| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * crash.c - kernel crash support code. |
| * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
| */ |
| |
| #include <linux/buildid.h> |
| #include <linux/init.h> |
| #include <linux/utsname.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sizes.h> |
| #include <linux/kexec.h> |
| #include <linux/memory.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/memblock.h> |
| #include <linux/kmemleak.h> |
| |
| #include <asm/page.h> |
| #include <asm/sections.h> |
| |
| #include <crypto/sha1.h> |
| |
| #include "kallsyms_internal.h" |
| #include "kexec_internal.h" |
| |
| /* Per cpu memory for storing cpu states in case of system crash. */ |
| note_buf_t __percpu *crash_notes; |
| |
| /* vmcoreinfo stuff */ |
| unsigned char *vmcoreinfo_data; |
| size_t vmcoreinfo_size; |
| u32 *vmcoreinfo_note; |
| |
| /* trusted vmcoreinfo, e.g. we can make a copy in the crash memory */ |
| static unsigned char *vmcoreinfo_data_safecopy; |
| |
| /* Location of the reserved area for the crash kernel */ |
| struct resource crashk_res = { |
| .name = "Crash kernel", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
| .desc = IORES_DESC_CRASH_KERNEL |
| }; |
| struct resource crashk_low_res = { |
| .name = "Crash kernel", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
| .desc = IORES_DESC_CRASH_KERNEL |
| }; |
| |
| /* |
| * parsing the "crashkernel" commandline |
| * |
| * this code is intended to be called from architecture specific code |
| */ |
| |
| |
| /* |
| * This function parses command lines in the format |
| * |
| * crashkernel=ramsize-range:size[,...][@offset] |
| * |
| * The function returns 0 on success and -EINVAL on failure. |
| */ |
| static int __init parse_crashkernel_mem(char *cmdline, |
| unsigned long long system_ram, |
| unsigned long long *crash_size, |
| unsigned long long *crash_base) |
| { |
| char *cur = cmdline, *tmp; |
| unsigned long long total_mem = system_ram; |
| |
| /* |
| * Firmware sometimes reserves some memory regions for its own use, |
| * so the system memory size is less than the actual physical memory |
| * size. Work around this by rounding up the total size to 128M, |
| * which is enough for most test cases. |
| */ |
| total_mem = roundup(total_mem, SZ_128M); |
| |
| /* for each entry of the comma-separated list */ |
| do { |
| unsigned long long start, end = ULLONG_MAX, size; |
| |
| /* get the start of the range */ |
| start = memparse(cur, &tmp); |
| if (cur == tmp) { |
| pr_warn("crashkernel: Memory value expected\n"); |
| return -EINVAL; |
| } |
| cur = tmp; |
| if (*cur != '-') { |
| pr_warn("crashkernel: '-' expected\n"); |
| return -EINVAL; |
| } |
| cur++; |
| |
| /* if no ':' is here, than we read the end */ |
| if (*cur != ':') { |
| end = memparse(cur, &tmp); |
| if (cur == tmp) { |
| pr_warn("crashkernel: Memory value expected\n"); |
| return -EINVAL; |
| } |
| cur = tmp; |
| if (end <= start) { |
| pr_warn("crashkernel: end <= start\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (*cur != ':') { |
| pr_warn("crashkernel: ':' expected\n"); |
| return -EINVAL; |
| } |
| cur++; |
| |
| size = memparse(cur, &tmp); |
| if (cur == tmp) { |
| pr_warn("Memory value expected\n"); |
| return -EINVAL; |
| } |
| cur = tmp; |
| if (size >= total_mem) { |
| pr_warn("crashkernel: invalid size\n"); |
| return -EINVAL; |
| } |
| |
| /* match ? */ |
| if (total_mem >= start && total_mem < end) { |
| *crash_size = size; |
| break; |
| } |
| } while (*cur++ == ','); |
| |
| if (*crash_size > 0) { |
| while (*cur && *cur != ' ' && *cur != '@') |
| cur++; |
| if (*cur == '@') { |
| cur++; |
| *crash_base = memparse(cur, &tmp); |
| if (cur == tmp) { |
| pr_warn("Memory value expected after '@'\n"); |
| return -EINVAL; |
| } |
