blob: 79ad0087aecaf52ea9853c788a72e71c90ab5a45 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_rmap_item.h"
#include "xfs_log.h"
#include "xfs_rmap.h"
#include "xfs_error.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_ag.h"
struct kmem_cache *xfs_rui_cache;
struct kmem_cache *xfs_rud_cache;
static const struct xfs_item_ops xfs_rui_item_ops;
static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_rui_log_item, rui_item);
}
STATIC void
xfs_rui_item_free(
struct xfs_rui_log_item *ruip)
{
kmem_free(ruip->rui_item.li_lv_shadow);
if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
kmem_free(ruip);
else
kmem_cache_free(xfs_rui_cache, ruip);
}
/*
* Freeing the RUI requires that we remove it from the AIL if it has already
* been placed there. However, the RUI may not yet have been placed in the AIL
* when called by xfs_rui_release() from RUD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the RUI.
*/
STATIC void
xfs_rui_release(
struct xfs_rui_log_item *ruip)
{
ASSERT(atomic_read(&ruip->rui_refcount) > 0);
if (!atomic_dec_and_test(&ruip->rui_refcount))
return;
xfs_trans_ail_delete(&ruip->rui_item, 0);
xfs_rui_item_free(ruip);
}
STATIC void
xfs_rui_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given rui log item. We use only 1 iovec, and we point that
* at the rui_log_format structure embedded in the rui item.
* It is at this point that we assert that all of the extent
* slots in the rui item have been filled.
*/
STATIC void
xfs_rui_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&ruip->rui_next_extent) ==
ruip->rui_format.rui_nextents);
ruip->rui_format.rui_type = XFS_LI_RUI;
ruip->rui_format.rui_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
}
/*
* The unpin operation is the last place an RUI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the RUI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the RUI to either construct
* and commit the RUD or drop the RUD's reference in the event of error. Simply
* drop the log's RUI reference now that the log is done with it.
*/
STATIC void
xfs_rui_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
xfs_rui_release(ruip);
}
/*
* The RUI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an RUD isn't going to be
* constructed and thus we free the RUI here directly.
*/
STATIC void
xfs_rui_item_release(
struct xfs_log_item *lip)
{
xfs_rui_release(RUI_ITEM(lip));
}
/*
* Allocate and initialize an rui item with the given number of extents.
*/
STATIC struct xfs_rui_log_item *
xfs_rui_init(
struct xfs_mount *mp,
uint nextents)
{
struct xfs_rui_log_item *ruip;
ASSERT(nextents > 0);
if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0);
else
ruip = kmem_cache_zalloc(xfs_rui_cache,
GFP_KERNEL | __GFP_NOFAIL);
xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
ruip->rui_format.rui_nextents = nextents;
ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
atomic_set(&ruip->rui_next_extent, 0);
atomic_set(&ruip->rui_refcount, 2);
return ruip;
}
static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_rud_log_item, rud_item);
}
STATIC void
xfs_rud_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += sizeof(struct xfs_rud_log_format);
}
/*
* This is called to fill in the vector of log iovecs for the
* given rud log item. We use only 1 iovec, and we point that
* at the rud_log_format structure embedded in the rud item.
* It is at this point that we assert that all of the extent
* slots in the rud item have been filled.
*/
STATIC void
xfs_rud_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
rudp->rud_format.rud_type = XFS_LI_RUD;
rudp->rud_format.rud_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
sizeof(struct xfs_rud_log_format));
}
/*
* The RUD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the RUI and free the
* RUD.
