blob: aabb25dc3efab2ed57e8e1a99ec1aa0bfd503297 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_dir2.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_rtalloc.h"
#include "xfs_bmap.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_fsops.h"
#include "xfs_icache.h"
#include "xfs_sysfs.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_reflink.h"
#include "xfs_extent_busy.h"
#include "xfs_health.h"
#include "xfs_trace.h"
#include "xfs_ag.h"
#include "scrub/stats.h"
static DEFINE_MUTEX(xfs_uuid_table_mutex);
static int xfs_uuid_table_size;
static uuid_t *xfs_uuid_table;
void
xfs_uuid_table_free(void)
{
if (xfs_uuid_table_size == 0)
return;
kmem_free(xfs_uuid_table);
xfs_uuid_table = NULL;
xfs_uuid_table_size = 0;
}
/*
* See if the UUID is unique among mounted XFS filesystems.
* Mount fails if UUID is nil or a FS with the same UUID is already mounted.
*/
STATIC int
xfs_uuid_mount(
struct xfs_mount *mp)
{
uuid_t *uuid = &mp->m_sb.sb_uuid;
int hole, i;
/* Publish UUID in struct super_block */
uuid_copy(&mp->m_super->s_uuid, uuid);
if (xfs_has_nouuid(mp))
return 0;
if (uuid_is_null(uuid)) {
xfs_warn(mp, "Filesystem has null UUID - can't mount");
return -EINVAL;
}
mutex_lock(&xfs_uuid_table_mutex);
for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
if (uuid_is_null(&xfs_uuid_table[i])) {
hole = i;
continue;
}
if (uuid_equal(uuid, &xfs_uuid_table[i]))
goto out_duplicate;
}
if (hole < 0) {
xfs_uuid_table = krealloc(xfs_uuid_table,
(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
GFP_KERNEL | __GFP_NOFAIL);
hole = xfs_uuid_table_size++;
}
xfs_uuid_table[hole] = *uuid;
mutex_unlock(&xfs_uuid_table_mutex);
return 0;
out_duplicate:
mutex_unlock(&xfs_uuid_table_mutex);
xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
return -EINVAL;
}
STATIC void
xfs_uuid_unmount(
struct xfs_mount *mp)
{
uuid_t *uuid = &mp->m_sb.sb_uuid;
int i;
if (xfs_has_nouuid(mp))
return;
mutex_lock(&xfs_uuid_table_mutex);
for (i = 0; i < xfs_uuid_table_size; i++) {
if (uuid_is_null(&xfs_uuid_table[i]))
continue;
if (!uuid_equal(uuid, &xfs_uuid_table[i]))
continue;
memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
break;
}
ASSERT(i < xfs_uuid_table_size);
mutex_unlock(&xfs_uuid_table_mutex);
}
/*
* Check size of device based on the (data/realtime) block count.
* Note: this check is used by the growfs code as well as mount.
*/
int
xfs_sb_validate_fsb_count(
xfs_sb_t *sbp,
uint64_t nblocks)
{
ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
ASSERT(sbp->sb_blocklog >= BBSHIFT);
/* Limited by ULONG_MAX of page cache index */
if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
return -EFBIG;
return 0;
}
/*
* xfs_readsb
*
* Does the initial read of the superblock.
*/
int
xfs_readsb(
struct xfs_mount *mp,
int flags)
{
unsigned int sector_size;
struct xfs_buf *bp;
struct xfs_sb *sbp = &mp->m_sb;
int error;
int loud = !(flags & XFS_MFSI_QUIET);
const struct xfs_buf_ops *buf_ops;
ASSERT(mp->m_sb_bp == NULL);
ASSERT(mp->m_ddev_targp != NULL);
/*
* For the initial read, we must guess at the sector
* size based on the block device. It's enough to
* get the sb_sectsize out of the superblock and
* then reread with the proper length.
* We don't verify it yet, because it may not be complete.
*/
sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
buf_ops = NULL;
/*
* Allocate a (locked) buffer to hold the superblock. This will be kept
* around at all times to optimize access to the superblock. Therefore,
* set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
* elevated.
*/
reread:
error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
BTOBB(sector_size), XBF_NO_IOACCT, &bp,
buf_ops);
if (error) {
if (loud)
xfs_warn(mp, "SB validate failed with error %d.", error);
/* bad CRC means corrupted metadata */
if (error == -EFSBADCRC)
error = -EFSCORRUPTED;
return error;
}
/*
* Initialize the mount structure from the superblock.
*/
xfs_sb_from_disk(sbp, bp->b_addr);
/*
* If we haven't validated the superblock, do so now before we try
* to check the sector size and reread the superblock appropriately.
