDC_REVISION_6_OFF] = 0xcc,
[FBDC_COMMON_CONTROL_OFF] = 0xd0,
[FBDC_CONSTANT_COLOR_0_OFF] = 0xd4,
[FBDC_CONSTANT_COLOR_1_OFF] = 0xd8,
[DISPC_CONNECTIONS_OFF] = 0xe4,
[DISPC_MSS_VP1_OFF] = 0xe8,
[DISPC_MSS_VP3_OFF] = 0xec,
};
const struct dispc_features dispc_j721e_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 170000,
[DISPC_VP_INTERNAL] = 600000,
},
.scaling = {
.in_width_max_5tap_rgb = 2048,
.in_width_max_3tap_rgb = 4096,
.in_width_max_5tap_yuv = 4096,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_J721E,
.common = "common_m",
.common_regs = tidss_j721e_common_regs,
.num_vps = 4,
.vp_name = { "vp1", "vp2", "vp3", "vp4" },
.ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" },
.vpclk_name = { "vp1", "vp2", "vp3", "vp4" },
/* Currently hard coded VP routing (see dispc_initial_config()) */
.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI,
DISPC_VP_INTERNAL, DISPC_VP_DPI, },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 1024,
.gamma_type = TIDSS_GAMMA_10BIT,
},
},
.num_planes = 4,
.vid_name = { "vid1", "vidl1", "vid2", "vidl2" },
.vid_lite = { 0, 1, 0, 1, },
.vid_order = { 1, 3, 0, 2 },
};
const struct dispc_features dispc_am625_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 165000,
[DISPC_VP_INTERNAL] = 170000,
},
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 2560,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_AM625,
.common = "common",
.common_regs = tidss_am65x_common_regs,
.num_vps = 2,
.vp_name = { "vp1", "vp2" },
.ovr_name = { "ovr1", "ovr2" },
.vpclk_name = { "vp1", "vp2" },
.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 2,
/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
.vid_name = { "vid", "vidl1" },
.vid_lite = { false, true, },
.vid_order = { 1, 0 },
};
const struct dispc_features dispc_am62a7_feats = {
/*
* if the code reaches dispc_mode_valid with VP1,
* it should return MODE_BAD.
*/
.max_pclk_khz = {
[DISPC_VP_TIED_OFF] = 0,
[DISPC_VP_DPI] = 165000,
},
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 2560,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_AM62A7,
.common = "common",
.common_regs = tidss_am65x_common_regs,
.num_vps = 2,
.vp_name = { "vp1", "vp2" },
.ovr_name = { "ovr1", "ovr2" },
.vpclk_name = { "vp1", "vp2" },
/* VP1 of the DSS in AM62A7 SoC is tied off internally */
.vp_bus_type = { DISPC_VP_TIED_OFF, DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 2,
/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
.vid_name = { "vid", "vidl1" },
.vid_lite = { false, true, },
.vid_order = { 1, 0 },
};
static const u16 *dispc_common_regmap;
struct dss_vp_data {
u32 *gamma_table;
};
struct dispc_device {
struct tidss_device *tidss;
struct device *dev;
void __iomem *base_common;
void __iomem *base_vid[TIDSS_MAX_PLANES];
void __iomem *base_ovr[TIDSS_MAX_PORTS];
void __iomem *base_vp[TIDSS_MAX_PORTS];
struct regmap *oldi_io_ctrl;
struct clk *vp_clk[TIDSS_MAX_PORTS];
const struct dispc_features *feat;
struct clk *fclk;
bool is_enabled;
struct dss_vp_data vp_data[TIDSS_MAX_PORTS];
u32 *fourccs;
u32 num_fourccs;
u32 memory_bandwidth_limit;
struct dispc_errata errata;
};
static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val)
{
iowrite32(val, dispc->base_common + reg);
}
static u32 dispc_read(struct dispc_device *dispc, u16 reg)
{
return ioread32(dispc->base_common + reg);
}
static
void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val)
{
void __iomem *base = dispc->base_vid[hw_plane];
iowrite32(val, base + reg);
}
static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg)
{
void __iomem *base = dispc->base_vid[hw_plane];
return ioread32(base + reg);
}
static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport,
u16 reg, u32 val)
{
void __iomem *base = dispc->base_ovr[hw_videoport];
iowrite32(val, base + reg);
}
static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
{
void __iomem *base = dispc->base_ovr[hw_videoport];
return ioread32(base + reg);
}
static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport,
u16 reg, u32 val)
{
void __iomem *base = dispc->base_vp[hw_videoport];
iowrite32(val, base + reg);
}
static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
{
void __iomem *base = dispc->base_vp[hw_videoport];
return ioread32(base + reg);
}
/*
* TRM gives bitfields as start:end, where start is the higher bit
* number. For example 7:0
*/
static u32 FLD_MASK(u32 start, u32 end)
{
return ((1 << (start - end + 1)) - 1) << end;
}
static u32 FLD_VAL(u32 val, u32 start, u32 end)
{
return (val << end) & FLD_MASK(start, end);
}
static u32 FLD_GET(u32 val, u32 start, u32 end)
{
return (val & FLD_MASK(start, end)) >> end;
}
static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end)
{
return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end);
}
static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end)
{
return FLD_GET(dispc_read(dispc, idx), start, end);
}
static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val,
u32 start, u32 end)
{
dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val,
start, end));
}
static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end);
}
static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx,
u32 val, u32 start, u32 end)
{
dispc_vid_write(dispc, hw_plane, idx,
FLD_MOD(dispc_vid_read(dispc, hw_plane, idx),
val, start, end));
}
static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end);
}
static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val,
u32 start, u32 end)
{
dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx),
val, start, end));
}
__maybe_unused
static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end);
}
static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx,
u32 val, u32 start, u32 end)
{
dispc_ovr_write(dispc, ovr, idx,
FLD_MOD(dispc_ovr_read(dispc, ovr, idx),
val, start, end));
}
static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport)
{
dispc_irq_t vp_stat = 0;
if (stat & BIT(0))
vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport);
if (stat & BIT(1))
vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport);
if (stat & BIT(2))
vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport);
if (stat & BIT(4))
vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport);
return vp_stat;
}
static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport)
{
u32 stat = 0;
if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport))
stat |= BIT(0);
if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport))
stat |= BIT(1);
if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport))
stat |= BIT(2);
if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport))
stat |= BIT(4);
return stat;
}
static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane)
{
dispc_irq_t vid_stat = 0;
if (stat & BIT(0))
vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane);
return vid_stat;
}
static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane)
{
u32 stat = 0;
if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane))
stat |= BIT(0);
return stat;
}
static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS);
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat);
