blob: a66fdf2d299122d73af5072ee439df172f3cd876 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "xe_migrate.h"
#include <linux/bitfield.h>
#include <linux/sizes.h>
#include <drm/drm_managed.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/xe_drm.h>
#include <generated/xe_wa_oob.h>
#include "instructions/xe_mi_commands.h"
#include "regs/xe_gpu_commands.h"
#include "tests/xe_test.h"
#include "xe_assert.h"
#include "xe_bb.h"
#include "xe_bo.h"
#include "xe_exec_queue.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_hw_engine.h"
#include "xe_lrc.h"
#include "xe_map.h"
#include "xe_mocs.h"
#include "xe_pt.h"
#include "xe_res_cursor.h"
#include "xe_sched_job.h"
#include "xe_sync.h"
#include "xe_trace.h"
#include "xe_vm.h"
#include "xe_wa.h"
/**
* struct xe_migrate - migrate context.
*/
struct xe_migrate {
/** @q: Default exec queue used for migration */
struct xe_exec_queue *q;
/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
struct xe_tile *tile;
/** @job_mutex: Timeline mutex for @eng. */
struct mutex job_mutex;
/** @pt_bo: Page-table buffer object. */
struct xe_bo *pt_bo;
/** @batch_base_ofs: VM offset of the migration batch buffer */
u64 batch_base_ofs;
/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
u64 usm_batch_base_ofs;
/** @cleared_mem_ofs: VM offset of @cleared_bo. */
u64 cleared_mem_ofs;
/**
* @fence: dma-fence representing the last migration job batch.
* Protected by @job_mutex.
*/
struct dma_fence *fence;
/**
* @vm_update_sa: For integrated, used to suballocate page-tables
* out of the pt_bo.
*/
struct drm_suballoc_manager vm_update_sa;
/** @min_chunk_size: For dgfx, Minimum chunk size */
u64 min_chunk_size;
};
#define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
#define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
#define NUM_KERNEL_PDE 17
#define NUM_PT_SLOTS 32
#define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
#define MAX_NUM_PTE 512
/*
* Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
* legal value accepted. Since that instruction field is always stored in
* (val-2) format, this translates to 0x400 dwords for the true maximum length
* of the instruction. Subtracting the instruction header (1 dword) and
* address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
*/
#define MAX_PTE_PER_SDI 0x1FE
/**
* xe_tile_migrate_engine() - Get this tile's migrate engine.
* @tile: The tile.
*
* Returns the default migrate engine of this tile.
* TODO: Perhaps this function is slightly misplaced, and even unneeded?
*
* Return: The default migrate engine
*/
struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile)
{
return tile->migrate->q;
}
static void xe_migrate_fini(struct drm_device *dev, void *arg)
{
struct xe_migrate *m = arg;
xe_vm_lock(m->q->vm, false);
xe_bo_unpin(m->pt_bo);
xe_vm_unlock(m->q->vm);
dma_fence_put(m->fence);
xe_bo_put(m->pt_bo);
drm_suballoc_manager_fini(&m->vm_update_sa);
mutex_destroy(&m->job_mutex);
xe_vm_close_and_put(m->q->vm);
xe_exec_queue_put(m->q);
}
static u64 xe_migrate_vm_addr(u64 slot, u32 level)
{
XE_WARN_ON(slot >= NUM_PT_SLOTS);
/* First slot is reserved for mapping of PT bo and bb, start from 1 */
return (slot + 1ULL) << xe_pt_shift(level + 1);
}
static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr)
{
/*
* Remove the DPA to get a correct offset into identity table for the
* migrate offset
*/
addr -= xe->mem.vram.dpa_base;
return addr + (256ULL << xe_pt_shift(2));
}
static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
struct xe_vm *vm)
{
struct xe_device *xe = tile_to_xe(tile);
u16 pat_index = xe->pat.idx[XE_CACHE_WB];
u8 id = tile->id;
u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
u32 map_ofs, level, i;
struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
u64 entry;
/* Can't bump NUM_PT_SLOTS too high */
BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
/* Must be a multiple of 64K to support all platforms */
BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
/* And one slot reserved for the 4KiB page table updates */
BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
/* Need to be sure everything fits in the first PT, or create more */
xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
bo = xe_bo_create_pin_map(vm->xe, tile, vm,
num_entries * XE_PAGE_SIZE,
ttm_bo_type_kernel,
XE_BO_CREATE_VRAM_IF_DGFX(tile) |
XE_BO_CREATE_PINNED_BIT);
if (IS_ERR(bo))
return PTR_ERR(bo);
entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index);
xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
map_ofs = (num_entries - num_level) * XE_PAGE_SIZE;