*/
if (sbp->sb_magicnum != XFS_SB_MAGIC) {
if (loud)
xfs_warn(mp, "Invalid superblock magic number");
error = -EINVAL;
goto release_buf;
}
/*
* We must be able to do sector-sized and sector-aligned IO.
*/
if (sector_size > sbp->sb_sectsize) {
if (loud)
xfs_warn(mp, "device supports %u byte sectors (not %u)",
sector_size, sbp->sb_sectsize);
error = -ENOSYS;
goto release_buf;
}
if (buf_ops == NULL) {
/*
* Re-read the superblock so the buffer is correctly sized,
* and properly verified.
*/
xfs_buf_relse(bp);
sector_size = sbp->sb_sectsize;
buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
goto reread;
}
mp->m_features |= xfs_sb_version_to_features(sbp);
xfs_reinit_percpu_counters(mp);
/* no need to be quiet anymore, so reset the buf ops */
bp->b_ops = &xfs_sb_buf_ops;
mp->m_sb_bp = bp;
xfs_buf_unlock(bp);
return 0;
release_buf:
xfs_buf_relse(bp);
return error;
}
/*
* If the sunit/swidth change would move the precomputed root inode value, we
* must reject the ondisk change because repair will stumble over that.
* However, we allow the mount to proceed because we never rejected this
* combination before. Returns true to update the sb, false otherwise.
*/
static inline int
xfs_check_new_dalign(
struct xfs_mount *mp,
int new_dalign,
bool *update_sb)
{
struct xfs_sb *sbp = &mp->m_sb;
xfs_ino_t calc_ino;
calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
if (sbp->sb_rootino == calc_ino) {
*update_sb = true;
return 0;
}
xfs_warn(mp,
"Cannot change stripe alignment; would require moving root inode.");
/*
* XXX: Next time we add a new incompat feature, this should start
* returning -EINVAL to fail the mount. Until then, spit out a warning
* that we're ignoring the administrator's instructions.
*/
xfs_warn(mp, "Skipping superblock stripe alignment update.");
*update_sb = false;
return 0;
}
/*
* If we were provided with new sunit/swidth values as mount options, make sure
* that they pass basic alignment and superblock feature checks, and convert
* them into the same units (FSB) that everything else expects. This step
* /must/ be done before computing the inode geometry.
*/
STATIC int
xfs_validate_new_dalign(
struct xfs_mount *mp)
{
if (mp->m_dalign == 0)
return 0;
/*
* If stripe unit and stripe width are not multiples
* of the fs blocksize turn off alignment.
*/
if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
(BBTOB(mp->m_swidth) & mp->m_blockmask)) {
xfs_warn(mp,
"alignment check failed: sunit/swidth vs. blocksize(%d)",
mp->m_sb.sb_blocksize);
return -EINVAL;
}
/*
* Convert the stripe unit and width to FSBs.
*/
mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
xfs_warn(mp,
"alignment check failed: sunit/swidth vs. agsize(%d)",
mp->m_sb.sb_agblocks);
return -EINVAL;
}
if (!mp->m_dalign) {
xfs_warn(mp,
"alignment check failed: sunit(%d) less than bsize(%d)",
mp->m_dalign, mp->m_sb.sb_blocksize);
return -EINVAL;
}
mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
if (!xfs_has_dalign(mp)) {
xfs_warn(mp,
"cannot change alignment: superblock does not support data alignment");
return -EINVAL;
}
return 0;
}
/* Update alignment values based on mount options and sb values. */
STATIC int
xfs_update_alignment(
struct xfs_mount *mp)
{
struct xfs_sb *sbp = &mp->m_sb;
if (mp->m_dalign) {
bool update_sb;
int error;
if (sbp->sb_unit == mp->m_dalign &&
sbp->sb_width == mp->m_swidth)
return 0;
error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
if (error || !update_sb)
return error;
sbp->sb_unit = mp->m_dalign;
sbp->sb_width = mp->m_swidth;
mp->m_update_sb = true;
} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
mp->m_dalign = sbp->sb_unit;
mp->m_swidth = sbp->sb_width;
}
return 0;
}
/*
* precalculate the low space thresholds for dynamic speculative preallocation.
*/
void
xfs_set_low_space_thresholds(
struct xfs_mount *mp)
{
uint64_t dblocks = mp->m_sb.sb_dblocks;
uint64_t rtexts = mp->m_sb.sb_rextents;
int i;
do_div(dblocks, 100);
do_div(rtexts, 100);
for (i = 0; i < XFS_LOWSP_MAX; i++) {
mp->m_low_space[i] = dblocks * (i + 1);
mp->m_low_rtexts[i] = rtexts * (i + 1);
}
}
/*
* Check that the data (and log if separate) is an ok size.