| } |
| } else |
| pr_info("crashkernel size resulted in zero bytes\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * That function parses "simple" (old) crashkernel command lines like |
| * |
| * crashkernel=size[@offset] |
| * |
| * It returns 0 on success and -EINVAL on failure. |
| */ |
| static int __init parse_crashkernel_simple(char *cmdline, |
| unsigned long long *crash_size, |
| unsigned long long *crash_base) |
| { |
| char *cur = cmdline; |
| |
| *crash_size = memparse(cmdline, &cur); |
| if (cmdline == cur) { |
| pr_warn("crashkernel: memory value expected\n"); |
| return -EINVAL; |
| } |
| |
| if (*cur == '@') |
| *crash_base = memparse(cur+1, &cur); |
| else if (*cur != ' ' && *cur != '\0') { |
| pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #define SUFFIX_HIGH 0 |
| #define SUFFIX_LOW 1 |
| #define SUFFIX_NULL 2 |
| static __initdata char *suffix_tbl[] = { |
| [SUFFIX_HIGH] = ",high", |
| [SUFFIX_LOW] = ",low", |
| [SUFFIX_NULL] = NULL, |
| }; |
| |
| /* |
| * That function parses "suffix" crashkernel command lines like |
| * |
| * crashkernel=size,[high|low] |
| * |
| * It returns 0 on success and -EINVAL on failure. |
| */ |
| static int __init parse_crashkernel_suffix(char *cmdline, |
| unsigned long long *crash_size, |
| const char *suffix) |
| { |
| char *cur = cmdline; |
| |
| *crash_size = memparse(cmdline, &cur); |
| if (cmdline == cur) { |
| pr_warn("crashkernel: memory value expected\n"); |
| return -EINVAL; |
| } |
| |
| /* check with suffix */ |
| if (strncmp(cur, suffix, strlen(suffix))) { |
| pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
| return -EINVAL; |
| } |
| cur += strlen(suffix); |
| if (*cur != ' ' && *cur != '\0') { |
| pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static __init char *get_last_crashkernel(char *cmdline, |
| const char *name, |
| const char *suffix) |
| { |
| char *p = cmdline, *ck_cmdline = NULL; |
| |
| /* find crashkernel and use the last one if there are more */ |
| p = strstr(p, name); |
| while (p) { |
| char *end_p = strchr(p, ' '); |
| char *q; |
| |
| if (!end_p) |
| end_p = p + strlen(p); |
| |
| if (!suffix) { |
| int i; |
| |
| /* skip the one with any known suffix */ |
| for (i = 0; suffix_tbl[i]; i++) { |
| q = end_p - strlen(suffix_tbl[i]); |
| if (!strncmp(q, suffix_tbl[i], |
| strlen(suffix_tbl[i]))) |
| goto next; |
| } |
| ck_cmdline = p; |
| } else { |
| q = end_p - strlen(suffix); |
| if (!strncmp(q, suffix, strlen(suffix))) |
| ck_cmdline = p; |
| } |
| next: |
| p = strstr(p+1, name); |
| } |
| |
| return ck_cmdline; |
| } |
| |
| static int __init __parse_crashkernel(char *cmdline, |
| unsigned long long system_ram, |
| unsigned long long *crash_size, |
| unsigned long long *crash_base, |
| const char *suffix) |
| { |
| char *first_colon, *first_space; |
| char *ck_cmdline; |
| char *name = "crashkernel="; |
| |
| BUG_ON(!crash_size || !crash_base); |
| *crash_size = 0; |
| *crash_base = 0; |
| |
| ck_cmdline = get_last_crashkernel(cmdline, name, suffix); |
| if (!ck_cmdline) |
| return -ENOENT; |
| |
| ck_cmdline += strlen(name); |
| |
| if (suffix) |
| return parse_crashkernel_suffix(ck_cmdline, crash_size, |
| suffix); |
| /* |
| * if the commandline contains a ':', then that's the extended |
| * syntax -- if not, it must be the classic syntax |
| */ |
| first_colon = strchr(ck_cmdline, ':'); |
| first_space = strchr(ck_cmdline, ' '); |
| if (first_colon && (!first_space || first_colon < first_space)) |
| return parse_crashkernel_mem(ck_cmdline, system_ram, |
| crash_size, crash_base); |
| |
| return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); |
| } |
| |
| /* |
| * That function is the entry point for command line parsing and should be |
| * called from the arch-specific code. |
| * |