/* Map the entire BO in our level 0 pt */
for (i = 0, level = 0; i < num_entries; level++) {
entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
pat_index, 0);
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
if (vm->flags & XE_VM_FLAG_64K)
i += 16;
else
i += 1;
}
if (!IS_DGFX(xe)) {
/* Write out batch too */
m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
for (i = 0; i < batch->size;
i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
XE_PAGE_SIZE) {
entry = vm->pt_ops->pte_encode_bo(batch, i,
pat_index, 0);
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
entry);
level++;
}
if (xe->info.has_usm) {
xe_tile_assert(tile, batch->size == SZ_1M);
batch = tile->primary_gt->usm.bb_pool->bo;
m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
xe_tile_assert(tile, batch->size == SZ_512K);
for (i = 0; i < batch->size;
i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
XE_PAGE_SIZE) {
entry = vm->pt_ops->pte_encode_bo(batch, i,
pat_index, 0);
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
entry);
level++;
}
}
} else {
u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
if (xe->info.has_usm) {
batch = tile->primary_gt->usm.bb_pool->bo;
batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
}
}
for (level = 1; level < num_level; level++) {
u32 flags = 0;
if (vm->flags & XE_VM_FLAG_64K && level == 1)
flags = XE_PDE_64K;
entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (level - 1) *
XE_PAGE_SIZE, pat_index);
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
entry | flags);
}
/* Write PDE's that point to our BO. */
for (i = 0; i < num_entries - num_level; i++) {
entry = vm->pt_ops->pde_encode_bo(bo, i * XE_PAGE_SIZE,
pat_index);
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
(i + 1) * 8, u64, entry);
}
/* Set up a 1GiB NULL mapping at 255GiB offset. */
level = 2;
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
| XE_PTE_NULL);
m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
/* Identity map the entire vram at 256GiB offset */
if (IS_DGFX(xe)) {
u64 pos, ofs, flags;
level = 2;
ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8;
flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
true, 0);
/*
* Use 1GB pages, it shouldn't matter the physical amount of
* vram is less, when we don't access it.
*/
for (pos = xe->mem.vram.dpa_base;
pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base;
pos += SZ_1G, ofs += 8)
xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
}
/*
* Example layout created above, with root level = 3:
* [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
* [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
* [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's
* [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2]
*
* This makes the lowest part of the VM point to the pagetables.
* Hence the lowest 2M in the vm should point to itself, with a few writes
* and flushes, other parts of the VM can be used either for copying and
* clearing.
*
* For performance, the kernel reserves PDE's, so about 20 are left
* for async VM updates.
*
* To make it easier to work, each scratch PT is put in slot (1 + PT #)
* everywhere, this allows lockless updates to scratch pages by using
* the different addresses in VM.
*/
#define NUM_VMUSA_UNIT_PER_PAGE 32
#define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
#define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
drm_suballoc_manager_init(&m->vm_update_sa,
(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
NUM_VMUSA_UNIT_PER_PAGE, 0);
m->pt_bo = bo;
return 0;
}
/*
* Due to workaround 16017236439, odd instance hardware copy engines are
* faster than even instance ones.
* This function returns the mask involving all fast copy engines and the
* reserved copy engine to be used as logical mask for migrate engine.
* Including the reserved copy engine is required to avoid deadlocks due to
* migrate jobs servicing the faults gets stuck behind the job that faulted.
*/
static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
{
u32 logical_mask = 0;
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
for_each_hw_engine(hwe, gt, id) {
if (hwe->class != XE_ENGINE_CLASS_COPY)
continue;
if (!XE_WA(gt, 16017236439) ||
xe_gt_is_usm_hwe(gt, hwe) || hwe->instance & 1)
logical_mask |= BIT(hwe->logical_instance);
}
return logical_mask;
}
/**
* xe_migrate_init() - Initialize a migrate context
* @tile: Back-pointer to the tile we're initializing for.
*
* Return: Pointer to a migrate context on success. Error pointer on error.