}
static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS);
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat);
}
static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE);
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat);
}
static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE);
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat);
}
static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc,
dispc_irq_t mask)
{
dispc_k2g_vp_write_irqstatus(dispc, 0, mask);
dispc_k2g_vid_write_irqstatus(dispc, 0, mask);
}
static
dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc)
{
dispc_irq_t stat = 0;
/* always clear the top level irqstatus */
dispc_write(dispc, DISPC_IRQSTATUS,
dispc_read(dispc, DISPC_IRQSTATUS));
stat |= dispc_k2g_vp_read_irqstatus(dispc, 0);
stat |= dispc_k2g_vid_read_irqstatus(dispc, 0);
dispc_k2g_clear_irqstatus(dispc, stat);
return stat;
}
static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc)
{
dispc_irq_t stat = 0;
stat |= dispc_k2g_vp_read_irqenable(dispc, 0);
stat |= dispc_k2g_vid_read_irqenable(dispc, 0);
return stat;
}
static
void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
{
dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc);
/* clear the irqstatus for newly enabled irqs */
dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
dispc_k2g_vp_set_irqenable(dispc, 0, mask);
dispc_k2g_vid_set_irqenable(dispc, 0, mask);
dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7));
/* flush posted write */
dispc_k2g_read_irqenable(dispc);
}
static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport));
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat);
}
static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane));
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat);
}
static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport));
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat);
}
static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane));
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat);
}
static
void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask)
{
unsigned int i;
u32 top_clear = 0;
for (i = 0; i < dispc->feat->num_vps; ++i) {
if (clearmask & DSS_IRQ_VP_MASK(i)) {
dispc_k3_vp_write_irqstatus(dispc, i, clearmask);
top_clear |= BIT(i);
}
}
for (i = 0; i < dispc->feat->num_planes; ++i) {
if (clearmask & DSS_IRQ_PLANE_MASK(i)) {
dispc_k3_vid_write_irqstatus(dispc, i, clearmask);
top_clear |= BIT(4 + i);
}
}
if (dispc->feat->subrev == DISPC_K2G)
return;
dispc_write(dispc, DISPC_IRQSTATUS, top_clear);
/* Flush posted writes */
dispc_read(dispc, DISPC_IRQSTATUS);
}
static
dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc)
{
dispc_irq_t status = 0;
unsigned int i;
for (i = 0; i < dispc->feat->num_vps; ++i)
status |= dispc_k3_vp_read_irqstatus(dispc, i);
for (i = 0; i < dispc->feat->num_planes; ++i)
status |= dispc_k3_vid_read_irqstatus(dispc, i);
dispc_k3_clear_irqstatus(dispc, status);
return status;
}
static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc)
{
dispc_irq_t enable = 0;
unsigned int i;
for (i = 0; i < dispc->feat->num_vps; ++i)
enable |= dispc_k3_vp_read_irqenable(dispc, i);
for (i = 0; i < dispc->feat->num_planes; ++i)
enable |= dispc_k3_vid_read_irqenable(dispc, i);
return enable;
}
static void dispc_k3_set_irqenable(struct dispc_device *dispc,
dispc_irq_t mask)
{
unsigned int i;
u32 main_enable = 0, main_disable = 0;
dispc_irq_t old_mask;
old_mask = dispc_k3_read_irqenable(dispc);
/* clear the irqstatus for newly enabled irqs */
dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask);
for (i = 0; i < dispc->feat->num_vps; ++i) {
dispc_k3_vp_set_irqenable(dispc, i, mask);
if (mask & DSS_IRQ_VP_MASK(i))
main_enable |= BIT(i); /* VP IRQ */
else
main_disable |= BIT(i); /* VP IRQ */
}
for (i = 0; i < dispc->feat->num_planes; ++i) {
dispc_k3_vid_set_irqenable(dispc, i, mask);
if (mask & DSS_IRQ_PLANE_MASK(i))
main_enable |= BIT(i + 4); /* VID IRQ */
else
main_disable |= BIT(i + 4); /* VID IRQ */
}
if (main_enable)
dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable);
if (main_disable)
dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable);
/* Flush posted writes */
dispc_read(dispc, DISPC_IRQENABLE_SET);
}
dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
return dispc_k2g_read_and_clear_irqstatus(dispc);
case DISPC_AM625:
case DISPC_AM62A7:
case DISPC_AM65X:
case DISPC_J721E:
return dispc_k3_read_and_clear_irqstatus(dispc);
default:
WARN_ON(1);
return 0;
}
}
void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_set_irqenable(dispc, mask);
break;
case DISPC_AM625:
case DISPC_AM62A7:
case DISPC_AM65X:
case DISPC_J721E:
dispc_k3_set_irqenable(dispc, mask);
break;
default:
WARN_ON(1);
break;
}
}
enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 };
struct dispc_bus_format {
u32 bus_fmt;
u32 data_width;
bool is_oldi_fmt;
enum dispc_oldi_mode_reg_val oldi_mode_reg_val;
};
static const struct dispc_bus_format dispc_bus_formats[] = {
{ MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 },
{ MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 },
{ MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 },
{ MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 },
{ MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 },
{ MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 },
{ MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 },
{ MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 },
{ MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 },
};
static const
struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc,
u32 hw_videoport,
u32 bus_fmt, u32 bus_flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) {
if (dispc_bus_formats[i].bus_fmt == bus_fmt)
return &dispc_bus_formats[i];
}
return NULL;
}
int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
const struct dispc_bus_format *fmt;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (!fmt) {
dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n",
__func__, tstate->bus_format);
return -EINVAL;
}
if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI &&
fmt->is_oldi_fmt) {
dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n",
__func__, dispc->feat->vp_name[hw_videoport]);
return -EINVAL;
}
return 0;
}
static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power)
{
u32 val = power ? 0 : OLDI_PWRDN_TX;
if (WARN_ON(!dispc->oldi_io_ctrl))
return;
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL,
OLDI_PWRDN_TX, val);
}
static void dispc_set_num_datalines(struct dispc_device *dispc,
u32 hw_videoport, int num_lines)
{
int v;
switch (num_lines) {
case 12:
v = 0; break;
case 16:
v = 1; break;
case 18:
v = 2; break;
case 24:
v = 3; break;
case 30:
v = 4; break;
case 36:
v = 5; break;
default:
WARN_ON(1);
v = 3;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8);
}
static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_bus_format *fmt)
{
u32 oldi_cfg = 0;
u32 oldi_reset_bit = BIT(5 + hw_videoport);
int count = 0;
/*
* For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC
* bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0.