*/
STATIC void
xfs_rud_item_release(
struct xfs_log_item *lip)
{
struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
xfs_rui_release(rudp->rud_ruip);
kmem_free(rudp->rud_item.li_lv_shadow);
kmem_cache_free(xfs_rud_cache, rudp);
}
static struct xfs_log_item *
xfs_rud_item_intent(
struct xfs_log_item *lip)
{
return &RUD_ITEM(lip)->rud_ruip->rui_item;
}
static const struct xfs_item_ops xfs_rud_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
XFS_ITEM_INTENT_DONE,
.iop_size = xfs_rud_item_size,
.iop_format = xfs_rud_item_format,
.iop_release = xfs_rud_item_release,
.iop_intent = xfs_rud_item_intent,
};
/* Set the map extent flags for this reverse mapping. */
static void
xfs_trans_set_rmap_flags(
struct xfs_map_extent *map,
enum xfs_rmap_intent_type type,
int whichfork,
xfs_exntst_t state)
{
map->me_flags = 0;
if (state == XFS_EXT_UNWRITTEN)
map->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN;
if (whichfork == XFS_ATTR_FORK)
map->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK;
switch (type) {
case XFS_RMAP_MAP:
map->me_flags |= XFS_RMAP_EXTENT_MAP;
break;
case XFS_RMAP_MAP_SHARED:
map->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED;
break;
case XFS_RMAP_UNMAP:
map->me_flags |= XFS_RMAP_EXTENT_UNMAP;
break;
case XFS_RMAP_UNMAP_SHARED:
map->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED;
break;
case XFS_RMAP_CONVERT:
map->me_flags |= XFS_RMAP_EXTENT_CONVERT;
break;
case XFS_RMAP_CONVERT_SHARED:
map->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED;
break;
case XFS_RMAP_ALLOC:
map->me_flags |= XFS_RMAP_EXTENT_ALLOC;
break;
case XFS_RMAP_FREE:
map->me_flags |= XFS_RMAP_EXTENT_FREE;
break;
default:
ASSERT(0);
}
}
/* Sort rmap intents by AG. */
static int
xfs_rmap_update_diff_items(
void *priv,
const struct list_head *a,
const struct list_head *b)
{
struct xfs_rmap_intent *ra;
struct xfs_rmap_intent *rb;
ra = container_of(a, struct xfs_rmap_intent, ri_list);
rb = container_of(b, struct xfs_rmap_intent, ri_list);
return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
}
/* Log rmap updates in the intent item. */
STATIC void
xfs_rmap_update_log_item(
struct xfs_trans *tp,
struct xfs_rui_log_item *ruip,
struct xfs_rmap_intent *ri)
{
uint next_extent;
struct xfs_map_extent *map;
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1;
ASSERT(next_extent < ruip->rui_format.rui_nextents);
map = &ruip->rui_format.rui_extents[next_extent];
map->me_owner = ri->ri_owner;
map->me_startblock = ri->ri_bmap.br_startblock;
map->me_startoff = ri->ri_bmap.br_startoff;
map->me_len = ri->ri_bmap.br_blockcount;
xfs_trans_set_rmap_flags(map, ri->ri_type, ri->ri_whichfork,
ri->ri_bmap.br_state);
}
static struct xfs_log_item *
xfs_rmap_update_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count);
struct xfs_rmap_intent *ri;
ASSERT(count > 0);
if (sort)
list_sort(mp, items, xfs_rmap_update_diff_items);
list_for_each_entry(ri, items, ri_list)
xfs_rmap_update_log_item(tp, ruip, ri);
return &ruip->rui_item;
}
/* Get an RUD so we can process all the deferred rmap updates. */
static struct xfs_log_item *
xfs_rmap_update_create_done(
struct xfs_trans *tp,
struct xfs_log_item *intent,
unsigned int count)
{
struct xfs_rui_log_item *ruip = RUI_ITEM(intent);
struct xfs_rud_log_item *rudp;
rudp = kmem_cache_zalloc(xfs_rud_cache, GFP_KERNEL | __GFP_NOFAIL);
xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD,
&xfs_rud_item_ops);
rudp->rud_ruip = ruip;
rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
return &rudp->rud_item;
}
/* Take a passive ref to the AG containing the space we're rmapping. */
void
xfs_rmap_update_get_group(
struct xfs_mount *mp,
struct xfs_rmap_intent *ri)
{
xfs_agnumber_t agno;