| * If crashkernel=,high|low is supported on architecture, non-NULL values |
| * should be passed to parameters 'low_size' and 'high'. |
| */ |
| int __init parse_crashkernel(char *cmdline, |
| unsigned long long system_ram, |
| unsigned long long *crash_size, |
| unsigned long long *crash_base, |
| unsigned long long *low_size, |
| bool *high) |
| { |
| int ret; |
| |
| /* crashkernel=X[@offset] */ |
| ret = __parse_crashkernel(cmdline, system_ram, crash_size, |
| crash_base, NULL); |
| #ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION |
| /* |
| * If non-NULL 'high' passed in and no normal crashkernel |
| * setting detected, try parsing crashkernel=,high|low. |
| */ |
| if (high && ret == -ENOENT) { |
| ret = __parse_crashkernel(cmdline, 0, crash_size, |
| crash_base, suffix_tbl[SUFFIX_HIGH]); |
| if (ret || !*crash_size) |
| return -EINVAL; |
| |
| /* |
| * crashkernel=Y,low can be specified or not, but invalid value |
| * is not allowed. |
| */ |
| ret = __parse_crashkernel(cmdline, 0, low_size, |
| crash_base, suffix_tbl[SUFFIX_LOW]); |
| if (ret == -ENOENT) { |
| *low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; |
| ret = 0; |
| } else if (ret) { |
| return ret; |
| } |
| |
| *high = true; |
| } |
| #endif |
| if (!*crash_size) |
| ret = -EINVAL; |
| |
| return ret; |
| } |
| |
| /* |
| * Add a dummy early_param handler to mark crashkernel= as a known command line |
| * parameter and suppress incorrect warnings in init/main.c. |
| */ |
| static int __init parse_crashkernel_dummy(char *arg) |
| { |
| return 0; |
| } |
| early_param("crashkernel", parse_crashkernel_dummy); |
| |
| #ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION |
| static int __init reserve_crashkernel_low(unsigned long long low_size) |
| { |
| #ifdef CONFIG_64BIT |
| unsigned long long low_base; |
| |
| low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); |
| if (!low_base) { |
| pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size); |
| return -ENOMEM; |
| } |
| |
| pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n", |
| low_base, low_base + low_size, low_size >> 20); |
| |
| crashk_low_res.start = low_base; |
| crashk_low_res.end = low_base + low_size - 1; |
| #endif |
| return 0; |
| } |
| |
| void __init reserve_crashkernel_generic(char *cmdline, |
| unsigned long long crash_size, |
| unsigned long long crash_base, |
| unsigned long long crash_low_size, |
| bool high) |
| { |
| unsigned long long search_end = CRASH_ADDR_LOW_MAX, search_base = 0; |
| bool fixed_base = false; |
| |
| /* User specifies base address explicitly. */ |
| if (crash_base) { |
| fixed_base = true; |
| search_base = crash_base; |
| search_end = crash_base + crash_size; |
| } else if (high) { |
| search_base = CRASH_ADDR_LOW_MAX; |
| search_end = CRASH_ADDR_HIGH_MAX; |
| } |
| |
| retry: |
| crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, |
| search_base, search_end); |
| if (!crash_base) { |
| /* |
| * For crashkernel=size[KMG]@offset[KMG], print out failure |
| * message if can't reserve the specified region. |
| */ |
| if (fixed_base) { |
| pr_warn("crashkernel reservation failed - memory is in use.\n"); |
| return; |
| } |
| |
| /* |
| * For crashkernel=size[KMG], if the first attempt was for |
| * low memory, fall back to high memory, the minimum required |
| * low memory will be reserved later. |
| */ |
| if (!high && search_end == CRASH_ADDR_LOW_MAX) { |
| search_end = CRASH_ADDR_HIGH_MAX; |
| search_base = CRASH_ADDR_LOW_MAX; |
| crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; |
| goto retry; |
| } |
| |
| /* |
| * For crashkernel=size[KMG],high, if the first attempt was |
| * for high memory, fall back to low memory. |
| */ |
| if (high && search_end == CRASH_ADDR_HIGH_MAX) { |