*/
if (fmt->data_width == 24)
oldi_cfg |= BIT(8); /* MSB */
else if (fmt->data_width != 18)
dev_warn(dispc->dev, "%s: %d port width not supported\n",
__func__, fmt->data_width);
oldi_cfg |= BIT(7); /* DEPOL */
oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1);
oldi_cfg |= BIT(12); /* SOFTRST */
oldi_cfg |= BIT(0); /* ENABLE */
dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg);
while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) &&
count < 10000)
count++;
if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)))
dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n",
__func__);
}
void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
const struct dispc_bus_format *fmt;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (WARN_ON(!fmt))
return;
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
dispc_oldi_tx_power(dispc, true);
dispc_enable_oldi(dispc, hw_videoport, fmt);
}
}
void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct drm_display_mode *mode = &state->adjusted_mode;
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
bool align, onoff, rf, ieo, ipc, ihs, ivs;
const struct dispc_bus_format *fmt;
u32 hsw, hfp, hbp, vsw, vfp, vbp;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (WARN_ON(!fmt))
return;
dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width);
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
vbp = mode->vtotal - mode->vsync_end;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H,
FLD_VAL(hsw - 1, 7, 0) |
FLD_VAL(hfp - 1, 19, 8) |
FLD_VAL(hbp - 1, 31, 20));
dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V,
FLD_VAL(vsw - 1, 7, 0) |
FLD_VAL(vfp, 19, 8) |
FLD_VAL(vbp, 31, 20));
ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW);
ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE);
/* always use the 'rf' setting */
onoff = true;
rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE);
/* always use aligned syncs */
align = true;
/* always use DE_HIGH for OLDI */
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI)
ieo = false;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ,
FLD_VAL(align, 18, 18) |
FLD_VAL(onoff, 17, 17) |
FLD_VAL(rf, 16, 16) |
FLD_VAL(ieo, 15, 15) |
FLD_VAL(ipc, 14, 14) |
FLD_VAL(ihs, 13, 13) |
FLD_VAL(ivs, 12, 12));
dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN,
FLD_VAL(mode->hdisplay - 1, 11, 0) |
FLD_VAL(mode->vdisplay - 1, 27, 16));
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0);
}
void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport)
{
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0);
}
void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport)
{
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0);
dispc_oldi_tx_power(dispc, false);
}
}
bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport)
{
return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5);
}
void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport)
{
WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5));
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5);
}
enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN };
static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode)
{
u16 c12;
c12 = c8 << 4;
switch (mode) {
case C8_TO_C12_REPLICATE:
/* Copy c8 4 MSB to 4 LSB for full scale c12 */
c12 |= c8 >> 4;
break;
case C8_TO_C12_MAX:
c12 |= 0xF;
break;
default:
case C8_TO_C12_MIN:
break;
}
return c12;
}
static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m)
{
u8 a, r, g, b;
u64 v;
a = (argb8888 >> 24) & 0xff;
r = (argb8888 >> 16) & 0xff;
g = (argb8888 >> 8) & 0xff;
b = (argb8888 >> 0) & 0xff;
v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) |
((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m);
return v;
}
static void dispc_vp_set_default_color(struct dispc_device *dispc,
u32 hw_videoport, u32 default_color)
{
u64 v;
v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE);
dispc_ovr_write(dispc, hw_videoport,
DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff);
dispc_ovr_write(dispc, hw_videoport,
DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff);
}
enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_display_mode *mode)
{
u32 hsw, hfp, hbp, vsw, vfp, vbp;
enum dispc_vp_bus_type bus_type;
int max_pclk;
bus_type = dispc->feat->vp_bus_type[hw_videoport];
max_pclk = dispc->feat->max_pclk_khz[bus_type];
if (WARN_ON(max_pclk == 0))
return MODE_BAD;
if (mode->clock < dispc->feat->min_pclk_khz)
return MODE_CLOCK_LOW;
if (mode->clock > max_pclk)
return MODE_CLOCK_HIGH;
if (mode->hdisplay > 4096)
return MODE_BAD;
if (mode->vdisplay > 4096)
return MODE_BAD;
/* TODO: add interlace support */
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
/*
* Enforce the output width is divisible by 2. Actually this
* is only needed in following cases:
* - YUV output selected (BT656, BT1120)
* - Dithering enabled
* - TDM with TDMCycleFormat == 3
* But for simplicity we enforce that always.
*/
if ((mode->hdisplay % 2) != 0)
return MODE_BAD_HVALUE;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
vbp = mode->vtotal - mode->vsync_end;
if (hsw < 1 || hsw > 256 ||
hfp < 1 || hfp > 4096 ||
hbp < 1 || hbp > 4096)
return MODE_BAD_HVALUE;
if (vsw < 1 || vsw > 256 ||
vfp > 4095 || vbp > 4095)
return MODE_BAD_VVALUE;
if (dispc->memory_bandwidth_limit) {
const unsigned int bpp = 4;
u64 bandwidth;
bandwidth = 1000 * mode->clock;
bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp;
bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal);
if (dispc->memory_bandwidth_limit < bandwidth)
return MODE_BAD;
}
return MODE_OK;
}
int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport)
{
int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]);
if (ret)
dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__,
ret);
return ret;
}
void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport)
{
clk_disable_unprepare(dispc->vp_clk[hw_videoport]);
}
/*
* Calculate the percentage difference between the requested pixel clock rate
* and the effective rate resulting from calculating the clock divider value.
