| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/of.h> |
| |
| #include <soc/tegra/mc.h> |
| |
| #include "tegra210-emc.h" |
| #include "tegra210-mc.h" |
| |
| /* |
| * Enable flags for specifying verbosity. |
| */ |
| #define INFO (1 << 0) |
| #define STEPS (1 << 1) |
| #define SUB_STEPS (1 << 2) |
| #define PRELOCK (1 << 3) |
| #define PRELOCK_STEPS (1 << 4) |
| #define ACTIVE_EN (1 << 5) |
| #define PRAMP_UP (1 << 6) |
| #define PRAMP_DN (1 << 7) |
| #define EMA_WRITES (1 << 10) |
| #define EMA_UPDATES (1 << 11) |
| #define PER_TRAIN (1 << 16) |
| #define CC_PRINT (1 << 17) |
| #define CCFIFO (1 << 29) |
| #define REGS (1 << 30) |
| #define REG_LISTS (1 << 31) |
| |
| #define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__) |
| |
| #define DVFS_CLOCK_CHANGE_VERSION 21021 |
| #define EMC_PRELOCK_VERSION 2101 |
| |
| enum { |
| DVFS_SEQUENCE = 1, |
| WRITE_TRAINING_SEQUENCE = 2, |
| PERIODIC_TRAINING_SEQUENCE = 3, |
| DVFS_PT1 = 10, |
| DVFS_UPDATE = 11, |
| TRAINING_PT1 = 12, |
| TRAINING_UPDATE = 13, |
| PERIODIC_TRAINING_UPDATE = 14 |
| }; |
| |
| /* |
| * PTFV defines - basically just indexes into the per table PTFV array. |
| */ |
| #define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0 |
| #define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1 |
| #define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2 |
| #define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3 |
| #define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4 |
| #define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5 |
| #define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6 |
| #define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7 |
| #define PTFV_DVFS_SAMPLES_INDEX 9 |
| #define PTFV_MOVAVG_WEIGHT_INDEX 10 |
| #define PTFV_CONFIG_CTRL_INDEX 11 |
| |
| #define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0) |
| |
| /* |
| * Do arithmetic in fixed point. |
| */ |
| #define MOVAVG_PRECISION_FACTOR 100 |
| |
| /* |
| * The division portion of the average operation. |
| */ |
| #define __AVERAGE_PTFV(dev) \ |
| ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \ |
| next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ |
| next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) |
| |
| /* |
| * Convert val to fixed point and add it to the temporary average. |
| */ |
| #define __INCREMENT_PTFV(dev, val) \ |
| ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \ |
| ((val) * MOVAVG_PRECISION_FACTOR); }) |
| |
| /* |
| * Convert a moving average back to integral form and return the value. |
| */ |
| #define __MOVAVG_AC(timing, dev) \ |
| ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ |
| MOVAVG_PRECISION_FACTOR) |
| |
| /* Weighted update. */ |
| #define __WEIGHTED_UPDATE_PTFV(dev, nval) \ |
| do { \ |
| int w = PTFV_MOVAVG_WEIGHT_INDEX; \ |
| int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \ |
| \ |
| next->ptfv_list[dqs] = \ |
| ((nval * MOVAVG_PRECISION_FACTOR) + \ |
| (next->ptfv_list[dqs] * \ |
| next->ptfv_list[w])) / \ |
| (next->ptfv_list[w] + 1); \ |
| \ |
| emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n", \ |
| __stringify(dev), nval, next->ptfv_list[dqs]); \ |
| } while (0) |
| |
| /* Access a particular average. */ |
| #define __MOVAVG(timing, dev) \ |
| ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX]) |
| |
| static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type) |
| { |
| bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE; |
| struct tegra210_emc_timing *last = emc->last; |
| struct tegra210_emc_timing *next = emc->next; |
| u32 last_timing_rate_mhz = last->rate / 1000; |
| u32 next_timing_rate_mhz = next->rate / 1000; |
| bool dvfs_update = type == DVFS_UPDATE; |
| s32 tdel = 0, tmdel = 0, adel = 0; |
| bool dvfs_pt1 = type == DVFS_PT1; |
| unsigned long cval = 0; |
| u32 temp[2][2], value; |
| unsigned int i; |
| |
| /* |
| * Dev0 MSB. |
| */ |
| if (dvfs_pt1 || periodic_training_update) { |
| value = tegra210_emc_mrr_read(emc, 2, 19); |
| |
| for (i = 0; i < emc->num_channels; i++) { |
| temp[i][0] = (value & 0x00ff) << 8; |
| temp[i][1] = (value & 0xff00) << 0; |
| value >>= 16; |
| } |