| search_end = CRASH_ADDR_LOW_MAX; |
| search_base = 0; |
| goto retry; |
| } |
| pr_warn("cannot allocate crashkernel (size:0x%llx)\n", |
| crash_size); |
| return; |
| } |
| |
| if ((crash_base >= CRASH_ADDR_LOW_MAX) && |
| crash_low_size && reserve_crashkernel_low(crash_low_size)) { |
| memblock_phys_free(crash_base, crash_size); |
| return; |
| } |
| |
| pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", |
| crash_base, crash_base + crash_size, crash_size >> 20); |
| |
| /* |
| * The crashkernel memory will be removed from the kernel linear |
| * map. Inform kmemleak so that it won't try to access it. |
| */ |
| kmemleak_ignore_phys(crash_base); |
| if (crashk_low_res.end) |
| kmemleak_ignore_phys(crashk_low_res.start); |
| |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| } |
| |
| static __init int insert_crashkernel_resources(void) |
| { |
| if (crashk_res.start < crashk_res.end) |
| insert_resource(&iomem_resource, &crashk_res); |
| |
| if (crashk_low_res.start < crashk_low_res.end) |
| insert_resource(&iomem_resource, &crashk_low_res); |
| |
| return 0; |
| } |
| early_initcall(insert_crashkernel_resources); |
| #endif |
| |
| int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, |
| void **addr, unsigned long *sz) |
| { |
| Elf64_Ehdr *ehdr; |
| Elf64_Phdr *phdr; |
| unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; |
| unsigned char *buf; |
| unsigned int cpu, i; |
| unsigned long long notes_addr; |
| unsigned long mstart, mend; |
| |
| /* extra phdr for vmcoreinfo ELF note */ |
| nr_phdr = nr_cpus + 1; |
| nr_phdr += mem->nr_ranges; |
| |
| /* |
| * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping |
| * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). |
| * I think this is required by tools like gdb. So same physical |
| * memory will be mapped in two ELF headers. One will contain kernel |
| * text virtual addresses and other will have __va(physical) addresses. |
| */ |
| |
| nr_phdr++; |
| elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); |
| elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); |
| |
| buf = vzalloc(elf_sz); |
| if (!buf) |
| return -ENOMEM; |
| |
| ehdr = (Elf64_Ehdr *)buf; |
| phdr = (Elf64_Phdr *)(ehdr + 1); |
| memcpy(ehdr->e_ident, ELFMAG, SELFMAG); |
| ehdr->e_ident[EI_CLASS] = ELFCLASS64; |
| ehdr->e_ident[EI_DATA] = ELFDATA2LSB; |
| ehdr->e_ident[EI_VERSION] = EV_CURRENT; |
| ehdr->e_ident[EI_OSABI] = ELF_OSABI; |
| memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); |
| ehdr->e_type = ET_CORE; |
| ehdr->e_machine = ELF_ARCH; |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_phoff = sizeof(Elf64_Ehdr); |
| ehdr->e_ehsize = sizeof(Elf64_Ehdr); |
| ehdr->e_phentsize = sizeof(Elf64_Phdr); |
| |
| /* Prepare one phdr of type PT_NOTE for each possible CPU */ |
| for_each_possible_cpu(cpu) { |
| phdr->p_type = PT_NOTE; |
| notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); |
| phdr->p_offset = phdr->p_paddr = notes_addr; |
| phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); |
| (ehdr->e_phnum)++; |
| phdr++; |
| } |
| |
| /* Prepare one PT_NOTE header for vmcoreinfo */ |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); |
| phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; |
| (ehdr->e_phnum)++; |
| phdr++; |
| |
| /* Prepare PT_LOAD type program header for kernel text region */ |
| if (need_kernel_map) { |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_vaddr = (unsigned long) _text; |
| phdr->p_filesz = phdr->p_memsz = _end - _text; |
| phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); |
| ehdr->e_phnum++; |
| phdr++; |
| } |
| |
| /* Go through all the ranges in mem->ranges[] and prepare phdr */ |
| for (i = 0; i < mem->nr_ranges; i++) { |
| mstart = mem->ranges[i].start; |
| mend = mem->ranges[i].end; |