*/
struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_gt *primary_gt = tile->primary_gt;
struct xe_migrate *m;
struct xe_vm *vm;
int err;
m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
if (!m)
return ERR_PTR(-ENOMEM);
m->tile = tile;
/* Special layout, prepared below.. */
vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
XE_VM_FLAG_SET_TILE_ID(tile));
if (IS_ERR(vm))
return ERR_CAST(vm);
xe_vm_lock(vm, false);
err = xe_migrate_prepare_vm(tile, m, vm);
xe_vm_unlock(vm);
if (err) {
xe_vm_close_and_put(vm);
return ERR_PTR(err);
}
if (xe->info.has_usm) {
struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
XE_ENGINE_CLASS_COPY,
primary_gt->usm.reserved_bcs_instance,
false);
u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
if (!hwe || !logical_mask)
return ERR_PTR(-EINVAL);
m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
EXEC_QUEUE_FLAG_KERNEL |
EXEC_QUEUE_FLAG_PERMANENT |
EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
} else {
m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
XE_ENGINE_CLASS_COPY,
EXEC_QUEUE_FLAG_KERNEL |
EXEC_QUEUE_FLAG_PERMANENT);
}
if (IS_ERR(m->q)) {
xe_vm_close_and_put(vm);
return ERR_CAST(m->q);
}
mutex_init(&m->job_mutex);
err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
if (err)
return ERR_PTR(err);
if (IS_DGFX(xe)) {
if (xe_device_has_flat_ccs(xe))
/* min chunk size corresponds to 4K of CCS Metadata */
m->min_chunk_size = SZ_4K * SZ_64K /
xe_device_ccs_bytes(xe, SZ_64K);
else
/* Somewhat arbitrary to avoid a huge amount of blits */
m->min_chunk_size = SZ_64K;
m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
(unsigned long long)m->min_chunk_size);
}
return m;
}
static u64 max_mem_transfer_per_pass(struct xe_device *xe)
{
if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
return MAX_CCS_LIMITED_TRANSFER;
return MAX_PREEMPTDISABLE_TRANSFER;
}
static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
{
struct xe_device *xe = tile_to_xe(m->tile);
u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
if (mem_type_is_vram(cur->mem_type)) {
/*
* VRAM we want to blit in chunks with sizes aligned to
* min_chunk_size in order for the offset to CCS metadata to be
* page-aligned. If it's the last chunk it may be smaller.
*
* Another constraint is that we need to limit the blit to
* the VRAM block size, unless size is smaller than
* min_chunk_size.
*/
u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
size = min_t(u64, size, chunk);
if (size > m->min_chunk_size)
size = round_down(size, m->min_chunk_size);
}
return size;
}
static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
{
/* If the chunk is not fragmented, allow identity map. */
return cur->size >= size;
}
static u32 pte_update_size(struct xe_migrate *m,
bool is_vram,
struct ttm_resource *res,
struct xe_res_cursor *cur,
u64 *L0, u64 *L0_ofs, u32 *L0_pt,
u32 cmd_size, u32 pt_ofs, u32 avail_pts)
{
u32 cmds = 0;
*L0_pt = pt_ofs;
if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
/* Offset into identity map. */
*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
cur->start + vram_region_gpu_offset(res));
cmds += cmd_size;
} else {
/* Clip L0 to available size */
u64 size = min(*L0, (u64)avail_pts * SZ_2M);
u64 num_4k_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
*L0 = size;
*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
/* MI_STORE_DATA_IMM */
cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
/* PDE qwords */
cmds += num_4k_pages * 2;
/* Each chunk has a single blit command */
cmds += cmd_size;
}
return cmds;
}
static void emit_pte(struct xe_migrate *m,
struct xe_bb *bb, u32 at_pt,
bool is_vram, bool is_comp_pte,
struct xe_res_cursor *cur,
u32 size, struct ttm_resource *res)
{
struct xe_device *xe = tile_to_xe(m->tile);
struct xe_vm *vm = m->q->vm;
u16 pat_index;
u32 ptes;
u64 ofs = at_pt * XE_PAGE_SIZE;
u64 cur_ofs;
/* Indirect access needs compression enabled uncached PAT index */
if (GRAPHICS_VERx100(xe) >= 2000)
pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
xe->pat.idx[XE_CACHE_WB];
else
pat_index = xe->pat.idx[XE_CACHE_WB];
ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
while (ptes) {
u32 chunk = min(MAX_PTE_PER_SDI, ptes);
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
bb->cs[bb->len++] = ofs;
bb->cs[bb->len++] = 0;
cur_ofs = ofs;
ofs += chunk * 8;
ptes -= chunk;