*/
static
unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate)
{
int r = rate / 100, rr = real_rate / 100;
return (unsigned int)(abs(((rr - r) * 100) / r));
}
int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport,
unsigned long rate)
{
int r;
unsigned long new_rate;
r = clk_set_rate(dispc->vp_clk[hw_videoport], rate);
if (r) {
dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n",
hw_videoport, rate);
return r;
}
new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]);
if (dispc_pclk_diff(rate, new_rate) > 5)
dev_warn(dispc->dev,
"vp%d: Clock rate %lu differs over 5%% from requested %lu\n",
hw_videoport, new_rate, rate);
dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n",
hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate);
return 0;
}
/* OVR */
static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
/* On k2g there is only one plane and no need for ovr */
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION,
x | (y << 16));
}
static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
hw_plane, 4, 1);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
x, 17, 6);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
y, 30, 19);
}
static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
hw_plane, 4, 1);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
x, 13, 0);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
y, 29, 16);
}
void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane,
u32 hw_videoport, u32 x, u32 y, u32 layer)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
case DISPC_AM625:
case DISPC_AM62A7:
case DISPC_AM65X:
dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
case DISPC_J721E:
dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
default:
WARN_ON(1);
break;
}
}
void dispc_ovr_enable_layer(struct dispc_device *dispc,
u32 hw_videoport, u32 layer, bool enable)
{
if (dispc->feat->subrev == DISPC_K2G)
return;
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
!!enable, 0, 0);
}
/* CSC */
enum csc_ctm {
CSC_RR, CSC_RG, CSC_RB,
CSC_GR, CSC_GG, CSC_GB,
CSC_BR, CSC_BG, CSC_BB,
};
enum csc_yuv2rgb {
CSC_RY, CSC_RCB, CSC_RCR,
CSC_GY, CSC_GCB, CSC_GCR,
CSC_BY, CSC_BCB, CSC_BCR,
};
enum csc_rgb2yuv {
CSC_YR, CSC_YG, CSC_YB,
CSC_CBR, CSC_CBG, CSC_CBB,
CSC_CRR, CSC_CRG, CSC_CRB,
};
struct dispc_csc_coef {
void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval);
int m[9];
int preoffset[3];
int postoffset[3];
enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping;
const char *name;
};
#define DISPC_CSC_REGVAL_LEN 8
static
void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
#define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19))
regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]);
regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]);
regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]);
#undef OVAL
}
#define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16))
static
void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]);
regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]);
regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]);
regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]);
regval[4] = CVAL(csc->m[CSC_BCB], 0);
dispc_csc_offset_regval(csc, regval);
}
__maybe_unused static
void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]);
regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]);
regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]);
regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]);
regval[4] = CVAL(csc->m[CSC_CBB], 0);
dispc_csc_offset_regval(csc, regval);
}
static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc,
u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]);
regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]);
regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]);
regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]);
regval[4] = CVAL(csc->m[CSC_BB], 0);
dispc_csc_offset_regval(csc, regval);
}
#undef CVAL
static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vid_csc_coef_reg[] = {
DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
if (regval[7] != 0)
dev_warn(dispc->dev, "%s: No post offset support for %s\n",
__func__, csc->name);
for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
regval[i]);
}
static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7,
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
regval[i]);
}
/* YUV -> RGB, ITU-R BT.601, full range */
static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = {
dispc_csc_yuv2rgb_regval,
{ 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/
256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/
256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/
{ 0, -2048, -2048, }, /* full range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.601 Full",
};
/* YUV -> RGB, ITU-R BT.601, limited range */
static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = {
dispc_csc_yuv2rgb_regval,
{ 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/
298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/
298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/
{ -256, -2048, -2048, }, /* limited range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.601 Limited",
};
/* YUV -> RGB, ITU-R BT.709, full range */
static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = {
dispc_csc_yuv2rgb_regval,
{ 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/
256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/
{ 0, -2048, -2048, }, /* full range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.709 Full",
};
/* YUV -> RGB, ITU-R BT.709, limited range */
static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = {
dispc_csc_yuv2rgb_regval,
{ 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/
298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/
298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/
{ -256, -2048, -2048, }, /* limited range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.709 Limited",
};
static const struct {
enum drm_color_encoding encoding;
enum drm_color_range range;
const struct dispc_csc_coef *csc;
} dispc_csc_table[] = {
{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE,
&csc_yuv2rgb_bt601_full, },
{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE,
&csc_yuv2rgb_bt601_lim, },
{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE,
&csc_yuv2rgb_bt709_full, },
{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE,
&csc_yuv2rgb_bt709_lim, },
};
static const
struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding,
enum drm_color_range range)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) {
if (dispc_csc_table[i].encoding == encoding &&
dispc_csc_table[i].range == range) {
return dispc_csc_table[i].csc;
}
}
return NULL;
}
static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state)
{
const struct dispc_csc_coef *coef;
coef = dispc_find_csc(state->color_encoding, state->color_range);