| |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_offset = mstart; |
| |
| phdr->p_paddr = mstart; |
| phdr->p_vaddr = (unsigned long) __va(mstart); |
| phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; |
| phdr->p_align = 0; |
| ehdr->e_phnum++; |
| #ifdef CONFIG_KEXEC_FILE |
| kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", |
| phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, |
| ehdr->e_phnum, phdr->p_offset); |
| #endif |
| phdr++; |
| } |
| |
| *addr = buf; |
| *sz = elf_sz; |
| return 0; |
| } |
| |
| int crash_exclude_mem_range(struct crash_mem *mem, |
| unsigned long long mstart, unsigned long long mend) |
| { |
| int i; |
| unsigned long long start, end, p_start, p_end; |
| |
| for (i = 0; i < mem->nr_ranges; i++) { |
| start = mem->ranges[i].start; |
| end = mem->ranges[i].end; |
| p_start = mstart; |
| p_end = mend; |
| |
| if (p_start > end) |
| continue; |
| |
| /* |
| * Because the memory ranges in mem->ranges are stored in |
| * ascending order, when we detect `p_end < start`, we can |
| * immediately exit the for loop, as the subsequent memory |
| * ranges will definitely be outside the range we are looking |
| * for. |
| */ |
| if (p_end < start) |
| break; |
| |
| /* Truncate any area outside of range */ |
| if (p_start < start) |
| p_start = start; |
| if (p_end > end) |
| p_end = end; |
| |
| /* Found completely overlapping range */ |
| if (p_start == start && p_end == end) { |
| memmove(&mem->ranges[i], &mem->ranges[i + 1], |
| (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); |
| i--; |
| mem->nr_ranges--; |
| } else if (p_start > start && p_end < end) { |
| /* Split original range */ |
| if (mem->nr_ranges >= mem->max_nr_ranges) |
| return -ENOMEM; |
| |
| memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], |
| (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); |
| |
| mem->ranges[i].end = p_start - 1; |
| mem->ranges[i + 1].start = p_end + 1; |
| mem->ranges[i + 1].end = end; |
| |
| i++; |
| mem->nr_ranges++; |
| } else if (p_start != start) |
| mem->ranges[i].end = p_start - 1; |
| else |
| mem->ranges[i].start = p_end + 1; |
| } |
| |
| return 0; |
| } |
| |
| Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type, |
| void *data, size_t data_len) |
| { |
| struct elf_note *note = (struct elf_note *)buf; |
| |
| note->n_namesz = strlen(name) + 1; |
| note->n_descsz = data_len; |
| note->n_type = type; |
| buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word)); |
| memcpy(buf, name, note->n_namesz); |
| buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word)); |
| memcpy(buf, data, data_len); |
| buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word)); |
| |
| return buf; |
| } |
| |
| void final_note(Elf_Word *buf) |
| { |
| memset(buf, 0, sizeof(struct elf_note)); |
| } |
| |
| static void update_vmcoreinfo_note(void) |
| { |
| u32 *buf = vmcoreinfo_note; |
| |
| if (!vmcoreinfo_size) |
| return; |
| buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, |
| vmcoreinfo_size); |
| final_note(buf); |
| } |
| |
| void crash_update_vmcoreinfo_safecopy(void *ptr) |
| { |
| if (ptr) |
| memcpy(ptr, vmcoreinfo_data, vmcoreinfo_size); |
| |
| vmcoreinfo_data_safecopy = ptr; |
| } |
| |
| void crash_save_vmcoreinfo(void) |
| { |
| if (!vmcoreinfo_note) |
| return; |
| |
| /* Use the safe copy to generate vmcoreinfo note if have */ |
| if (vmcoreinfo_data_safecopy) |
| vmcoreinfo_data = vmcoreinfo_data_safecopy; |
| |
| vmcoreinfo_append_str("CRASHTIME=%lld\n", ktime_get_real_seconds()); |
| update_vmcoreinfo_note(); |
| } |
| |
| void vmcoreinfo_append_str(const char *fmt, ...) |
| { |
| va_list args; |
| char buf[0x50]; |
| size_t r; |
| |
| va_start(args, fmt); |
| r = vscnprintf(buf, sizeof(buf), fmt, args); |