while (chunk--) {
u64 addr, flags = 0;
bool devmem = false;
addr = xe_res_dma(cur) & PAGE_MASK;
if (is_vram) {
if (vm->flags & XE_VM_FLAG_64K) {
u64 va = cur_ofs * XE_PAGE_SIZE / 8;
xe_assert(xe, (va & (SZ_64K - 1)) ==
(addr & (SZ_64K - 1)));
flags |= XE_PTE_PS64;
}
addr += vram_region_gpu_offset(res);
devmem = true;
}
addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
addr, pat_index,
0, devmem, flags);
bb->cs[bb->len++] = lower_32_bits(addr);
bb->cs[bb->len++] = upper_32_bits(addr);
xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
cur_ofs += 8;
}
}
}
#define EMIT_COPY_CCS_DW 5
static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
u64 dst_ofs, bool dst_is_indirect,
u64 src_ofs, bool src_is_indirect,
u32 size)
{
struct xe_device *xe = gt_to_xe(gt);
u32 *cs = bb->cs + bb->len;
u32 num_ccs_blks;
u32 num_pages;
u32 ccs_copy_size;
u32 mocs;
if (GRAPHICS_VERx100(xe) >= 2000) {
num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
} else {
num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
NUM_CCS_BYTES_PER_BLOCK);
xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
}
*cs++ = XY_CTRL_SURF_COPY_BLT |
(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
ccs_copy_size;
*cs++ = lower_32_bits(src_ofs);
*cs++ = upper_32_bits(src_ofs) | mocs;
*cs++ = lower_32_bits(dst_ofs);
*cs++ = upper_32_bits(dst_ofs) | mocs;
bb->len = cs - bb->cs;
}
#define EMIT_COPY_DW 10
static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
u64 src_ofs, u64 dst_ofs, unsigned int size,
unsigned int pitch)
{
struct xe_device *xe = gt_to_xe(gt);
u32 mocs = 0;
u32 tile_y = 0;
xe_gt_assert(gt, size / pitch <= S16_MAX);
xe_gt_assert(gt, pitch / 4 <= S16_MAX);
xe_gt_assert(gt, pitch <= U16_MAX);
if (GRAPHICS_VER(xe) >= 20)
mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
if (GRAPHICS_VERx100(xe) >= 1250)
tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
bb->cs[bb->len++] = 0;
bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
bb->cs[bb->len++] = lower_32_bits(dst_ofs);
bb->cs[bb->len++] = upper_32_bits(dst_ofs);
bb->cs[bb->len++] = 0;
bb->cs[bb->len++] = pitch | mocs;
bb->cs[bb->len++] = lower_32_bits(src_ofs);
bb->cs[bb->len++] = upper_32_bits(src_ofs);
}
static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
enum dma_resv_usage usage)
{
return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
}
static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
{
return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
}
static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
struct xe_bb *bb,
u64 src_ofs, bool src_is_indirect,
u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
u64 ccs_ofs, bool copy_ccs)
{
struct xe_gt *gt = m->tile->primary_gt;
u32 flush_flags = 0;
if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) {
/*
* If the src is already in vram, then it should already
* have been cleared by us, or has been populated by the
* user. Make sure we copy the CCS aux state as-is.
*
* Otherwise if the bo doesn't have any CCS metadata attached,
* we still need to clear it for security reasons.
*/
u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs;
emit_copy_ccs(gt, bb,
dst_ofs, true,
ccs_src_ofs, src_is_indirect, dst_size);
flush_flags = MI_FLUSH_DW_CCS;
} else if (copy_ccs) {
if (!src_is_indirect)
src_ofs = ccs_ofs;
else if (!dst_is_indirect)
dst_ofs = ccs_ofs;
xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
src_is_indirect, dst_size);
if (dst_is_indirect)
flush_flags = MI_FLUSH_DW_CCS;
}
return flush_flags;
}
/**
* xe_migrate_copy() - Copy content of TTM resources.
* @m: The migration context.
* @src_bo: The buffer object @src is currently bound to.
* @dst_bo: If copying between resources created for the same bo, set this to
* the same value as @src_bo. If copying between buffer objects, set it to
* the buffer object @dst is currently bound to.
* @src: The source TTM resource.
* @dst: The dst TTM resource.
* @copy_only_ccs: If true copy only CCS metadata
*
* Copies the contents of @src to @dst: On flat CCS devices,
* the CCS metadata is copied as well if needed, or if not present,
* the CCS metadata of @dst is cleared for security reasons.
*
* Return: Pointer to a dma_fence representing the last copy batch, or
* an error pointer on failure. If there is a failure, any copy operation
* started by the function call has been synced.