if (!coef) {
dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n",
__func__, state->color_encoding, state->color_range);
return;
}
if (dispc->feat->subrev == DISPC_K2G)
dispc_k2g_vid_write_csc(dispc, hw_plane, coef);
else
dispc_k3_vid_write_csc(dispc, hw_plane, coef);
}
static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane,
bool enable)
{
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9);
}
/* SCALER */
static u32 dispc_calc_fir_inc(u32 in, u32 out)
{
return (u32)div_u64(0x200000ull * in, out);
}
enum dispc_vid_fir_coef_set {
DISPC_VID_FIR_COEF_HORIZ,
DISPC_VID_FIR_COEF_HORIZ_UV,
DISPC_VID_FIR_COEF_VERT,
DISPC_VID_FIR_COEF_VERT_UV,
};
static void dispc_vid_write_fir_coefs(struct dispc_device *dispc,
u32 hw_plane,
enum dispc_vid_fir_coef_set coef_set,
const struct tidss_scale_coefs *coefs)
{
static const u16 c0_regs[] = {
[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0,
[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C,
[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0,
[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C,
};
static const u16 c12_regs[] = {
[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12,
[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C,
[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12,
[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C,
};
const u16 c0_base = c0_regs[coef_set];
const u16 c12_base = c12_regs[coef_set];
int phase;
if (!coefs) {
dev_err(dispc->dev, "%s: No coefficients given.\n", __func__);
return;
}
for (phase = 0; phase <= 8; ++phase) {
u16 reg = c0_base + phase * 4;
u16 c0 = coefs->c0[phase];
dispc_vid_write(dispc, hw_plane, reg, c0);
}
for (phase = 0; phase <= 15; ++phase) {
u16 reg = c12_base + phase * 4;
s16 c1, c2;
u32 c12;
c1 = coefs->c1[phase];
c2 = coefs->c2[phase];
c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20);
dispc_vid_write(dispc, hw_plane, reg, c12);
}
}
static bool dispc_fourcc_is_yuv(u32 fourcc)
{
switch (fourcc) {
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_NV12:
return true;
default:
return false;
}
}
struct dispc_scaling_params {
int xinc, yinc;
u32 in_w, in_h, in_w_uv, in_h_uv;
u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv;
bool scale_x, scale_y;
const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv;
bool five_taps;
};
static int dispc_vid_calc_scaling(struct dispc_device *dispc,
const struct drm_plane_state *state,
struct dispc_scaling_params *sp,
bool lite_plane)
{
const struct dispc_features_scaling *f = &dispc->feat->scaling;
u32 fourcc = state->fb->format->format;
u32 in_width_max_5tap = f->in_width_max_5tap_rgb;
u32 in_width_max_3tap = f->in_width_max_3tap_rgb;
u32 downscale_limit;
u32 in_width_max;
memset(sp, 0, sizeof(*sp));
sp->xinc = 1;
sp->yinc = 1;
sp->in_w = state->src_w >> 16;
sp->in_w_uv = sp->in_w;
sp->in_h = state->src_h >> 16;
sp->in_h_uv = sp->in_h;
sp->scale_x = sp->in_w != state->crtc_w;
sp->scale_y = sp->in_h != state->crtc_h;
if (dispc_fourcc_is_yuv(fourcc)) {
in_width_max_5tap = f->in_width_max_5tap_yuv;
in_width_max_3tap = f->in_width_max_3tap_yuv;
sp->in_w_uv >>= 1;
sp->scale_x = true;
if (fourcc == DRM_FORMAT_NV12) {
sp->in_h_uv >>= 1;
sp->scale_y = true;
}
}
/* Skip the rest if no scaling is used */
if ((!sp->scale_x && !sp->scale_y) || lite_plane)
return 0;
if (sp->in_w > in_width_max_5tap) {
sp->five_taps = false;
in_width_max = in_width_max_3tap;
downscale_limit = f->downscale_limit_3tap;
} else {
sp->five_taps = true;
in_width_max = in_width_max_5tap;
downscale_limit = f->downscale_limit_5tap;
}
if (sp->scale_x) {
sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
dev_dbg(dispc->dev,
"%s: X-scaling factor %u/%u > %u\n",
__func__, state->crtc_w, state->src_w >> 16,
f->upscale_limit);
return -EINVAL;
}
if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w,
state->crtc_w),
downscale_limit);
if (sp->xinc > f->xinc_max) {
dev_dbg(dispc->dev,
"%s: X-scaling factor %u/%u < 1/%u\n",
__func__, state->crtc_w,
state->src_w >> 16,
downscale_limit * f->xinc_max);
return -EINVAL;
}
sp->in_w = (state->src_w >> 16) / sp->xinc;
}
while (sp->in_w > in_width_max) {
sp->xinc++;
sp->in_w = (state->src_w >> 16) / sp->xinc;
}
if (sp->xinc > f->xinc_max) {
dev_dbg(dispc->dev,
"%s: Too wide input buffer %u > %u\n", __func__,
state->src_w >> 16, in_width_max * f->xinc_max);
return -EINVAL;
}
/*
* We need even line length for YUV formats. Decimation
* can lead to odd length, so we need to make it even
* again.
*/
if (dispc_fourcc_is_yuv(fourcc))
sp->in_w &= ~1;
sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
}
if (sp->scale_y) {
sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h);
if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
dev_dbg(dispc->dev,
"%s: Y-scaling factor %u/%u > %u\n",
__func__, state->crtc_h, state->src_h >> 16,
f->upscale_limit);
return -EINVAL;
}
if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h,
state->crtc_h),
downscale_limit);
sp->in_h /= sp->yinc;
sp->fir_yinc = dispc_calc_fir_inc(sp->in_h,
state->crtc_h);
}
}
dev_dbg(dispc->dev,
"%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n",
__func__, state->src_w >> 16, state->src_h >> 16,
sp->xinc, sp->yinc, sp->in_w, sp->in_h,
sp->fir_xinc / 0x200000u,
((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
sp->fir_yinc / 0x200000u,
((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
sp->five_taps ? 5 : 3,
state->crtc_w, state->crtc_h);
if (dispc_fourcc_is_yuv(fourcc)) {
if (sp->scale_x) {
sp->in_w_uv /= sp->xinc;
sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv,
state->crtc_w);
sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev,
sp->fir_xinc_uv,
true);
}
if (sp->scale_y) {
sp->in_h_uv /= sp->yinc;
sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv,
state->crtc_h);
sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev,
sp->fir_yinc_uv,
sp->five_taps);
}
}
if (sp->scale_x)
sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc,
true);
if (sp->scale_y)
sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc,
sp->five_taps);
return 0;
}
static void dispc_vid_set_scaling(struct dispc_device *dispc,
u32 hw_plane,
struct dispc_scaling_params *sp,
u32 fourcc)
{
/* HORIZONTAL RESIZE ENABLE */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->scale_x, 7, 7);
/* VERTICAL RESIZE ENABLE */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->scale_y, 8, 8);
/* Skip the rest if no scaling is used */
if (!sp->scale_x && !sp->scale_y)
return;
/* VERTICAL 5-TAPS */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->five_taps, 21, 21);
if (dispc_fourcc_is_yuv(fourcc)) {
if (sp->scale_x) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2,
sp->fir_xinc_uv);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_HORIZ_UV,
sp->xcoef_uv);
}
if (sp->scale_y) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2,
sp->fir_yinc_uv);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_VERT_UV,
sp->ycoef_uv);
}
}