| va_end(args); |
| |
| r = min(r, (size_t)VMCOREINFO_BYTES - vmcoreinfo_size); |
| |
| memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); |
| |
| vmcoreinfo_size += r; |
| |
| WARN_ONCE(vmcoreinfo_size == VMCOREINFO_BYTES, |
| "vmcoreinfo data exceeds allocated size, truncating"); |
| } |
| |
| /* |
| * provide an empty default implementation here -- architecture |
| * code may override this |
| */ |
| void __weak arch_crash_save_vmcoreinfo(void) |
| {} |
| |
| phys_addr_t __weak paddr_vmcoreinfo_note(void) |
| { |
| return __pa(vmcoreinfo_note); |
| } |
| EXPORT_SYMBOL(paddr_vmcoreinfo_note); |
| |
| static int __init crash_save_vmcoreinfo_init(void) |
| { |
| vmcoreinfo_data = (unsigned char *)get_zeroed_page(GFP_KERNEL); |
| if (!vmcoreinfo_data) { |
| pr_warn("Memory allocation for vmcoreinfo_data failed\n"); |
| return -ENOMEM; |
| } |
| |
| vmcoreinfo_note = alloc_pages_exact(VMCOREINFO_NOTE_SIZE, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!vmcoreinfo_note) { |
| free_page((unsigned long)vmcoreinfo_data); |
| vmcoreinfo_data = NULL; |
| pr_warn("Memory allocation for vmcoreinfo_note failed\n"); |
| return -ENOMEM; |
| } |
| |
| VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
| VMCOREINFO_BUILD_ID(); |
| VMCOREINFO_PAGESIZE(PAGE_SIZE); |
| |
| VMCOREINFO_SYMBOL(init_uts_ns); |
| VMCOREINFO_OFFSET(uts_namespace, name); |
| VMCOREINFO_SYMBOL(node_online_map); |
| #ifdef CONFIG_MMU |
| VMCOREINFO_SYMBOL_ARRAY(swapper_pg_dir); |
| #endif |
| VMCOREINFO_SYMBOL(_stext); |
| VMCOREINFO_SYMBOL(vmap_area_list); |
| |
| #ifndef CONFIG_NUMA |
| VMCOREINFO_SYMBOL(mem_map); |
| VMCOREINFO_SYMBOL(contig_page_data); |
| #endif |
| #ifdef CONFIG_SPARSEMEM |
| VMCOREINFO_SYMBOL_ARRAY(mem_section); |
| VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); |
| VMCOREINFO_STRUCT_SIZE(mem_section); |
| VMCOREINFO_OFFSET(mem_section, section_mem_map); |
| VMCOREINFO_NUMBER(SECTION_SIZE_BITS); |
| VMCOREINFO_NUMBER(MAX_PHYSMEM_BITS); |
| #endif |
| VMCOREINFO_STRUCT_SIZE(page); |
| VMCOREINFO_STRUCT_SIZE(pglist_data); |
| VMCOREINFO_STRUCT_SIZE(zone); |
| VMCOREINFO_STRUCT_SIZE(free_area); |
| VMCOREINFO_STRUCT_SIZE(list_head); |
| VMCOREINFO_SIZE(nodemask_t); |
| VMCOREINFO_OFFSET(page, flags); |
| VMCOREINFO_OFFSET(page, _refcount); |
| VMCOREINFO_OFFSET(page, mapping); |
| VMCOREINFO_OFFSET(page, lru); |
| VMCOREINFO_OFFSET(page, _mapcount); |
| VMCOREINFO_OFFSET(page, private); |
| VMCOREINFO_OFFSET(page, compound_head); |
| VMCOREINFO_OFFSET(pglist_data, node_zones); |
| VMCOREINFO_OFFSET(pglist_data, nr_zones); |
| #ifdef CONFIG_FLATMEM |
| VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
| #endif |
| VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
| VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); |
| VMCOREINFO_OFFSET(pglist_data, node_id); |
| VMCOREINFO_OFFSET(zone, free_area); |
| VMCOREINFO_OFFSET(zone, vm_stat); |
| VMCOREINFO_OFFSET(zone, spanned_pages); |
| VMCOREINFO_OFFSET(free_area, free_list); |
| VMCOREINFO_OFFSET(list_head, next); |
| VMCOREINFO_OFFSET(list_head, prev); |
| VMCOREINFO_OFFSET(vmap_area, va_start); |
| VMCOREINFO_OFFSET(vmap_area, list); |
| VMCOREINFO_LENGTH(zone.free_area, NR_PAGE_ORDERS); |
| log_buf_vmcoreinfo_setup(); |
| VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
| VMCOREINFO_NUMBER(NR_FREE_PAGES); |
| VMCOREINFO_NUMBER(PG_lru); |
| VMCOREINFO_NUMBER(PG_private); |
| VMCOREINFO_NUMBER(PG_swapcache); |
| VMCOREINFO_NUMBER(PG_swapbacked); |
| VMCOREINFO_NUMBER(PG_slab); |
| #ifdef CONFIG_MEMORY_FAILURE |
| VMCOREINFO_NUMBER(PG_hwpoison); |
| #endif |
| VMCOREINFO_NUMBER(PG_head_mask); |
| #define PAGE_BUDDY_MAPCOUNT_VALUE (~PG_buddy) |
| VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); |
| #ifdef CONFIG_HUGETLB_PAGE |