*/
struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
struct xe_bo *src_bo,
struct xe_bo *dst_bo,
struct ttm_resource *src,
struct ttm_resource *dst,
bool copy_only_ccs)
{
struct xe_gt *gt = m->tile->primary_gt;
struct xe_device *xe = gt_to_xe(gt);
struct dma_fence *fence = NULL;
u64 size = src_bo->size;
struct xe_res_cursor src_it, dst_it, ccs_it;
u64 src_L0_ofs, dst_L0_ofs;
u32 src_L0_pt, dst_L0_pt;
u64 src_L0, dst_L0;
int pass = 0;
int err;
bool src_is_pltt = src->mem_type == XE_PL_TT;
bool dst_is_pltt = dst->mem_type == XE_PL_TT;
bool src_is_vram = mem_type_is_vram(src->mem_type);
bool dst_is_vram = mem_type_is_vram(dst->mem_type);
bool copy_ccs = xe_device_has_flat_ccs(xe) &&
xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
/* Copying CCS between two different BOs is not supported yet. */
if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
return ERR_PTR(-EINVAL);
if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
return ERR_PTR(-EINVAL);
if (!src_is_vram)
xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
else
xe_res_first(src, 0, size, &src_it);
if (!dst_is_vram)
xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
else
xe_res_first(dst, 0, size, &dst_it);
if (copy_system_ccs)
xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
&ccs_it);
while (size) {
u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
struct xe_sched_job *job;
struct xe_bb *bb;
u32 flush_flags;
u32 update_idx;
u64 ccs_ofs, ccs_size;
u32 ccs_pt;
bool usm = xe->info.has_usm;
u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
src_L0 = xe_migrate_res_sizes(m, &src_it);
dst_L0 = xe_migrate_res_sizes(m, &dst_it);
drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
pass++, src_L0, dst_L0);
src_L0 = min(src_L0, dst_L0);
batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0,
&src_L0_ofs, &src_L0_pt, 0, 0,
avail_pts);
batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0,
&dst_L0_ofs, &dst_L0_pt, 0,
avail_pts, avail_pts);
if (copy_system_ccs) {
ccs_size = xe_device_ccs_bytes(xe, src_L0);
batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size,
&ccs_ofs, &ccs_pt, 0,
2 * avail_pts,
avail_pts);
xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
}
/* Add copy commands size here */
batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0));
bb = xe_bb_new(gt, batch_size, usm);
if (IS_ERR(bb)) {
err = PTR_ERR(bb);
goto err_sync;
}
if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
xe_res_next(&src_it, src_L0);
else
emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
&src_it, src_L0, src);
if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
xe_res_next(&dst_it, src_L0);
else
emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
&dst_it, src_L0, dst);
if (copy_system_ccs)
emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
update_idx = bb->len;
if (!copy_only_ccs)
emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
IS_DGFX(xe) ? src_is_vram : src_is_pltt,
dst_L0_ofs,
IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
src_L0, ccs_ofs, copy_ccs);
mutex_lock(&m->job_mutex);
job = xe_bb_create_migration_job(m->q, bb,
xe_migrate_batch_base(m, usm),
update_idx);
if (IS_ERR(job)) {
err = PTR_ERR(job);
goto err;
}
xe_sched_job_add_migrate_flush(job, flush_flags);
if (!fence) {
err = job_add_deps(job, src_bo->ttm.base.resv,
DMA_RESV_USAGE_BOOKKEEP);
if (!err && src_bo != dst_bo)
err = job_add_deps(job, dst_bo->ttm.base.resv,
DMA_RESV_USAGE_BOOKKEEP);
if (err)
goto err_job;
}
xe_sched_job_arm(job);
dma_fence_put(fence);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
dma_fence_put(m->fence);
m->fence = dma_fence_get(fence);
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, fence);
size -= src_L0;
continue;
err_job:
xe_sched_job_put(job);
err:
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, NULL);
err_sync:
/* Sync partial copy if any. FIXME: under job_mutex? */
if (fence) {
dma_fence_wait(fence, false);
dma_fence_put(fence);
}
return ERR_PTR(err);
}
return fence;
}
static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
u32 size, u32 pitch)
{
struct xe_device *xe = gt_to_xe(gt);
u32 *cs = bb->cs + bb->len;
u32 len = PVC_MEM_SET_CMD_LEN_DW;
*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
*cs++ = pitch - 1;
*cs++ = (size / pitch) - 1;
*cs++ = pitch - 1;
*cs++ = lower_32_bits(src_ofs);
*cs++ = upper_32_bits(src_ofs);
if (GRAPHICS_VERx100(xe) >= 2000)
*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
else
*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
xe_gt_assert(gt, cs - bb->cs == len + bb->len);
bb->len += len;
}
static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
u64 src_ofs, u32 size, u32 pitch, bool is_vram)
{
struct xe_device *xe = gt_to_xe(gt);
u32 *cs = bb->cs + bb->len;
u32 len = XY_FAST_COLOR_BLT_DW;
if (GRAPHICS_VERx100(xe) < 1250)
len = 11;
*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
(len - 2);
if (GRAPHICS_VERx100(xe) >= 2000)
*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
(pitch - 1);
else
*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
(pitch - 1);
*cs++ = 0;
*cs++ = (size / pitch) << 16 | pitch / 4;
*cs++ = lower_32_bits(src_ofs);
*cs++ = upper_32_bits(src_ofs);
*cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
if (len > 11) {
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
}
xe_gt_assert(gt, cs - bb->cs == len + bb->len);
bb->len += len;
}
static bool has_service_copy_support(struct xe_gt *gt)
{
/*
* What we care about is whether the architecture was designed with
* service copy functionality (specifically the new MEM_SET / MEM_COPY
* instructions) so check the architectural engine list rather than the
* actual list since these instructions are usable on BCS0 even if
* all of the actual service copy engines (BCS1-BCS8) have been fused
* off.