if (sp->scale_x) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_HORIZ,
sp->xcoef);
}
if (sp->scale_y) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_VERT, sp->ycoef);
}
}
/* OTHER */
static const struct {
u32 fourcc;
u8 dss_code;
} dispc_color_formats[] = {
{ DRM_FORMAT_ARGB4444, 0x0, },
{ DRM_FORMAT_ABGR4444, 0x1, },
{ DRM_FORMAT_RGBA4444, 0x2, },
{ DRM_FORMAT_RGB565, 0x3, },
{ DRM_FORMAT_BGR565, 0x4, },
{ DRM_FORMAT_ARGB1555, 0x5, },
{ DRM_FORMAT_ABGR1555, 0x6, },
{ DRM_FORMAT_ARGB8888, 0x7, },
{ DRM_FORMAT_ABGR8888, 0x8, },
{ DRM_FORMAT_RGBA8888, 0x9, },
{ DRM_FORMAT_BGRA8888, 0xa, },
{ DRM_FORMAT_RGB888, 0xb, },
{ DRM_FORMAT_BGR888, 0xc, },
{ DRM_FORMAT_ARGB2101010, 0xe, },
{ DRM_FORMAT_ABGR2101010, 0xf, },
{ DRM_FORMAT_XRGB4444, 0x20, },
{ DRM_FORMAT_XBGR4444, 0x21, },
{ DRM_FORMAT_RGBX4444, 0x22, },
{ DRM_FORMAT_XRGB1555, 0x25, },
{ DRM_FORMAT_XBGR1555, 0x26, },
{ DRM_FORMAT_XRGB8888, 0x27, },
{ DRM_FORMAT_XBGR8888, 0x28, },
{ DRM_FORMAT_RGBX8888, 0x29, },
{ DRM_FORMAT_BGRX8888, 0x2a, },
{ DRM_FORMAT_XRGB2101010, 0x2e, },
{ DRM_FORMAT_XBGR2101010, 0x2f, },
{ DRM_FORMAT_YUYV, 0x3e, },
{ DRM_FORMAT_UYVY, 0x3f, },
{ DRM_FORMAT_NV12, 0x3d, },
};
static void dispc_plane_set_pixel_format(struct dispc_device *dispc,
u32 hw_plane, u32 fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
if (dispc_color_formats[i].fourcc == fourcc) {
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
dispc_color_formats[i].dss_code,
6, 1);
return;
}
}
WARN_ON(1);
}
const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len)
{
WARN_ON(!dispc->fourccs);
*len = dispc->num_fourccs;
return dispc->fourccs;
}
static s32 pixinc(int pixels, u8 ps)
{
if (pixels == 1)
return 1;
else if (pixels > 1)
return 1 + (pixels - 1) * ps;
else if (pixels < 0)
return 1 - (-pixels + 1) * ps;
WARN_ON(1);
return 0;
}
int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state,
u32 hw_videoport)
{
bool lite = dispc->feat->vid_lite[hw_plane];
u32 fourcc = state->fb->format->format;
bool need_scaling = state->src_w >> 16 != state->crtc_w ||
state->src_h >> 16 != state->crtc_h;
struct dispc_scaling_params scaling;
int ret;
if (dispc_fourcc_is_yuv(fourcc)) {
if (!dispc_find_csc(state->color_encoding,
state->color_range)) {
dev_dbg(dispc->dev,
"%s: Unsupported CSC (%u,%u) for HW plane %u\n",
__func__, state->color_encoding,
state->color_range, hw_plane);
return -EINVAL;
}
}
if (need_scaling) {
if (lite) {
dev_dbg(dispc->dev,
"%s: Lite plane %u can't scale %ux%u!=%ux%u\n",
__func__, hw_plane,
state->src_w >> 16, state->src_h >> 16,
state->crtc_w, state->crtc_h);
return -EINVAL;
}
ret = dispc_vid_calc_scaling(dispc, state, &scaling, false);
if (ret)
return ret;
}
return 0;
}
static
dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state)
{
struct drm_framebuffer *fb = state->fb;
struct drm_gem_dma_object *gem;
u32 x = state->src_x >> 16;
u32 y = state->src_y >> 16;
gem = drm_fb_dma_get_gem_obj(state->fb, 0);
return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] +
y * fb->pitches[0];
}
static
dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state)
{
struct drm_framebuffer *fb = state->fb;
struct drm_gem_dma_object *gem;
u32 x = state->src_x >> 16;
u32 y = state->src_y >> 16;
if (WARN_ON(state->fb->format->num_planes != 2))
return 0;
gem = drm_fb_dma_get_gem_obj(fb, 1);
return gem->dma_addr + fb->offsets[1] +
(x * fb->format->cpp[1] / fb->format->hsub) +
(y * fb->pitches[1] / fb->format->vsub);
}
void dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state,
u32 hw_videoport)
{
bool lite = dispc->feat->vid_lite[hw_plane];
u32 fourcc = state->fb->format->format;
u16 cpp = state->fb->format->cpp[0];
u32 fb_width = state->fb->pitches[0] / cpp;
dma_addr_t dma_addr = dispc_plane_state_dma_addr(state);
struct dispc_scaling_params scale;
dispc_vid_calc_scaling(dispc, state, &scale, lite);
dispc_plane_set_pixel_format(dispc, hw_plane, fourcc);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE,
(scale.in_w - 1) | ((scale.in_h - 1) << 16));
/* For YUV422 format we use the macropixel size for pixel inc */
if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
pixinc(scale.xinc, cpp * 2));
else
dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
pixinc(scale.xinc, cpp));
dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC,
pixinc(1 + (scale.yinc * fb_width -
scale.xinc * scale.in_w),
cpp));
if (state->fb->format->num_planes == 2) {
u16 cpp_uv = state->fb->format->cpp[1];
u32 fb_width_uv = state->fb->pitches[1] / cpp_uv;
dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV,
pixinc(1 + (scale.yinc * fb_width_uv -
scale.xinc * scale.in_w_uv),
cpp_uv));
}
if (!lite) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE,
(state->crtc_w - 1) |
((state->crtc_h - 1) << 16));
dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc);
}
/* enable YUV->RGB color conversion */
if (dispc_fourcc_is_yuv(fourcc)) {
dispc_vid_csc_setup(dispc, hw_plane, state);
dispc_vid_csc_enable(dispc, hw_plane, true);
} else {
dispc_vid_csc_enable(dispc, hw_plane, false);
}
dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA,
0xFF & (state->alpha >> 8));
if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI)
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
28, 28);
else
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
28, 28);
}
void dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable)
{
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0);
}
static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane)
{
return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0);
}
static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc,
u32 hw_plane, u32 low, u32 high)
{
dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD,
FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
}
static void dispc_vid_set_buf_threshold(struct dispc_device *dispc,
u32 hw_plane, u32 low, u32 high)
{
dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD,
FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
}
static void dispc_k2g_plane_init(struct dispc_device *dispc)
{
unsigned int hw_plane;
dev_dbg(dispc->dev, "%s()\n", __func__);
/* MFLAG_CTRL = ENABLED */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
/* MFLAG_START = MFLAGNORMALSTARTMODE */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
u32 thr_low, thr_high;
u32 mflag_low, mflag_high;
u32 preload;
thr_high = size - 1;
thr_low = size / 2;
mflag_high = size * 2 / 3;
mflag_low = size / 3;
preload = thr_low;
dev_dbg(dispc->dev,
"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
dispc->feat->vid_name[hw_plane],
size,
thr_high, thr_low,
mflag_high, mflag_low,
preload);
dispc_vid_set_buf_threshold(dispc, hw_plane,
thr_low, thr_high);
dispc_vid_set_mflag_threshold(dispc, hw_plane,
mflag_low, mflag_high);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
/*
* Prefetch up to fifo high-threshold value to minimize the
* possibility of underflows. Note that this means the PRELOAD
* register is ignored.