| |
| /* |
| * Dev0 LSB. |
| */ |
| value = tegra210_emc_mrr_read(emc, 2, 18); |
| |
| for (i = 0; i < emc->num_channels; i++) { |
| temp[i][0] |= (value & 0x00ff) >> 0; |
| temp[i][1] |= (value & 0xff00) >> 8; |
| value >>= 16; |
| } |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[0][0]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C0D0U0, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C0D0U0); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C0D0U0, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C0D0U0] - |
| __MOVAVG_AC(next, C0D0U0); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C0D0U0] = |
| __MOVAVG_AC(next, C0D0U0); |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[0][1]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C0D0U1, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C0D0U1); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C0D0U1, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C0D0U1] - |
| __MOVAVG_AC(next, C0D0U1); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C0D0U1] = |
| __MOVAVG_AC(next, C0D0U1); |
| } |
| |
| if (emc->num_channels > 1) { |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[1][0]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C1D0U0, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C1D0U0); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C1D0U0, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C1D0U0] - |
| __MOVAVG_AC(next, C1D0U0); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C1D0U0] = |
| __MOVAVG_AC(next, C1D0U0); |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[1][1]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C1D0U1, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C1D0U1); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C1D0U1, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C1D0U1] - |
| __MOVAVG_AC(next, C1D0U1); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C1D0U1] = |
| __MOVAVG_AC(next, C1D0U1); |
| } |
| } |
| |
| if (emc->num_devices < 2) |
| goto done; |
| |
| /* |
| * Dev1 MSB. |
| */ |
| if (dvfs_pt1 || periodic_training_update) { |
| value = tegra210_emc_mrr_read(emc, 1, 19); |
| |
| for (i = 0; i < emc->num_channels; i++) { |
| temp[i][0] = (value & 0x00ff) << 8; |
| temp[i][1] = (value & 0xff00) << 0; |
| value >>= 16; |
| } |
| |
| /* |
| * Dev1 LSB. |
| */ |
| value = tegra210_emc_mrr_read(emc, 2, 18); |
| |
| for (i = 0; i < emc->num_channels; i++) { |
| temp[i][0] |= (value & 0x00ff) >> 0; |
| temp[i][1] |= (value & 0xff00) >> 8; |
| value >>= 16; |
| } |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[0][0]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C0D1U0, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C0D1U0); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C0D1U0, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C0D1U0] - |
| __MOVAVG_AC(next, C0D1U0); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C0D1U0] = |
| __MOVAVG_AC(next, C0D1U0); |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[0][1]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C0D1U1, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C0D1U1); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C0D1U1, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C0D1U1] - |
| __MOVAVG_AC(next, C0D1U1); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C0D1U1] = |
| __MOVAVG_AC(next, C0D1U1); |
| } |
| |
| if (emc->num_channels > 1) { |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[1][0]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C1D1U0, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C1D1U0); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C1D1U0, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C1D1U0] - |
| __MOVAVG_AC(next, C1D1U0); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C1D1U0] = |
| __MOVAVG_AC(next, C1D1U0); |
| } |
| |
| if (dvfs_pt1 || periodic_training_update) { |
| cval = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| cval *= 1000000; |
| cval /= last_timing_rate_mhz * 2 * temp[1][1]; |
| } |
| |
| if (dvfs_pt1) |
| __INCREMENT_PTFV(C1D1U1, cval); |
| else if (dvfs_update) |