*/
return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
XE_HW_ENGINE_BCS1);
}
static u32 emit_clear_cmd_len(struct xe_gt *gt)
{
if (has_service_copy_support(gt))
return PVC_MEM_SET_CMD_LEN_DW;
else
return XY_FAST_COLOR_BLT_DW;
}
static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
u32 size, u32 pitch, bool is_vram)
{
if (has_service_copy_support(gt))
emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
else
emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
is_vram);
}
/**
* xe_migrate_clear() - Copy content of TTM resources.
* @m: The migration context.
* @bo: The buffer object @dst is currently bound to.
* @dst: The dst TTM resource to be cleared.
*
* Clear the contents of @dst to zero. On flat CCS devices,
* the CCS metadata is cleared to zero as well on VRAM destinations.
* TODO: Eliminate the @bo argument.
*
* Return: Pointer to a dma_fence representing the last clear batch, or
* an error pointer on failure. If there is a failure, any clear operation
* started by the function call has been synced.
*/
struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
struct xe_bo *bo,
struct ttm_resource *dst)
{
bool clear_vram = mem_type_is_vram(dst->mem_type);
struct xe_gt *gt = m->tile->primary_gt;
struct xe_device *xe = gt_to_xe(gt);
bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
struct dma_fence *fence = NULL;
u64 size = bo->size;
struct xe_res_cursor src_it;
struct ttm_resource *src = dst;
int err;
int pass = 0;
if (!clear_vram)
xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
else
xe_res_first(src, 0, bo->size, &src_it);
while (size) {
u64 clear_L0_ofs;
u32 clear_L0_pt;
u32 flush_flags = 0;
u64 clear_L0;
struct xe_sched_job *job;
struct xe_bb *bb;
u32 batch_size, update_idx;
bool usm = xe->info.has_usm;
u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
clear_L0 = xe_migrate_res_sizes(m, &src_it);
drm_dbg(&xe->drm, "Pass %u, size: %llu\n", pass++, clear_L0);
/* Calculate final sizes and batch size.. */
batch_size = 2 +
pte_update_size(m, clear_vram, src, &src_it,
&clear_L0, &clear_L0_ofs, &clear_L0_pt,
clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
avail_pts);
if (xe_device_has_flat_ccs(xe))
batch_size += EMIT_COPY_CCS_DW;
/* Clear commands */
if (WARN_ON_ONCE(!clear_L0))
break;
bb = xe_bb_new(gt, batch_size, usm);
if (IS_ERR(bb)) {
err = PTR_ERR(bb);
goto err_sync;
}
size -= clear_L0;
/* Preemption is enabled again by the ring ops. */
if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
xe_res_next(&src_it, clear_L0);
else
emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs,
&src_it, clear_L0, dst);
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
update_idx = bb->len;
if (!clear_system_ccs)
emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
if (xe_device_has_flat_ccs(xe)) {
emit_copy_ccs(gt, bb, clear_L0_ofs, true,
m->cleared_mem_ofs, false, clear_L0);
flush_flags = MI_FLUSH_DW_CCS;
}
mutex_lock(&m->job_mutex);
job = xe_bb_create_migration_job(m->q, bb,
xe_migrate_batch_base(m, usm),
update_idx);
if (IS_ERR(job)) {
err = PTR_ERR(job);
goto err;
}
xe_sched_job_add_migrate_flush(job, flush_flags);
if (!fence) {
/*
* There can't be anything userspace related at this
* point, so we just need to respect any potential move
* fences, which are always tracked as
* DMA_RESV_USAGE_KERNEL.
*/
err = job_add_deps(job, bo->ttm.base.resv,
DMA_RESV_USAGE_KERNEL);
if (err)
goto err_job;
}
xe_sched_job_arm(job);
dma_fence_put(fence);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
dma_fence_put(m->fence);
m->fence = dma_fence_get(fence);
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, fence);
continue;
err_job:
xe_sched_job_put(job);
err:
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, NULL);
err_sync:
/* Sync partial copies if any. FIXME: job_mutex? */
if (fence) {
dma_fence_wait(m->fence, false);
dma_fence_put(fence);
}
return ERR_PTR(err);
}
if (clear_system_ccs)
bo->ccs_cleared = true;
return fence;
}
static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
const struct xe_vm_pgtable_update *update,
struct xe_migrate_pt_update *pt_update)
{
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
u32 chunk;
u32 ofs = update->ofs, size = update->qwords;
/*
* If we have 512 entries (max), we would populate it ourselves,
* and update the PDE above it to the new pointer.