*/
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
19, 19);
}
}
static void dispc_k3_plane_init(struct dispc_device *dispc)
{
unsigned int hw_plane;
u32 cba_lo_pri = 1;
u32 cba_hi_pri = 0;
dev_dbg(dispc->dev, "%s()\n", __func__);
REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0);
REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3);
/* MFLAG_CTRL = ENABLED */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
/* MFLAG_START = MFLAGNORMALSTARTMODE */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
u32 thr_low, thr_high;
u32 mflag_low, mflag_high;
u32 preload;
thr_high = size - 1;
thr_low = size / 2;
mflag_high = size * 2 / 3;
mflag_low = size / 3;
preload = thr_low;
dev_dbg(dispc->dev,
"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
dispc->feat->vid_name[hw_plane],
size,
thr_high, thr_low,
mflag_high, mflag_low,
preload);
dispc_vid_set_buf_threshold(dispc, hw_plane,
thr_low, thr_high);
dispc_vid_set_mflag_threshold(dispc, hw_plane,
mflag_low, mflag_high);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
/* Prefech up to PRELOAD value */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
19, 19);
}
}
static void dispc_plane_init(struct dispc_device *dispc)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_plane_init(dispc);
break;
case DISPC_AM625:
case DISPC_AM62A7:
case DISPC_AM65X:
case DISPC_J721E:
dispc_k3_plane_init(dispc);
break;
default:
WARN_ON(1);
}
}
static void dispc_vp_init(struct dispc_device *dispc)
{
unsigned int i;
dev_dbg(dispc->dev, "%s()\n", __func__);
/* Enable the gamma Shadow bit-field for all VPs*/
for (i = 0; i < dispc->feat->num_vps; i++)
VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2);
}
static void dispc_initial_config(struct dispc_device *dispc)
{
dispc_plane_init(dispc);
dispc_vp_init(dispc);
/* Note: Hardcoded DPI routing on J721E for now */
if (dispc->feat->subrev == DISPC_J721E) {
dispc_write(dispc, DISPC_CONNECTIONS,
FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */
FLD_VAL(8, 7, 4) /* VP3 to DPI1 */
);
}
}
static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
v |= i << 24;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE,
v);
}
}
static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
v |= i << 24;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
}
}
static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
if (i == 0)
v |= 1 << 31;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
}
}
static void dispc_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_vp_write_gamma_table(dispc, hw_videoport);
break;
case DISPC_AM625:
case DISPC_AM62A7:
case DISPC_AM65X:
dispc_am65x_vp_write_gamma_table(dispc, hw_videoport);
break;
case DISPC_J721E:
dispc_j721e_vp_write_gamma_table(dispc, hw_videoport);
break;
default:
WARN_ON(1);
break;
}
}
static const struct drm_color_lut dispc_vp_gamma_default_lut[] = {
{ .red = 0, .green = 0, .blue = 0, },
{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
};
static void dispc_vp_set_gamma(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_color_lut *lut,
unsigned int length)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
u32 hwbits;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n",
__func__, hw_videoport, length, hwlen);
if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT)
hwbits = 10;
else
hwbits = 8;
if (!lut || length < 2) {
lut = dispc_vp_gamma_default_lut;
length = ARRAY_SIZE(dispc_vp_gamma_default_lut);
}
for (i = 0; i < length - 1; ++i) {
unsigned int first = i * (hwlen - 1) / (length - 1);
unsigned int last = (i + 1) * (hwlen - 1) / (length - 1);
unsigned int w = last - first;
u16 r, g, b;
unsigned int j;
if (w == 0)
continue;
for (j = 0; j <= w; j++) {
r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w;
g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w;
b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w;
r >>= 16 - hwbits;
g >>= 16 - hwbits;
b >>= 16 - hwbits;
table[first + j] = (r << (hwbits * 2)) |
(g << hwbits) | b;
}
}
dispc_vp_write_gamma_table(dispc, hw_videoport);
}
static s16 dispc_S31_32_to_s2_8(s64 coef)
{
u64 sign_bit = 1ULL << 63;
u64 cbits = (u64)coef;
s16 ret;
if (cbits & sign_bit)
ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200);
else
ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF);
return ret;
}
static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm,
struct dispc_csc_coef *cpr)
{
memset(cpr, 0, sizeof(*cpr));
cpr->to_regval = dispc_csc_cpr_regval;
cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]);
cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]);
cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]);
cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]);
cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]);
cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]);
cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]);
cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]);
cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]);
}
#define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \
FLD_VAL(xB, 31, 22))
static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc,
u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]);
regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]);
regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]);
}
#undef CVAL
static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vp_cpr_coef_reg[] = {
DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
/* K2G CPR is packed to three registers. */
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
dispc_k2g_vp_csc_cpr_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++)
dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i],
regval[i]);
}
static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
struct drm_color_ctm *ctm)
{
u32 cprenable = 0;
if (ctm) {
struct dispc_csc_coef cpr;
dispc_k2g_cpr_from_ctm(ctm, &cpr);
dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr);
cprenable = 1;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
cprenable, 15, 15);
}
static s16 dispc_S31_32_to_s3_8(s64 coef)
{
u64 sign_bit = 1ULL << 63;
u64 cbits = (u64)coef;
s16 ret;
if (cbits & sign_bit)
ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400);
else
ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF);
return ret;
}
static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm,
struct dispc_csc_coef *cpr)
{
memset(cpr, 0, sizeof(*cpr));
cpr->to_regval = dispc_csc_cpr_regval;
cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]);
cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]);
cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]);
cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]);
cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]);
cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]);
cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]);
cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]);
cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]);
}
static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5,
DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7,
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(regval); i++)
dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i],
regval[i]);
}
static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
struct drm_color_ctm *ctm)
{
u32 colorconvenable = 0;
if (ctm) {
struct dispc_csc_coef csc;
dispc_csc_from_ctm(ctm, &csc);
dispc_k3_vp_write_csc(dispc, hw_videoport, &csc);