| __AVERAGE_PTFV(C1D1U1); |
| else if (periodic_training_update) |
| __WEIGHTED_UPDATE_PTFV(C1D1U1, cval); |
| |
| if (dvfs_update || periodic_training_update) { |
| tdel = next->current_dram_clktree[C1D1U1] - |
| __MOVAVG_AC(next, C1D1U1); |
| tmdel = (tdel < 0) ? -1 * tdel : tdel; |
| |
| if (tmdel > adel) |
| adel = tmdel; |
| |
| if (tmdel * 128 * next_timing_rate_mhz / 1000000 > |
| next->tree_margin) |
| next->current_dram_clktree[C1D1U1] = |
| __MOVAVG_AC(next, C1D1U1); |
| } |
| } |
| |
| done: |
| return adel; |
| } |
| |
| static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type, |
| struct tegra210_emc_timing *last, |
| struct tegra210_emc_timing *next) |
| { |
| #define __COPY_EMA(nt, lt, dev) \ |
| ({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \ |
| (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) |
| |
| u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; |
| u32 delay; |
| |
| delay = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| delay *= 1000; |
| delay = 2 + (delay / last->rate); |
| |
| if (!next->periodic_training) |
| return 0; |
| |
| if (type == DVFS_SEQUENCE) { |
| if (last->periodic_training && |
| (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] & |
| PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) { |
| /* |
| * If the previous frequency was using periodic |
| * calibration then we can reuse the previous |
| * frequencies EMA data. |
| */ |
| __COPY_EMA(next, last, C0D0U0); |
| __COPY_EMA(next, last, C0D0U1); |
| __COPY_EMA(next, last, C1D0U0); |
| __COPY_EMA(next, last, C1D0U1); |
| __COPY_EMA(next, last, C0D1U0); |
| __COPY_EMA(next, last, C0D1U1); |
| __COPY_EMA(next, last, C1D1U0); |
| __COPY_EMA(next, last, C1D1U1); |
| } else { |
| /* Reset the EMA.*/ |
| __MOVAVG(next, C0D0U0) = 0; |
| __MOVAVG(next, C0D0U1) = 0; |
| __MOVAVG(next, C1D0U0) = 0; |
| __MOVAVG(next, C1D0U1) = 0; |
| __MOVAVG(next, C0D1U0) = 0; |
| __MOVAVG(next, C0D1U1) = 0; |
| __MOVAVG(next, C1D1U0) = 0; |
| __MOVAVG(next, C1D1U1) = 0; |
| |
| for (i = 0; i < samples; i++) { |
| tegra210_emc_start_periodic_compensation(emc); |
| udelay(delay); |
| |
| /* |
| * Generate next sample of data. |
| */ |
| adel = update_clock_tree_delay(emc, DVFS_PT1); |
| } |
| } |
| |
| /* |
| * Seems like it should be part of the |
| * 'if (last_timing->periodic_training)' conditional |
| * since is already done for the else clause. |
| */ |
| adel = update_clock_tree_delay(emc, DVFS_UPDATE); |
| } |
| |
| if (type == PERIODIC_TRAINING_SEQUENCE) { |
| tegra210_emc_start_periodic_compensation(emc); |
| udelay(delay); |
| |
| adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE); |
| } |
| |
| return adel; |
| } |
| |
| static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc) |
| { |
| u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value; |
| u32 list[] = { |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, |
| EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, |
| EMC_DATA_BRLSHFT_0, |
| EMC_DATA_BRLSHFT_1 |
| }; |
| struct tegra210_emc_timing *last = emc->last; |
| unsigned int items = ARRAY_SIZE(list), i; |
| unsigned long delay; |
| |
| if (last->periodic_training) { |
| emc_dbg(emc, PER_TRAIN, "Periodic training starting\n"); |
| |
| value = emc_readl(emc, EMC_DBG); |
| emc_cfg_o = emc_readl(emc, EMC_CFG); |
| emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF | |
| EMC_CFG_DRAM_ACPD | |
| EMC_CFG_DRAM_CLKSTOP_PD | |
| EMC_CFG_DRAM_CLKSTOP_PD); |
| |
| |
| /* |
| * 1. Power optimizations should be off. |
| */ |
| emc_writel(emc, emc_cfg, EMC_CFG); |
| |
| /* Does emc_timing_update() for above changes. */ |
| tegra210_emc_dll_disable(emc); |
| |
| for (i = 0; i < emc->num_channels; i++) |
| tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, |
| EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, |
| 0); |
| |
| for (i = 0; i < emc->num_channels; i++) |
| tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, |
| EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, |
| 0); |
| |
| emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE); |
| value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK; |