* The only time this can only happen if we have to update the top
* PDE. This requires a BO that is almost vm->size big.
*
* This shouldn't be possible in practice.. might change when 16K
* pages are used. Hence the assert.
*/
xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
if (!ppgtt_ofs)
ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
xe_bo_addr(update->pt_bo, 0,
XE_PAGE_SIZE));
do {
u64 addr = ppgtt_ofs + ofs * 8;
chunk = min(size, MAX_PTE_PER_SDI);
/* Ensure populatefn can do memset64 by aligning bb->cs */
if (!(bb->len & 1))
bb->cs[bb->len++] = MI_NOOP;
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
bb->cs[bb->len++] = lower_32_bits(addr);
bb->cs[bb->len++] = upper_32_bits(addr);
ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk,
update);
bb->len += chunk * 2;
ofs += chunk;
size -= chunk;
} while (size);
}
struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
{
return xe_vm_get(m->q->vm);
}
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
struct migrate_test_params {
struct xe_test_priv base;
bool force_gpu;
};
#define to_migrate_test_params(_priv) \
container_of(_priv, struct migrate_test_params, base)
#endif
static struct dma_fence *
xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
struct xe_vm *vm, struct xe_bo *bo,
const struct xe_vm_pgtable_update *updates,
u32 num_updates, bool wait_vm,
struct xe_migrate_pt_update *pt_update)
{
XE_TEST_DECLARE(struct migrate_test_params *test =
to_migrate_test_params
(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
struct dma_fence *fence;
int err;
u32 i;
if (XE_TEST_ONLY(test && test->force_gpu))
return ERR_PTR(-ETIME);
if (bo && !dma_resv_test_signaled(bo->ttm.base.resv,
DMA_RESV_USAGE_KERNEL))
return ERR_PTR(-ETIME);
if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP))
return ERR_PTR(-ETIME);
if (ops->pre_commit) {
pt_update->job = NULL;
err = ops->pre_commit(pt_update);
if (err)
return ERR_PTR(err);
}
for (i = 0; i < num_updates; i++) {
const struct xe_vm_pgtable_update *update = &updates[i];
ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL,
update->ofs, update->qwords, update);
}
if (vm) {
trace_xe_vm_cpu_bind(vm);
xe_device_wmb(vm->xe);
}
fence = dma_fence_get_stub();
return fence;
}
static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs)
{
struct dma_fence *fence;
int i;
for (i = 0; i < num_syncs; i++) {
fence = syncs[i].fence;
if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&fence->flags))
return false;
}
if (q) {
fence = xe_exec_queue_last_fence_get(q, vm);
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
dma_fence_put(fence);
return false;
}
dma_fence_put(fence);
}
return true;
}
/**
* xe_migrate_update_pgtables() - Pipelined page-table update
* @m: The migrate context.
* @vm: The vm we'll be updating.
* @bo: The bo whose dma-resv we will await before updating, or NULL if userptr.
* @q: The exec queue to be used for the update or NULL if the default
* migration engine is to be used.
* @updates: An array of update descriptors.
* @num_updates: Number of descriptors in @updates.
* @syncs: Array of xe_sync_entry to await before updating. Note that waits
* will block the engine timeline.
* @num_syncs: Number of entries in @syncs.
* @pt_update: Pointer to a struct xe_migrate_pt_update, which contains
* pointers to callback functions and, if subclassed, private arguments to
* those.
*
* Perform a pipelined page-table update. The update descriptors are typically
* built under the same lock critical section as a call to this function. If
* using the default engine for the updates, they will be performed in the
* order they grab the job_mutex. If different engines are used, external
* synchronization is needed for overlapping updates to maintain page-table
* consistency. Note that the meaing of "overlapping" is that the updates
* touch the same page-table, which might be a higher-level page-directory.
* If no pipelining is needed, then updates may be performed by the cpu.
*
* Return: A dma_fence that, when signaled, indicates the update completion.