*/
STATIC int
xfs_check_sizes(
struct xfs_mount *mp)
{
struct xfs_buf *bp;
xfs_daddr_t d;
int error;
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
xfs_warn(mp, "filesystem size mismatch detected");
return -EFBIG;
}
error = xfs_buf_read_uncached(mp->m_ddev_targp,
d - XFS_FSS_TO_BB(mp, 1),
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
if (error) {
xfs_warn(mp, "last sector read failed");
return error;
}
xfs_buf_relse(bp);
if (mp->m_logdev_targp == mp->m_ddev_targp)
return 0;
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
xfs_warn(mp, "log size mismatch detected");
return -EFBIG;
}
error = xfs_buf_read_uncached(mp->m_logdev_targp,
d - XFS_FSB_TO_BB(mp, 1),
XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
if (error) {
xfs_warn(mp, "log device read failed");
return error;
}
xfs_buf_relse(bp);
return 0;
}
/*
* Clear the quotaflags in memory and in the superblock.
*/
int
xfs_mount_reset_sbqflags(
struct xfs_mount *mp)
{
mp->m_qflags = 0;
/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
if (mp->m_sb.sb_qflags == 0)
return 0;
spin_lock(&mp->m_sb_lock);
mp->m_sb.sb_qflags = 0;
spin_unlock(&mp->m_sb_lock);
if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
return 0;
return xfs_sync_sb(mp, false);
}
uint64_t
xfs_default_resblks(xfs_mount_t *mp)
{
uint64_t resblks;
/*
* We default to 5% or 8192 fsbs of space reserved, whichever is
* smaller. This is intended to cover concurrent allocation
* transactions when we initially hit enospc. These each require a 4
* block reservation. Hence by default we cover roughly 2000 concurrent
* allocation reservations.
*/
resblks = mp->m_sb.sb_dblocks;
do_div(resblks, 20);
resblks = min_t(uint64_t, resblks, 8192);
return resblks;
}
/* Ensure the summary counts are correct. */
STATIC int
xfs_check_summary_counts(
struct xfs_mount *mp)
{
int error = 0;
/*
* The AG0 superblock verifier rejects in-progress filesystems,
* so we should never see the flag set this far into mounting.
*/
if (mp->m_sb.sb_inprogress) {
xfs_err(mp, "sb_inprogress set after log recovery??");
WARN_ON(1);
return -EFSCORRUPTED;
}
/*
* Now the log is mounted, we know if it was an unclean shutdown or
* not. If it was, with the first phase of recovery has completed, we
* have consistent AG blocks on disk. We have not recovered EFIs yet,
* but they are recovered transactionally in the second recovery phase
* later.
*
* If the log was clean when we mounted, we can check the summary
* counters. If any of them are obviously incorrect, we can recompute
* them from the AGF headers in the next step.
*/
if (xfs_is_clean(mp) &&
(mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
!xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
/*
* We can safely re-initialise incore superblock counters from the
* per-ag data. These may not be correct if the filesystem was not
* cleanly unmounted, so we waited for recovery to finish before doing
* this.
*
* If the filesystem was cleanly unmounted or the previous check did
* not flag anything weird, then we can trust the values in the
* superblock to be correct and we don't need to do anything here.
* Otherwise, recalculate the summary counters.
*/
if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
if (error)
return error;
}
/*
* Older kernels misused sb_frextents to reflect both incore
* reservations made by running transactions and the actual count of
* free rt extents in the ondisk metadata. Transactions committed
* during runtime can therefore contain a superblock update that
* undercounts the number of free rt extents tracked in the rt bitmap.
* A clean unmount record will have the correct frextents value since
* there can be no other transactions running at that point.
*
* If we're mounting the rt volume after recovering the log, recompute
* frextents from the rtbitmap file to fix the inconsistency.
*/
if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
error = xfs_rtalloc_reinit_frextents(mp);
if (error)
return error;
}
return 0;
}
static void
xfs_unmount_check(
struct xfs_mount *mp)
{
if (xfs_is_shutdown(mp))
return;
if (percpu_counter_sum(&mp->m_ifree) >
percpu_counter_sum(&mp->m_icount)) {
xfs_alert(mp, "ifree/icount mismatch at unmount");
xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
}
}
/*
* Flush and reclaim dirty inodes in preparation for unmount. Inodes and
* internal inode structures can be sitting in the CIL and AIL at this point,
* so we need to unpin them, write them back and/or reclaim them before unmount
* can proceed. In other words, callers are required to have inactivated all
* inodes.