| value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT); |
| emc_writel(emc, value, EMC_CFG_UPDATE); |
| |
| /* |
| * 2. osc kick off - this assumes training and dvfs have set |
| * correct MR23. |
| */ |
| tegra210_emc_start_periodic_compensation(emc); |
| |
| /* |
| * 3. Let dram capture its clock tree delays. |
| */ |
| delay = tegra210_emc_actual_osc_clocks(last->run_clocks); |
| delay *= 1000; |
| delay /= last->rate + 1; |
| udelay(delay); |
| |
| /* |
| * 4. Check delta wrt previous values (save value if margin |
| * exceeds what is set in table). |
| */ |
| del = periodic_compensation_handler(emc, |
| PERIODIC_TRAINING_SEQUENCE, |
| last, last); |
| |
| /* |
| * 5. Apply compensation w.r.t. trained values (if clock tree |
| * has drifted more than the set margin). |
| */ |
| if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) { |
| for (i = 0; i < items; i++) { |
| value = tegra210_emc_compensate(last, list[i]); |
| emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", |
| list[i], value); |
| emc_writel(emc, value, list[i]); |
| } |
| } |
| |
| emc_writel(emc, emc_cfg_o, EMC_CFG); |
| |
| /* |
| * 6. Timing update actally applies the new trimmers. |
| */ |
| tegra210_emc_timing_update(emc); |
| |
| /* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */ |
| emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE); |
| |
| /* 6.2. Restore the DLL. */ |
| tegra210_emc_dll_enable(emc); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Do the clock change sequence. |
| */ |
| static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc) |
| { |
| /* state variables */ |
| static bool fsp_for_next_freq; |
| /* constant configuration parameters */ |
| const bool save_restore_clkstop_pd = true; |
| const u32 zqcal_before_cc_cutoff = 2400; |
| const bool cya_allow_ref_cc = false; |
| const bool cya_issue_pc_ref = false; |
| const bool opt_cc_short_zcal = true; |
| const bool ref_b4_sref_en = false; |
| const u32 tZQCAL_lpddr4 = 1000000; |
| const bool opt_short_zcal = true; |
| const bool opt_do_sw_qrst = true; |
| const u32 opt_dvfs_mode = MAN_SR; |
| /* |
| * This is the timing table for the source frequency. It does _not_ |
| * necessarily correspond to the actual timing values in the EMC at the |
| * moment. If the boot BCT differs from the table then this can happen. |
| * However, we need it for accessing the dram_timings (which are not |
| * really registers) array for the current frequency. |
| */ |
| struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next; |
| u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST; |
| u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait; |
| u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj; |
| u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl; |
| u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4]; |
| u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg; |
| bool opt_zcal_en_cc = false, is_lpddr3 = false; |
| bool compensate_trimmer_applicable = false; |
| u32 emc_dbg, emc_cfg_pipe_clk, emc_pin; |
| u32 src_clk_period, dst_clk_period; /* in picoseconds */ |
| bool shared_zq_resistor = false; |
| u32 value, dram_type; |
| u32 opt_dll_mode = 0; |
| unsigned long delay; |
| unsigned int i; |
| |
| emc_dbg(emc, INFO, "Running clock change.\n"); |
| |
| /* XXX fake == last */ |
| fake = tegra210_emc_find_timing(emc, last->rate * 1000UL); |
| fsp_for_next_freq = !fsp_for_next_freq; |
| |
| value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK; |
| dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT; |
| |
| if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31)) |
| shared_zq_resistor = true; |
| |
| if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 && |
| last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) || |
| dram_type == DRAM_TYPE_LPDDR4) |
| opt_zcal_en_cc = true; |
| |
| if (dram_type == DRAM_TYPE_DDR3) |
| opt_dll_mode = tegra210_emc_get_dll_state(next); |
| |
| if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) && |
| (dram_type == DRAM_TYPE_LPDDR2)) |
| is_lpddr3 = true; |
| |
| emc_readl(emc, EMC_CFG); |
| emc_readl(emc, EMC_AUTO_CAL_CONFIG); |
| |