*/
struct dma_fence *
xe_migrate_update_pgtables(struct xe_migrate *m,
struct xe_vm *vm,
struct xe_bo *bo,
struct xe_exec_queue *q,
const struct xe_vm_pgtable_update *updates,
u32 num_updates,
struct xe_sync_entry *syncs, u32 num_syncs,
struct xe_migrate_pt_update *pt_update)
{
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
struct xe_tile *tile = m->tile;
struct xe_gt *gt = tile->primary_gt;
struct xe_device *xe = tile_to_xe(tile);
struct xe_sched_job *job;
struct dma_fence *fence;
struct drm_suballoc *sa_bo = NULL;
struct xe_vma *vma = pt_update->vma;
struct xe_bb *bb;
u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0;
u64 addr;
int err = 0;
bool usm = !q && xe->info.has_usm;
bool first_munmap_rebind = vma &&
vma->gpuva.flags & XE_VMA_FIRST_REBIND;
struct xe_exec_queue *q_override = !q ? m->q : q;
u16 pat_index = xe->pat.idx[XE_CACHE_WB];
/* Use the CPU if no in syncs and engine is idle */
if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) {
fence = xe_migrate_update_pgtables_cpu(m, vm, bo, updates,
num_updates,
first_munmap_rebind,
pt_update);
if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN))
return fence;
}
/* fixed + PTE entries */
if (IS_DGFX(xe))
batch_size = 2;
else
batch_size = 6 + num_updates * 2;
for (i = 0; i < num_updates; i++) {
u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, MAX_PTE_PER_SDI);
/* align noop + MI_STORE_DATA_IMM cmd prefix */
batch_size += 4 * num_cmds + updates[i].qwords * 2;
}
/*
* XXX: Create temp bo to copy from, if batch_size becomes too big?
*
* Worst case: Sum(2 * (each lower level page size) + (top level page size))
* Should be reasonably bound..
*/
xe_tile_assert(tile, batch_size < SZ_128K);
bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm);
if (IS_ERR(bb))
return ERR_CAST(bb);
/* For sysmem PTE's, need to map them in our hole.. */
if (!IS_DGFX(xe)) {
ppgtt_ofs = NUM_KERNEL_PDE - 1;
if (q) {
xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT);
sa_bo = drm_suballoc_new(&m->vm_update_sa, 1,
GFP_KERNEL, true, 0);
if (IS_ERR(sa_bo)) {
err = PTR_ERR(sa_bo);
goto err;
}
ppgtt_ofs = NUM_KERNEL_PDE +
(drm_suballoc_soffset(sa_bo) /
NUM_VMUSA_UNIT_PER_PAGE);
page_ofs = (drm_suballoc_soffset(sa_bo) %
NUM_VMUSA_UNIT_PER_PAGE) *
VM_SA_UPDATE_UNIT_SIZE;
}
/* Map our PT's to gtt */
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates);
bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
bb->cs[bb->len++] = 0; /* upper_32_bits */
for (i = 0; i < num_updates; i++) {
struct xe_bo *pt_bo = updates[i].pt_bo;
xe_tile_assert(tile, pt_bo->size == SZ_4K);
addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0);
bb->cs[bb->len++] = lower_32_bits(addr);
bb->cs[bb->len++] = upper_32_bits(addr);
}
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
update_idx = bb->len;
addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
for (i = 0; i < num_updates; i++)
write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE,
&updates[i], pt_update);
} else {
/* phys pages, no preamble required */
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
update_idx = bb->len;
for (i = 0; i < num_updates; i++)
write_pgtable(tile, bb, 0, &updates[i], pt_update);
}
if (!q)
mutex_lock(&m->job_mutex);
job = xe_bb_create_migration_job(q ?: m->q, bb,
xe_migrate_batch_base(m, usm),
update_idx);
if (IS_ERR(job)) {
err = PTR_ERR(job);
goto err_bb;
}
/* Wait on BO move */
if (bo) {
err = job_add_deps(job, bo->ttm.base.resv,
DMA_RESV_USAGE_KERNEL);
if (err)
goto err_job;
}
/*
* Munmap style VM unbind, need to wait for all jobs to be complete /
* trigger preempts before moving forward
*/
if (first_munmap_rebind) {
err = job_add_deps(job, xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP);
if (err)
goto err_job;
}
err = xe_sched_job_last_fence_add_dep(job, vm);
for (i = 0; !err && i < num_syncs; i++)
err = xe_sync_entry_add_deps(&syncs[i], job);
if (err)
goto err_job;
if (ops->pre_commit) {
pt_update->job = job;
err = ops->pre_commit(pt_update);
if (err)
goto err_job;
}
xe_sched_job_arm(job);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
if (!q)
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, fence);
drm_suballoc_free(sa_bo, fence);
return fence;
err_job:
xe_sched_job_put(job);
err_bb:
if (!q)
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, NULL);
err:
drm_suballoc_free(sa_bo, NULL);
return ERR_PTR(err);
}
/**
* xe_migrate_wait() - Complete all operations using the xe_migrate context
* @m: Migrate context to wait for.
*
* Waits until the GPU no longer uses the migrate context's default engine
* or its page-table objects. FIXME: What about separate page-table update
* engines?
*/
void xe_migrate_wait(struct xe_migrate *m)
{
if (m->fence)
dma_fence_wait(m->fence, false);
}
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_migrate.c"
#endif