colorconvenable = 1;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
colorconvenable, 24, 24);
}
static void dispc_vp_set_color_mgmt(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_crtc_state *state,
bool newmodeset)
{
struct drm_color_lut *lut = NULL;
struct drm_color_ctm *ctm = NULL;
unsigned int length = 0;
if (!(state->color_mgmt_changed || newmodeset))
return;
if (state->gamma_lut) {
lut = (struct drm_color_lut *)state->gamma_lut->data;
length = state->gamma_lut->length / sizeof(*lut);
}
dispc_vp_set_gamma(dispc, hw_videoport, lut, length);
if (state->ctm)
ctm = (struct drm_color_ctm *)state->ctm->data;
if (dispc->feat->subrev == DISPC_K2G)
dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm);
else
dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm);
}
void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state, bool newmodeset)
{
dispc_vp_set_default_color(dispc, hw_videoport, 0);
dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset);
}
int dispc_runtime_suspend(struct dispc_device *dispc)
{
dev_dbg(dispc->dev, "suspend\n");
dispc->is_enabled = false;
clk_disable_unprepare(dispc->fclk);
return 0;
}
int dispc_runtime_resume(struct dispc_device *dispc)
{
dev_dbg(dispc->dev, "resume\n");
clk_prepare_enable(dispc->fclk);
if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0)
dev_warn(dispc->dev, "DSS FUNC RESET not done!\n");
dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n",
dispc_read(dispc, DSS_REVISION));
dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n",
REG_GET(dispc, DSS_SYSSTATUS, 1, 1),
REG_GET(dispc, DSS_SYSSTATUS, 2, 2),
REG_GET(dispc, DSS_SYSSTATUS, 3, 3));
if (dispc->feat->subrev == DISPC_AM625 ||
dispc->feat->subrev == DISPC_AM65X)
dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n",
REG_GET(dispc, DSS_SYSSTATUS, 5, 5),
REG_GET(dispc, DSS_SYSSTATUS, 6, 6),
REG_GET(dispc, DSS_SYSSTATUS, 7, 7));
dev_dbg(dispc->dev, "DISPC IDLE %d\n",
REG_GET(dispc, DSS_SYSSTATUS, 9, 9));
dispc_initial_config(dispc);
dispc->is_enabled = true;
tidss_irq_resume(dispc->tidss);
return 0;
}
void dispc_remove(struct tidss_device *tidss)
{
dev_dbg(tidss->dev, "%s\n", __func__);
tidss->dispc = NULL;
}
static int dispc_iomap_resource(struct platform_device *pdev, const char *name,
void __iomem **base)
{
void __iomem *b;
b = devm_platform_ioremap_resource_byname(pdev, name);
if (IS_ERR(b)) {
dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name);
return PTR_ERR(b);
}
*base = b;
return 0;
}
static int dispc_init_am65x_oldi_io_ctrl(struct device *dev,
struct dispc_device *dispc)
{
dispc->oldi_io_ctrl =
syscon_regmap_lookup_by_phandle(dev->of_node,
"ti,am65x-oldi-io-ctrl");
if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) {
dispc->oldi_io_ctrl = NULL;
} else if (IS_ERR(dispc->oldi_io_ctrl)) {
dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n",
__func__, PTR_ERR(dispc->oldi_io_ctrl));
return PTR_ERR(dispc->oldi_io_ctrl);
}
return 0;
}
static void dispc_init_errata(struct dispc_device *dispc)
{
static const struct soc_device_attribute am65x_sr10_soc_devices[] = {
{ .family = "AM65X", .revision = "SR1.0" },
{ /* sentinel */ }
};
if (soc_device_match(am65x_sr10_soc_devices)) {
dispc->errata.i2000 = true;
dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n");
}
}
/*
* K2G display controller does not support soft reset, so we do a basic manual
* reset here: make sure the IRQs are masked and VPs are disabled.
*/
static void dispc_softreset_k2g(struct dispc_device *dispc)
{
dispc_set_irqenable(dispc, 0);
dispc_read_and_clear_irqstatus(dispc);
for (unsigned int vp_idx = 0; vp_idx < dispc->feat->num_vps; ++vp_idx)
VP_REG_FLD_MOD(dispc, vp_idx, DISPC_VP_CONTROL, 0, 0, 0);
}
static int dispc_softreset(struct dispc_device *dispc)
{
u32 val;
int ret;
if (dispc->feat->subrev == DISPC_K2G) {
dispc_softreset_k2g(dispc);
return 0;
}
/* Soft reset */
REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1);
/* Wait for reset to complete */
ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS,
val, val & 1, 100, 5000);
if (ret) {
dev_err(dispc->dev, "failed to reset dispc\n");
return ret;
}
return 0;
}
static int dispc_init_hw(struct dispc_device *dispc)
{
struct device *dev = dispc->dev;
int ret;
ret = pm_runtime_set_active(dev);
if (ret) {
dev_err(dev, "Failed to set DSS PM to active\n");
return ret;
}
ret = clk_prepare_enable(dispc->fclk);
if (ret) {
dev_err(dev, "Failed to enable DSS fclk\n");
goto err_runtime_suspend;
}
ret = dispc_softreset(dispc);
if (ret)
goto err_clk_disable;
clk_disable_unprepare(dispc->fclk);
ret = pm_runtime_set_suspended(dev);
if (ret) {
dev_err(dev, "Failed to set DSS PM to suspended\n");
return ret;
}
return 0;
err_clk_disable:
clk_disable_unprepare(dispc->fclk);
err_runtime_suspend:
ret = pm_runtime_set_suspended(dev);
if (ret) {
dev_err(dev, "Failed to set DSS PM to suspended\n");
return ret;
}
return ret;
}
int dispc_init(struct tidss_device *tidss)
{
struct device *dev = tidss->dev;
struct platform_device *pdev = to_platform_device(dev);
struct dispc_device *dispc;
const struct dispc_features *feat;
unsigned int i, num_fourccs;
int r = 0;
dev_dbg(dev, "%s\n", __func__);
feat = tidss->feat;
if (feat->subrev != DISPC_K2G) {
r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (r)
dev_warn(dev, "cannot set DMA masks to 48-bit\n");
}
dma_set_max_seg_size(dev, UINT_MAX);
dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL);
if (!dispc)
return -ENOMEM;
dispc->tidss = tidss;
dispc->dev = dev;
dispc->feat = feat;
dispc_init_errata(dispc);
dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats),
sizeof(*dispc->fourccs), GFP_KERNEL);
if (!dispc->fourccs)
return -ENOMEM;
num_fourccs = 0;
for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
if (dispc->errata.i2000 &&
dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) {
continue;
}
dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc;
}
dispc->num_fourccs = num_fourccs;
dispc_common_regmap = dispc->feat->common_regs;
r = dispc_iomap_resource(pdev, dispc->feat->common,
&dispc->base_common);
if (r)
return r;
for (i = 0; i < dispc->feat->num_planes; i++) {
r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i],
&dispc->base_vid[i]);
if (r)
return r;
}
for (i = 0; i < dispc->feat->num_vps; i++) {
u32 gamma_size = dispc->feat->vp_feat.color.gamma_size;
u32 *gamma_table;
struct clk *clk;
r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i],
&dispc->base_ovr[i]);
if (r)
return r;
r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i],
&dispc->base_vp[i]);
if (r)
return r;
clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]);
if (IS_ERR(clk)) {
dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__,
dispc->feat->vpclk_name[i], PTR_ERR(clk));
return PTR_ERR(clk);
}
dispc->vp_clk[i] = clk;
gamma_table = devm_kmalloc_array(dev, gamma_size,
sizeof(*gamma_table),
GFP_KERNEL);
if (!gamma_table)
return -ENOMEM;
dispc->vp_data[i].gamma_table = gamma_table;
}
if (feat->subrev == DISPC_AM65X) {
r = dispc_init_am65x_oldi_io_ctrl(dev, dispc);
if (r)
return r;
}
dispc->fclk = devm_clk_get(dev, "fck");
if (IS_ERR(dispc->fclk)) {
dev_err(dev, "%s: Failed to get fclk: %ld\n",
__func__, PTR_ERR(dispc->fclk));
return PTR_ERR(dispc->fclk);
}
dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk));
of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth",
&dispc->memory_bandwidth_limit);
r = dispc_init_hw(dispc);
if (r)
return r;
tidss->dispc = dispc;
return 0;
}