| VMCOREINFO_NUMBER(PG_hugetlb); |
| #define PAGE_OFFLINE_MAPCOUNT_VALUE (~PG_offline) |
| VMCOREINFO_NUMBER(PAGE_OFFLINE_MAPCOUNT_VALUE); |
| #endif |
| |
| #ifdef CONFIG_KALLSYMS |
| VMCOREINFO_SYMBOL(kallsyms_names); |
| VMCOREINFO_SYMBOL(kallsyms_num_syms); |
| VMCOREINFO_SYMBOL(kallsyms_token_table); |
| VMCOREINFO_SYMBOL(kallsyms_token_index); |
| #ifdef CONFIG_KALLSYMS_BASE_RELATIVE |
| VMCOREINFO_SYMBOL(kallsyms_offsets); |
| VMCOREINFO_SYMBOL(kallsyms_relative_base); |
| #else |
| VMCOREINFO_SYMBOL(kallsyms_addresses); |
| #endif /* CONFIG_KALLSYMS_BASE_RELATIVE */ |
| #endif /* CONFIG_KALLSYMS */ |
| |
| arch_crash_save_vmcoreinfo(); |
| update_vmcoreinfo_note(); |
| |
| return 0; |
| } |
| |
| subsys_initcall(crash_save_vmcoreinfo_init); |
| |
| static int __init crash_notes_memory_init(void) |
| { |
| /* Allocate memory for saving cpu registers. */ |
| size_t size, align; |
| |
| /* |
| * crash_notes could be allocated across 2 vmalloc pages when percpu |
| * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc |
| * pages are also on 2 continuous physical pages. In this case the |
| * 2nd part of crash_notes in 2nd page could be lost since only the |
| * starting address and size of crash_notes are exported through sysfs. |
| * Here round up the size of crash_notes to the nearest power of two |
| * and pass it to __alloc_percpu as align value. This can make sure |
| * crash_notes is allocated inside one physical page. |
| */ |
| size = sizeof(note_buf_t); |
| align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); |
| |
| /* |
| * Break compile if size is bigger than PAGE_SIZE since crash_notes |
| * definitely will be in 2 pages with that. |
| */ |
| BUILD_BUG_ON(size > PAGE_SIZE); |
| |
| crash_notes = __alloc_percpu(size, align); |
| if (!crash_notes) { |
| pr_warn("Memory allocation for saving cpu register states failed\n"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| subsys_initcall(crash_notes_memory_init); |
| |
| #ifdef CONFIG_CRASH_HOTPLUG |
| #undef pr_fmt |
| #define pr_fmt(fmt) "crash hp: " fmt |
| |
| /* |
| * Different than kexec/kdump loading/unloading/jumping/shrinking which |
| * usually rarely happen, there will be many crash hotplug events notified |
| * during one short period, e.g one memory board is hot added and memory |
| * regions are online. So mutex lock __crash_hotplug_lock is used to |
| * serialize the crash hotplug handling specifically. |
| */ |
| static DEFINE_MUTEX(__crash_hotplug_lock); |
| #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) |
| #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) |
| |
| /* |
| * This routine utilized when the crash_hotplug sysfs node is read. |
| * It reflects the kernel's ability/permission to update the crash |
| * elfcorehdr directly. |
| */ |
| int crash_check_update_elfcorehdr(void) |
| { |
| int rc = 0; |
| |
| crash_hotplug_lock(); |
| /* Obtain lock while reading crash information */ |
| if (!kexec_trylock()) { |
| pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n"); |
| crash_hotplug_unlock(); |
| return 0; |
| } |
| if (kexec_crash_image) { |
| if (kexec_crash_image->file_mode) |
| rc = 1; |
| else |
| rc = kexec_crash_image->update_elfcorehdr; |
| } |
| /* Release lock now that update complete */ |
| kexec_unlock(); |
| crash_hotplug_unlock(); |
| |
| return rc; |
| } |
| |
| /* |
| * To accurately reflect hot un/plug changes of cpu and memory resources |
| * (including onling and offlining of those resources), the elfcorehdr |
| * (which is passed to the crash kernel via the elfcorehdr= parameter) |
| * must be updated with the new list of CPUs and memories. |
| * |
| * In order to make changes to elfcorehdr, two conditions are needed: |
| * First, the segment containing the elfcorehdr must be large enough |