agno = XFS_FSB_TO_AGNO(mp, ri->ri_bmap.br_startblock);
ri->ri_pag = xfs_perag_intent_get(mp, agno);
}
/* Release a passive AG ref after finishing rmapping work. */
static inline void
xfs_rmap_update_put_group(
struct xfs_rmap_intent *ri)
{
xfs_perag_intent_put(ri->ri_pag);
}
/* Process a deferred rmap update. */
STATIC int
xfs_rmap_update_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_rmap_intent *ri;
int error;
ri = container_of(item, struct xfs_rmap_intent, ri_list);
error = xfs_rmap_finish_one(tp, ri, state);
xfs_rmap_update_put_group(ri);
kmem_cache_free(xfs_rmap_intent_cache, ri);
return error;
}
/* Abort all pending RUIs. */
STATIC void
xfs_rmap_update_abort_intent(
struct xfs_log_item *intent)
{
xfs_rui_release(RUI_ITEM(intent));
}
/* Cancel a deferred rmap update. */
STATIC void
xfs_rmap_update_cancel_item(
struct list_head *item)
{
struct xfs_rmap_intent *ri;
ri = container_of(item, struct xfs_rmap_intent, ri_list);
xfs_rmap_update_put_group(ri);
kmem_cache_free(xfs_rmap_intent_cache, ri);
}
/* Is this recovered RUI ok? */
static inline bool
xfs_rui_validate_map(
struct xfs_mount *mp,
struct xfs_map_extent *map)
{
if (!xfs_has_rmapbt(mp))
return false;
if (map->me_flags & ~XFS_RMAP_EXTENT_FLAGS)
return false;
switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
case XFS_RMAP_EXTENT_MAP:
case XFS_RMAP_EXTENT_MAP_SHARED:
case XFS_RMAP_EXTENT_UNMAP:
case XFS_RMAP_EXTENT_UNMAP_SHARED:
case XFS_RMAP_EXTENT_CONVERT:
case XFS_RMAP_EXTENT_CONVERT_SHARED:
case XFS_RMAP_EXTENT_ALLOC:
case XFS_RMAP_EXTENT_FREE:
break;
default:
return false;
}
if (!XFS_RMAP_NON_INODE_OWNER(map->me_owner) &&
!xfs_verify_ino(mp, map->me_owner))
return false;
if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len))
return false;
return xfs_verify_fsbext(mp, map->me_startblock, map->me_len);
}
static inline void
xfs_rui_recover_work(
struct xfs_mount *mp,
struct xfs_defer_pending *dfp,
const struct xfs_map_extent *map)
{
struct xfs_rmap_intent *ri;
ri = kmem_cache_alloc(xfs_rmap_intent_cache, GFP_NOFS | __GFP_NOFAIL);
switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
case XFS_RMAP_EXTENT_MAP:
ri->ri_type = XFS_RMAP_MAP;
break;
case XFS_RMAP_EXTENT_MAP_SHARED:
ri->ri_type = XFS_RMAP_MAP_SHARED;
break;
case XFS_RMAP_EXTENT_UNMAP:
ri->ri_type = XFS_RMAP_UNMAP;
break;
case XFS_RMAP_EXTENT_UNMAP_SHARED:
ri->ri_type = XFS_RMAP_UNMAP_SHARED;
break;
case XFS_RMAP_EXTENT_CONVERT:
ri->ri_type = XFS_RMAP_CONVERT;
break;
case XFS_RMAP_EXTENT_CONVERT_SHARED:
ri->ri_type = XFS_RMAP_CONVERT_SHARED;
break;
case XFS_RMAP_EXTENT_ALLOC:
ri->ri_type = XFS_RMAP_ALLOC;
break;
case XFS_RMAP_EXTENT_FREE:
ri->ri_type = XFS_RMAP_FREE;
break;
default:
ASSERT(0);
return;
}
ri->ri_owner = map->me_owner;
ri->ri_whichfork = (map->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
XFS_ATTR_FORK : XFS_DATA_FORK;
ri->ri_bmap.br_startblock = map->me_startblock;
ri->ri_bmap.br_startoff = map->me_startoff;
ri->ri_bmap.br_blockcount = map->me_len;
ri->ri_bmap.br_state = (map->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
xfs_rmap_update_get_group(mp, ri);
xfs_defer_add_item(dfp, &ri->ri_list);
}
/*
* Process an rmap update intent item that was recovered from the log.
* We need to update the rmapbt.
*/
STATIC int
xfs_rmap_recover_work(
struct xfs_defer_pending *dfp,
struct list_head *capture_list)
{
struct xfs_trans_res resv;
struct xfs_log_item *lip = dfp->dfp_intent;
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
struct xfs_trans *tp;
struct xfs_mount *mp = lip->li_log->l_mp;
int i;
int error = 0;
/*
* First check the validity of the extents described by the
* RUI. If any are bad, then assume that all are bad and
* just toss the RUI.