*
* An inode cluster that has been freed can have its buffer still pinned in
* memory because the transaction is still sitting in a iclog. The stale inodes
* on that buffer will be pinned to the buffer until the transaction hits the
* disk and the callbacks run. Pushing the AIL will skip the stale inodes and
* may never see the pinned buffer, so nothing will push out the iclog and
* unpin the buffer.
*
* Hence we need to force the log to unpin everything first. However, log
* forces don't wait for the discards they issue to complete, so we have to
* explicitly wait for them to complete here as well.
*
* Then we can tell the world we are unmounting so that error handling knows
* that the filesystem is going away and we should error out anything that we
* have been retrying in the background. This will prevent never-ending
* retries in AIL pushing from hanging the unmount.
*
* Finally, we can push the AIL to clean all the remaining dirty objects, then
* reclaim the remaining inodes that are still in memory at this point in time.
*/
static void
xfs_unmount_flush_inodes(
struct xfs_mount *mp)
{
xfs_log_force(mp, XFS_LOG_SYNC);
xfs_extent_busy_wait_all(mp);
flush_workqueue(xfs_discard_wq);
set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
xfs_ail_push_all_sync(mp->m_ail);
xfs_inodegc_stop(mp);
cancel_delayed_work_sync(&mp->m_reclaim_work);
xfs_reclaim_inodes(mp);
xfs_health_unmount(mp);
}
static void
xfs_mount_setup_inode_geom(
struct xfs_mount *mp)
{
struct xfs_ino_geometry *igeo = M_IGEO(mp);
igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
xfs_ialloc_setup_geometry(mp);
}
/* Compute maximum possible height for per-AG btree types for this fs. */
static inline void
xfs_agbtree_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int levels;
levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
levels = max(levels, mp->m_rmap_maxlevels);
mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
}
/*
* This function does the following on an initial mount of a file system:
* - reads the superblock from disk and init the mount struct
* - if we're a 32-bit kernel, do a size check on the superblock
* so we don't mount terabyte filesystems
* - init mount struct realtime fields
* - allocate inode hash table for fs
* - init directory manager
* - perform recovery and init the log manager
*/
int
xfs_mountfs(
struct xfs_mount *mp)
{
struct xfs_sb *sbp = &(mp->m_sb);
struct xfs_inode *rip;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
uint quotamount = 0;
uint quotaflags = 0;
int error = 0;
xfs_sb_mount_common(mp, sbp);
/*
* Check for a mismatched features2 values. Older kernels read & wrote
* into the wrong sb offset for sb_features2 on some platforms due to
* xfs_sb_t not being 64bit size aligned when sb_features2 was added,
* which made older superblock reading/writing routines swap it as a
* 64-bit value.
*
* For backwards compatibility, we make both slots equal.
*
* If we detect a mismatched field, we OR the set bits into the existing
* features2 field in case it has already been modified; we don't want
* to lose any features. We then update the bad location with the ORed
* value so that older kernels will see any features2 flags. The
* superblock writeback code ensures the new sb_features2 is copied to
* sb_bad_features2 before it is logged or written to disk.
*/
if (xfs_sb_has_mismatched_features2(sbp)) {
xfs_warn(mp, "correcting sb_features alignment problem");
sbp->sb_features2 |= sbp->sb_bad_features2;
mp->m_update_sb = true;
}
/* always use v2 inodes by default now */
if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
mp->m_features |= XFS_FEAT_NLINK;
mp->m_update_sb = true;
}
/*
* If we were given new sunit/swidth options, do some basic validation
* checks and convert the incore dalign and swidth values to the
* same units (FSB) that everything else uses. This /must/ happen
* before computing the inode geometry.
*/
error = xfs_validate_new_dalign(mp);
if (error)
goto out;
xfs_alloc_compute_maxlevels(mp);
xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
xfs_mount_setup_inode_geom(mp);
xfs_rmapbt_compute_maxlevels(mp);
xfs_refcountbt_compute_maxlevels(mp);
xfs_agbtree_compute_maxlevels(mp);
/*
* Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
* is NOT aligned turn off m_dalign since allocator alignment is within
* an ag, therefore ag has to be aligned at stripe boundary. Note that
* we must compute the free space and rmap btree geometry before doing
* this.
*/
error = xfs_update_alignment(mp);
if (error)
goto out;
/* enable fail_at_unmount as default */
mp->m_fail_unmount = true;
error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
NULL, mp->m_super->s_id);
if (error)
goto out;
error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
&mp->m_kobj, "stats");
if (error)
goto out_remove_sysfs;
xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
error = xfs_error_sysfs_init(mp);
if (error)
goto out_remove_scrub_stats;
error = xfs_errortag_init(mp);
if (error)
goto out_remove_error_sysfs;
error = xfs_uuid_mount(mp);
if (error)
goto out_remove_errortag;
/*
* Update the preferred write size based on the information from the
* on-disk superblock.