| * to permit a growing number of resources; the elfcorehdr memory size |
| * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. |
| * Second, purgatory must explicitly exclude the elfcorehdr from the |
| * list of segments it checks (since the elfcorehdr changes and thus |
| * would require an update to purgatory itself to update the digest). |
| */ |
| static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu) |
| { |
| struct kimage *image; |
| |
| crash_hotplug_lock(); |
| /* Obtain lock while changing crash information */ |
| if (!kexec_trylock()) { |
| pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n"); |
| crash_hotplug_unlock(); |
| return; |
| } |
| |
| /* Check kdump is not loaded */ |
| if (!kexec_crash_image) |
| goto out; |
| |
| image = kexec_crash_image; |
| |
| /* Check that updating elfcorehdr is permitted */ |
| if (!(image->file_mode || image->update_elfcorehdr)) |
| goto out; |
| |
| if (hp_action == KEXEC_CRASH_HP_ADD_CPU || |
| hp_action == KEXEC_CRASH_HP_REMOVE_CPU) |
| pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); |
| else |
| pr_debug("hp_action %u\n", hp_action); |
| |
| /* |
| * The elfcorehdr_index is set to -1 when the struct kimage |
| * is allocated. Find the segment containing the elfcorehdr, |
| * if not already found. |
| */ |
| if (image->elfcorehdr_index < 0) { |
| unsigned long mem; |
| unsigned char *ptr; |
| unsigned int n; |
| |
| for (n = 0; n < image->nr_segments; n++) { |
| mem = image->segment[n].mem; |
| ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); |
| if (ptr) { |
| /* The segment containing elfcorehdr */ |
| if (memcmp(ptr, ELFMAG, SELFMAG) == 0) |
| image->elfcorehdr_index = (int)n; |
| kunmap_local(ptr); |
| } |
| } |
| } |
| |
| if (image->elfcorehdr_index < 0) { |
| pr_err("unable to locate elfcorehdr segment"); |
| goto out; |
| } |
| |
| /* Needed in order for the segments to be updated */ |
| arch_kexec_unprotect_crashkres(); |
| |
| /* Differentiate between normal load and hotplug update */ |
| image->hp_action = hp_action; |
| |
| /* Now invoke arch-specific update handler */ |
| arch_crash_handle_hotplug_event(image); |
| |
| /* No longer handling a hotplug event */ |
| image->hp_action = KEXEC_CRASH_HP_NONE; |
| image->elfcorehdr_updated = true; |
| |
| /* Change back to read-only */ |
| arch_kexec_protect_crashkres(); |
| |
| /* Errors in the callback is not a reason to rollback state */ |
| out: |
| /* Release lock now that update complete */ |
| kexec_unlock(); |
| crash_hotplug_unlock(); |
| } |
| |
| static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v) |
| { |
| switch (val) { |
| case MEM_ONLINE: |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, |
| KEXEC_CRASH_HP_INVALID_CPU); |
| break; |
| |
| case MEM_OFFLINE: |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, |
| KEXEC_CRASH_HP_INVALID_CPU); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block crash_memhp_nb = { |
| .notifier_call = crash_memhp_notifier, |
| .priority = 0 |
| }; |
| |
| static int crash_cpuhp_online(unsigned int cpu) |
| { |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu); |
| return 0; |
| } |
| |
| static int crash_cpuhp_offline(unsigned int cpu) |
| { |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu); |
| return 0; |
| } |
| |
| static int __init crash_hotplug_init(void) |
| { |
| int result = 0; |
| |
| if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) |
| register_memory_notifier(&crash_memhp_nb); |
| |
| if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { |
| result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, |
| "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); |
| } |
| |
| return result; |
| } |
| |
| subsys_initcall(crash_hotplug_init); |
| #endif |