*/
for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
if (!xfs_rui_validate_map(mp,
&ruip->rui_format.rui_extents[i])) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&ruip->rui_format,
sizeof(ruip->rui_format));
return -EFSCORRUPTED;
}
xfs_rui_recover_work(mp, dfp, &ruip->rui_format.rui_extents[i]);
}
resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
error = xfs_trans_alloc(mp, &resv, mp->m_rmap_maxlevels, 0,
XFS_TRANS_RESERVE, &tp);
if (error)
return error;
error = xlog_recover_finish_intent(tp, dfp);
if (error == -EFSCORRUPTED)
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&ruip->rui_format,
sizeof(ruip->rui_format));
if (error)
goto abort_error;
return xfs_defer_ops_capture_and_commit(tp, capture_list);
abort_error:
xfs_trans_cancel(tp);
return error;
}
/* Relog an intent item to push the log tail forward. */
static struct xfs_log_item *
xfs_rmap_relog_intent(
struct xfs_trans *tp,
struct xfs_log_item *intent,
struct xfs_log_item *done_item)
{
struct xfs_rui_log_item *ruip;
struct xfs_map_extent *map;
unsigned int count;
count = RUI_ITEM(intent)->rui_format.rui_nextents;
map = RUI_ITEM(intent)->rui_format.rui_extents;
ruip = xfs_rui_init(tp->t_mountp, count);
memcpy(ruip->rui_format.rui_extents, map, count * sizeof(*map));
atomic_set(&ruip->rui_next_extent, count);
return &ruip->rui_item;
}
const struct xfs_defer_op_type xfs_rmap_update_defer_type = {
.name = "rmap",
.max_items = XFS_RUI_MAX_FAST_EXTENTS,
.create_intent = xfs_rmap_update_create_intent,
.abort_intent = xfs_rmap_update_abort_intent,
.create_done = xfs_rmap_update_create_done,
.finish_item = xfs_rmap_update_finish_item,
.finish_cleanup = xfs_rmap_finish_one_cleanup,
.cancel_item = xfs_rmap_update_cancel_item,
.recover_work = xfs_rmap_recover_work,
.relog_intent = xfs_rmap_relog_intent,
};
STATIC bool
xfs_rui_item_match(
struct xfs_log_item *lip,
uint64_t intent_id)
{
return RUI_ITEM(lip)->rui_format.rui_id == intent_id;
}
static const struct xfs_item_ops xfs_rui_item_ops = {
.flags = XFS_ITEM_INTENT,
.iop_size = xfs_rui_item_size,
.iop_format = xfs_rui_item_format,
.iop_unpin = xfs_rui_item_unpin,
.iop_release = xfs_rui_item_release,
.iop_match = xfs_rui_item_match,
};
static inline void
xfs_rui_copy_format(
struct xfs_rui_log_format *dst,
const struct xfs_rui_log_format *src)
{
unsigned int i;
memcpy(dst, src, offsetof(struct xfs_rui_log_format, rui_extents));
for (i = 0; i < src->rui_nextents; i++)
memcpy(&dst->rui_extents[i], &src->rui_extents[i],
sizeof(struct xfs_map_extent));
}
/*
* This routine is called to create an in-core extent rmap update
* item from the rui format structure which was logged on disk.
* It allocates an in-core rui, copies the extents from the format
* structure into it, and adds the rui to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_rui_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_mount *mp = log->l_mp;
struct xfs_rui_log_item *ruip;
struct xfs_rui_log_format *rui_formatp;
size_t len;
rui_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len < xfs_rui_log_format_sizeof(0)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
len = xfs_rui_log_format_sizeof(rui_formatp->rui_nextents);
if (item->ri_buf[0].i_len != len) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
xfs_rui_copy_format(&ruip->rui_format, rui_formatp);
atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
xlog_recover_intent_item(log, &ruip->rui_item, lsn,
&xfs_rmap_update_defer_type);
return 0;
}
const struct xlog_recover_item_ops xlog_rui_item_ops = {
.item_type = XFS_LI_RUI,
.commit_pass2 = xlog_recover_rui_commit_pass2,
};
/*
* This routine is called when an RUD format structure is found in a committed
* transaction in the log. Its purpose is to cancel the corresponding RUI if it
* was still in the log. To do this it searches the AIL for the RUI with an id
* equal to that in the RUD format structure. If we find it we drop the RUD
* reference, which removes the RUI from the AIL and frees it.
*/
STATIC int
xlog_recover_rud_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_rud_log_format *rud_formatp;
rud_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len != sizeof(struct xfs_rud_log_format)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
rud_formatp, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id);
return 0;
}
const struct xlog_recover_item_ops xlog_rud_item_ops = {
.item_type = XFS_LI_RUD,
.commit_pass2 = xlog_recover_rud_commit_pass2,
};