*/
mp->m_allocsize_log =
max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
/* set the low space thresholds for dynamic preallocation */
xfs_set_low_space_thresholds(mp);
/*
* If enabled, sparse inode chunk alignment is expected to match the
* cluster size. Full inode chunk alignment must match the chunk size,
* but that is checked on sb read verification...
*/
if (xfs_has_sparseinodes(mp) &&
mp->m_sb.sb_spino_align !=
XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
xfs_warn(mp,
"Sparse inode block alignment (%u) must match cluster size (%llu).",
mp->m_sb.sb_spino_align,
XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
error = -EINVAL;
goto out_remove_uuid;
}
/*
* Check that the data (and log if separate) is an ok size.
*/
error = xfs_check_sizes(mp);
if (error)
goto out_remove_uuid;
/*
* Initialize realtime fields in the mount structure
*/
error = xfs_rtmount_init(mp);
if (error) {
xfs_warn(mp, "RT mount failed");
goto out_remove_uuid;
}
/*
* Copies the low order bits of the timestamp and the randomly
* set "sequence" number out of a UUID.
*/
mp->m_fixedfsid[0] =
(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
get_unaligned_be16(&sbp->sb_uuid.b[4]);
mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
error = xfs_da_mount(mp);
if (error) {
xfs_warn(mp, "Failed dir/attr init: %d", error);
goto out_remove_uuid;
}
/*
* Initialize the precomputed transaction reservations values.
*/
xfs_trans_init(mp);
/*
* Allocate and initialize the per-ag data.
*/
error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
&mp->m_maxagi);
if (error) {
xfs_warn(mp, "Failed per-ag init: %d", error);
goto out_free_dir;
}
if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
xfs_warn(mp, "no log defined");
error = -EFSCORRUPTED;
goto out_free_perag;
}
error = xfs_inodegc_register_shrinker(mp);
if (error)
goto out_fail_wait;
/*
* Log's mount-time initialization. The first part of recovery can place
* some items on the AIL, to be handled when recovery is finished or
* cancelled.
*/
error = xfs_log_mount(mp, mp->m_logdev_targp,
XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
if (error) {
xfs_warn(mp, "log mount failed");
goto out_inodegc_shrinker;
}
/* Enable background inode inactivation workers. */
xfs_inodegc_start(mp);
xfs_blockgc_start(mp);
/*
* Now that we've recovered any pending superblock feature bit
* additions, we can finish setting up the attr2 behaviour for the
* mount. The noattr2 option overrides the superblock flag, so only
* check the superblock feature flag if the mount option is not set.
*/
if (xfs_has_noattr2(mp)) {
mp->m_features &= ~XFS_FEAT_ATTR2;
} else if (!xfs_has_attr2(mp) &&
(mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
mp->m_features |= XFS_FEAT_ATTR2;
}
/*
* Get and sanity-check the root inode.
* Save the pointer to it in the mount structure.
*/
error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
XFS_ILOCK_EXCL, &rip);
if (error) {
xfs_warn(mp,
"Failed to read root inode 0x%llx, error %d",
sbp->sb_rootino, -error);
goto out_log_dealloc;
}
ASSERT(rip != NULL);
if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
xfs_warn(mp, "corrupted root inode %llu: not a directory",
(unsigned long long)rip->i_ino);
xfs_iunlock(rip, XFS_ILOCK_EXCL);
error = -EFSCORRUPTED;
goto out_rele_rip;
}
mp->m_rootip = rip; /* save it */
xfs_iunlock(rip, XFS_ILOCK_EXCL);
/*
* Initialize realtime inode pointers in the mount structure
*/
error = xfs_rtmount_inodes(mp);
if (error) {
/*
* Free up the root inode.
*/
xfs_warn(mp, "failed to read RT inodes");
goto out_rele_rip;
}
/* Make sure the summary counts are ok. */
error = xfs_check_summary_counts(mp);
if (error)
goto out_rtunmount;
/*
* If this is a read-only mount defer the superblock updates until
* the next remount into writeable mode. Otherwise we would never
* perform the update e.g. for the root filesystem.
*/
if (mp->m_update_sb && !xfs_is_readonly(mp)) {
error = xfs_sync_sb(mp, false);
if (error) {
xfs_warn(mp, "failed to write sb changes");
goto out_rtunmount;
}
}
/*
* Initialise the XFS quota management subsystem for this mount
*/
if (XFS_IS_QUOTA_ON(mp)) {
error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
if (error)
goto out_rtunmount;
} else {
/*
* If a file system had quotas running earlier, but decided to
* mount without -o uquota/pquota/gquota options, revoke the
* quotachecked license.
*/
if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
xfs_notice(mp, "resetting quota flags");
error = xfs_mount_reset_sbqflags(mp);
if (error)
goto out_rtunmount;
}
}
/*
* Finish recovering the file system. This part needed to be delayed
* until after the root and real-time bitmap inodes were consistently
* read in. Temporarily create per-AG space reservations for metadata
* btree shape changes because space freeing transactions (for inode
* inactivation) require the per-AG reservation in lieu of reserving
* blocks.
*/
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error == -ENOSPC)
xfs_warn(mp,
"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
error = xfs_log_mount_finish(mp);
xfs_fs_unreserve_ag_blocks(mp);
if (error) {
xfs_warn(mp, "log mount finish failed");
goto out_rtunmount;
}
/*
* Now the log is fully replayed, we can transition to full read-only
* mode for read-only mounts. This will sync all the metadata and clean
* the log so that the recovery we just performed does not have to be
* replayed again on the next mount.
*
* We use the same quiesce mechanism as the rw->ro remount, as they are
* semantically identical operations.
*/
if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
xfs_log_clean(mp);
/*
* Complete the quota initialisation, post-log-replay component.
*/
if (quotamount) {
ASSERT(mp->m_qflags == 0);
mp->m_qflags = quotaflags;
xfs_qm_mount_quotas(mp);
}
/*
* Now we are mounted, reserve a small amount of unused space for
* privileged transactions. This is needed so that transaction
* space required for critical operations can dip into this pool
* when at ENOSPC. This is needed for operations like create with
* attr, unwritten extent conversion at ENOSPC, etc. Data allocations
* are not allowed to use this reserved space.
*
* This may drive us straight to ENOSPC on mount, but that implies
* we were already there on the last unmount. Warn if this occurs.
*/
if (!xfs_is_readonly(mp)) {
error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
if (error)
xfs_warn(mp,
"Unable to allocate reserve blocks. Continuing without reserve pool.");
/* Reserve AG blocks for future btree expansion. */
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
goto out_agresv;
}
return 0;
out_agresv:
xfs_fs_unreserve_ag_blocks(mp);
xfs_qm_unmount_quotas(mp);
out_rtunmount:
xfs_rtunmount_inodes(mp);
out_rele_rip:
xfs_irele(rip);
/* Clean out dquots that might be in memory after quotacheck. */
xfs_qm_unmount(mp);
/*
* Inactivate all inodes that might still be in memory after a log
* intent recovery failure so that reclaim can free them. Metadata
* inodes and the root directory shouldn't need inactivation, but the
* mount failed for some reason, so pull down all the state and flee.
*/
xfs_inodegc_flush(mp);
/*
* Flush all inode reclamation work and flush the log.
* We have to do this /after/ rtunmount and qm_unmount because those
* two will have scheduled delayed reclaim for the rt/quota inodes.
*
* This is slightly different from the unmountfs call sequence
* because we could be tearing down a partially set up mount. In
* particular, if log_mount_finish fails we bail out without calling
* qm_unmount_quotas and therefore rely on qm_unmount to release the
* quota inodes.
*/
xfs_unmount_flush_inodes(mp);
out_log_dealloc:
xfs_log_mount_cancel(mp);
out_inodegc_shrinker:
shrinker_free(mp->m_inodegc_shrinker);
out_fail_wait:
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
xfs_buftarg_drain(mp->m_logdev_targp);
xfs_buftarg_drain(mp->m_ddev_targp);
out_free_perag:
xfs_free_perag(mp);
out_free_dir:
xfs_da_unmount(mp);
out_remove_uuid:
xfs_uuid_unmount(mp);
out_remove_errortag:
xfs_errortag_del(mp);
out_remove_error_sysfs:
xfs_error_sysfs_del(mp);
out_remove_scrub_stats:
xchk_stats_unregister(mp->m_scrub_stats);
xfs_sysfs_del(&mp->m_stats.xs_kobj);
out_remove_sysfs:
xfs_sysfs_del(&mp->m_kobj);
out:
return error;
}
/*
* This flushes out the inodes,dquots and the superblock, unmounts the
* log and makes sure that incore structures are freed.
*/
void
xfs_unmountfs(
struct xfs_mount *mp)
{
int error;
/*
* Perform all on-disk metadata updates required to inactivate inodes
* that the VFS evicted earlier in the unmount process. Freeing inodes
* and discarding CoW fork preallocations can cause shape changes to
* the free inode and refcount btrees, respectively, so we must finish
* this before we discard the metadata space reservations. Metadata
* inodes and the root directory do not require inactivation.
*/
xfs_inodegc_flush(mp);
xfs_blockgc_stop(mp);
xfs_fs_unreserve_ag_blocks(mp);
xfs_qm_unmount_quotas(mp);
xfs_rtunmount_inodes(mp);
xfs_irele(mp->m_rootip);
xfs_unmount_flush_inodes(mp);
xfs_qm_unmount(mp);
/*
* Unreserve any blocks we have so that when we unmount we don't account
* the reserved free space as used. This is really only necessary for
* lazy superblock counting because it trusts the incore superblock
* counters to be absolutely correct on clean unmount.
*
* We don't bother correcting this elsewhere for lazy superblock
* counting because on mount of an unclean filesystem we reconstruct the
* correct counter value and this is irrelevant.
*
* For non-lazy counter filesystems, this doesn't matter at all because
* we only every apply deltas to the superblock and hence the incore
* value does not matter....
*/
error = xfs_reserve_blocks(mp, 0);
if (error)
xfs_warn(mp, "Unable to free reserved block pool. "
"Freespace may not be correct on next mount.");
xfs_unmount_check(mp);
xfs_log_unmount(mp);
xfs_da_unmount(mp);
xfs_uuid_unmount(mp);
#if defined(DEBUG)
xfs_errortag_clearall(mp);
#endif
shrinker_free(mp->m_inodegc_shrinker);
xfs_free_perag(mp);
xfs_errortag_del(mp);
xfs_error_sysfs_del(mp);
xchk_stats_unregister(mp->m_scrub_stats);
xfs_sysfs_del(&mp->m_stats.xs_kobj);
xfs_sysfs_del(&mp->m_kobj);
}
/*
* Determine whether modifications can proceed. The caller specifies the minimum
* freeze level for which modifications should not be allowed. This allows
* certain operations to proceed while the freeze sequence is in progress, if
* necessary.
*/
bool
xfs_fs_writable(
struct xfs_mount *mp,
int level)
{
ASSERT(level > SB_UNFROZEN);
if ((mp->m_super->s_writers.frozen >= level) ||
xfs_is_shutdown(mp) || xfs_is_readonly(mp))
return false;
return true;
}
/* Adjust m_fdblocks or m_frextents. */
int
xfs_mod_freecounter(
struct xfs_mount *mp,
struct percpu_counter *counter,
int64_t delta,
bool rsvd)
{
int64_t lcounter;
long long res_used;
uint64_t set_aside = 0;
s32 batch;
bool has_resv_pool;
ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
has_resv_pool = (counter == &mp->m_fdblocks);
if (rsvd)
ASSERT(has_resv_pool);
if (delta > 0) {
/*
* If the reserve pool is depleted, put blocks back into it
* first. Most of the time the pool is full.
*/
if (likely(!has_resv_pool ||
mp->m_resblks == mp->m_resblks_avail)) {
percpu_counter_add(counter, delta);
return 0;
}
spin_lock(&mp->m_sb_lock);
res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
if (res_used > delta) {
mp->m_resblks_avail += delta;
} else {
delta -= res_used;
mp->m_resblks_avail = mp->m_resblks;
percpu_counter_add(counter, delta);
}
spin_unlock(&mp->m_sb_lock);
return 0;
}
/*
* Taking blocks away, need to be more accurate the closer we
* are to zero.
*
* If the counter has a value of less than 2 * max batch size,
* then make everything serialise as we are real close to
* ENOSPC.
*/
if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
XFS_FDBLOCKS_BATCH) < 0)
batch = 1;
else
batch = XFS_FDBLOCKS_BATCH;
/*
* Set aside allocbt blocks because these blocks are tracked as free
* space but not available for allocation. Technically this means that a
* single reservation cannot consume all remaining free space, but the
* ratio of allocbt blocks to usable free blocks should be rather small.
* The tradeoff without this is that filesystems that maintain high
* perag block reservations can over reserve physical block availability
* and fail physical allocation, which leads to much more serious
* problems (i.e. transaction abort, pagecache discards, etc.) than
* slightly premature -ENOSPC.
*/
if (has_resv_pool)
set_aside = xfs_fdblocks_unavailable(mp);
percpu_counter_add_batch(counter, delta, batch);
if (__percpu_counter_compare(counter, set_aside,
XFS_FDBLOCKS_BATCH) >= 0) {
/* we had space! */
return 0;
}
/*
* lock up the sb for dipping into reserves before releasing the space
* that took us to ENOSPC.
*/
spin_lock(&mp->m_sb_lock);
percpu_counter_add(counter, -delta);
if (!has_resv_pool || !rsvd)
goto fdblocks_enospc;
lcounter = (long long)mp->m_resblks_avail + delta;
if (lcounter >= 0) {
mp->m_resblks_avail = lcounter;
spin_unlock(&mp->m_sb_lock);
return 0;
}
xfs_warn_once(mp,
"Reserve blocks depleted! Consider increasing reserve pool size.");
fdblocks_enospc:
spin_unlock(&mp->m_sb_lock);
return -ENOSPC;
}
/*
* Used to free the superblock along various error paths.
*/
void
xfs_freesb(
struct xfs_mount *mp)
{
struct xfs_buf *bp = mp->m_sb_bp;
xfs_buf_lock(bp);
mp->m_sb_bp = NULL;
xfs_buf_relse(bp);
}
/*
* If the underlying (data/log/rt) device is readonly, there are some
* operations that cannot proceed.
*/
int
xfs_dev_is_read_only(
struct xfs_mount *mp,
char *message)
{
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
xfs_readonly_buftarg(mp->m_logdev_targp) ||
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
xfs_notice(mp, "%s required on read-only device.", message);
xfs_notice(mp, "write access unavailable, cannot proceed.");
return -EROFS;
}
return 0;
}
/* Force the summary counters to be recalculated at next mount. */
void
xfs_force_summary_recalc(
struct xfs_mount *mp)
{
if (!xfs_has_lazysbcount(mp))
return;
xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
}
/*
* Enable a log incompat feature flag in the primary superblock. The caller
* cannot have any other transactions in progress.
*/
int
xfs_add_incompat_log_feature(
struct xfs_mount *mp,
uint32_t feature)
{
struct xfs_dsb *dsb;
int error;
ASSERT(hweight32(feature) == 1);
ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
/*
* Force the log to disk and kick the background AIL thread to reduce
* the chances that the bwrite will stall waiting for the AIL to unpin
* the primary superblock buffer. This isn't a data integrity
* operation, so we don't need a synchronous push.
*/
error = xfs_log_force(mp, XFS_LOG_SYNC);
if (error)
return error;
xfs_ail_push_all(mp->m_ail);
/*
* Lock the primary superblock buffer to serialize all callers that
* are trying to set feature bits.
*/
xfs_buf_lock(mp->m_sb_bp);
xfs_buf_hold(mp->m_sb_bp);
if (xfs_is_shutdown(mp)) {
error = -EIO;
goto rele;
}
if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
goto rele;
/*
* Write the primary superblock to disk immediately, because we need
* the log_incompat bit to be set in the primary super now to protect
* the log items that we're going to commit later.
*/
dsb = mp->m_sb_bp->b_addr;
xfs_sb_to_disk(dsb, &mp->m_sb);
dsb->sb_features_log_incompat |= cpu_to_be32(feature);
error = xfs_bwrite(mp->m_sb_bp);
if (error)
goto shutdown;
/*
* Add the feature bits to the incore superblock before we unlock the
* buffer.
*/
xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
xfs_buf_relse(mp->m_sb_bp);
/* Log the superblock to disk. */
return xfs_sync_sb(mp, false);
shutdown:
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
rele:
xfs_buf_relse(mp->m_sb_bp);
return error;
}
/*
* Clear all the log incompat flags from the superblock.
*
* The caller cannot be in a transaction, must ensure that the log does not
* contain any log items protected by any log incompat bit, and must ensure
* that there are no other threads that depend on the state of the log incompat
* feature flags in the primary super.
*
* Returns true if the superblock is dirty.
*/
bool
xfs_clear_incompat_log_features(
struct xfs_mount *mp)
{
bool ret = false;
if (!xfs_has_crc(mp) ||
!xfs_sb_has_incompat_log_feature(&mp->m_sb,
XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
xfs_is_shutdown(mp))
return false;
/*
* Update the incore superblock. We synchronize on the primary super
* buffer lock to be consistent with the add function, though at least
* in theory this shouldn't be necessary.
*/
xfs_buf_lock(mp->m_sb_bp);
xfs_buf_hold(mp->m_sb_bp);
if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
xfs_sb_remove_incompat_log_features(&mp->m_sb);
ret = true;
}
xfs_buf_relse(mp->m_sb_bp);
return ret;
}
/*
* Update the in-core delayed block counter.
*
* We prefer to update the counter without having to take a spinlock for every
* counter update (i.e. batching). Each change to delayed allocation
* reservations can change can easily exceed the default percpu counter
* batching, so we use a larger batch factor here.
*
* Note that we don't currently have any callers requiring fast summation
* (e.g. percpu_counter_read) so we can use a big batch value here.
*/
#define XFS_DELALLOC_BATCH (4096)
void
xfs_mod_delalloc(
struct xfs_mount *mp,
int64_t delta)
{
percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
XFS_DELALLOC_BATCH);
}