| src_clk_period = 1000000000 / last->rate; |
| dst_clk_period = 1000000000 / next->rate; |
| |
| if (dst_clk_period <= zqcal_before_cc_cutoff) |
| tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4; |
| else |
| tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4; |
| |
| tZQCAL_lpddr4_fc_adj /= dst_clk_period; |
| |
| emc_dbg = emc_readl(emc, EMC_DBG); |
| emc_pin = emc_readl(emc, EMC_PIN); |
| emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK); |
| |
| emc_cfg = next->burst_regs[EMC_CFG_INDEX]; |
| emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD | |
| EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD); |
| emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl; |
| emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN | |
| EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN | |
| EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN | |
| EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN | |
| EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN); |
| |
| emc_dbg(emc, INFO, "Clock change version: %d\n", |
| DVFS_CLOCK_CHANGE_VERSION); |
| emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type); |
| emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices); |
| emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc); |
| emc_dbg(emc, INFO, "DLL clksrc: 0x%08x\n", next->dll_clk_src); |
| emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate, |
| next->rate); |
| emc_dbg(emc, INFO, "last period: %u, next period: %u\n", |
| src_clk_period, dst_clk_period); |
| emc_dbg(emc, INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor); |
| emc_dbg(emc, INFO, " num_channels: %u\n", emc->num_channels); |
| emc_dbg(emc, INFO, " opt_dll_mode: %d\n", opt_dll_mode); |
| |
| /* |
| * Step 1: |
| * Pre DVFS SW sequence. |
| */ |
| emc_dbg(emc, STEPS, "Step 1\n"); |
| emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n"); |
| |
| value = emc_readl(emc, EMC_CFG_DIG_DLL); |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; |
| emc_writel(emc, value, EMC_CFG_DIG_DLL); |
| |
| tegra210_emc_timing_update(emc); |
| |
| for (i = 0; i < emc->num_channels; i++) |
| tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, |
| EMC_CFG_DIG_DLL_CFG_DLL_EN, 0); |
| |
| emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n"); |
| |
| emc_auto_cal_config = next->emc_auto_cal_config; |
| auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE; |
| emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START; |
| emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL; |
| emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL; |
| emc_auto_cal_config |= auto_cal_en; |
| emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); |
| emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */ |
| |
| emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n"); |
| |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, emc_cfg, EMC_CFG); |
| emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| |
| if (next->periodic_training) { |
| tegra210_emc_reset_dram_clktree_values(next); |
| |
| for (i = 0; i < emc->num_channels; i++) |
| tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, |
| EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, |
| 0); |
| |
| for (i = 0; i < emc->num_channels; i++) |
| tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, |
| EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, |
| 0); |
| |
| tegra210_emc_start_periodic_compensation(emc); |
| |
| delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks); |
| udelay((delay / last->rate) + 2); |
| |
| value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake, |
| next); |
| value = (value * 128 * next->rate / 1000) / 1000000; |
| |
| if (next->periodic_training && value > next->tree_margin) |
| compensate_trimmer_applicable = true; |
| } |
| |
| emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS); |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, emc_cfg, EMC_CFG); |
| emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); |
| emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON, |
| EMC_CFG_PIPE_CLK); |
| emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp & |
| ~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE, |
| EMC_FDPD_CTRL_CMD_NO_RAMP); |
| |
| bg_reg_mode_change = |
| ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^ |
| (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) || |
| ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^ |
| (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD)); |
| enable_bglp_reg = |
| (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0; |
| enable_bg_reg = |
| (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0; |
| |
| if (bg_reg_mode_change) { |
| if (enable_bg_reg) |
| emc_writel(emc, last->burst_regs |
| [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, |
| EMC_PMACRO_BG_BIAS_CTRL_0); |
| |
| if (enable_bglp_reg) |
| emc_writel(emc, last->burst_regs |
| [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, |
| EMC_PMACRO_BG_BIAS_CTRL_0); |
| } |
| |
| /* Check if we need to turn on VREF generator. */ |
| if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) && |
| ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) || |
| (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) && |
| ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) { |
| u32 pad_tx_ctrl = |
| next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; |
| u32 last_pad_tx_ctrl = |
| last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; |
| u32 next_dq_e_ivref, next_dqs_e_ivref; |
| |
| next_dqs_e_ivref = pad_tx_ctrl & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF; |
| next_dq_e_ivref = pad_tx_ctrl & |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF; |
| value = (last_pad_tx_ctrl & |
| ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF & |
| ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) | |
| next_dq_e_ivref | next_dqs_e_ivref; |
| emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL); |
| udelay(1); |
| } else if (bg_reg_mode_change) { |
| udelay(1); |
| } |
| |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| |
| /* |
| * Step 2: |
| * Prelock the DLL. |
| */ |
| emc_dbg(emc, STEPS, "Step 2\n"); |
| |
| if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & |
| EMC_CFG_DIG_DLL_CFG_DLL_EN) { |
| emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n"); |
| value = tegra210_emc_dll_prelock(emc, clksrc); |
| emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value); |
| } else { |
| emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n"); |
| tegra210_emc_dll_disable(emc); |
| } |
| |
| /* |
| * Step 3: |
| * Prepare autocal for the clock change. |
| */ |
| emc_dbg(emc, STEPS, "Step 3\n"); |
| |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2); |
| emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3); |
| emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4); |
| emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5); |
| emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6); |
| emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7); |
| emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| |
| emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START | |
| auto_cal_en); |
| emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); |
| |
| /* |
| * Step 4: |
| * Update EMC_CFG. (??) |
| */ |
| emc_dbg(emc, STEPS, "Step 4\n"); |
| |
| if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4) |
| ccfifo_writel(emc, 1, EMC_SELF_REF, 0); |
| else |
| emc_writel(emc, next->emc_cfg_2, EMC_CFG_2); |
| |
| /* |
| * Step 5: |
| * Prepare reference variables for ZQCAL regs. |
| */ |
| emc_dbg(emc, STEPS, "Step 5\n"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) |
| zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period)); |
| else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) |
| zq_wait_long = max(next->min_mrs_wait, |
| div_o3(360000, dst_clk_period)) + 4; |
| else if (dram_type == DRAM_TYPE_DDR3) |
| zq_wait_long = max((u32)256, |
| div_o3(320000, dst_clk_period) + 2); |
| else |
| zq_wait_long = 0; |
| |
| /* |
| * Step 6: |
| * Training code - removed. |
| */ |
| emc_dbg(emc, STEPS, "Step 6\n"); |
| |
| /* |
| * Step 7: |
| * Program FSP reference registers and send MRWs to new FSPWR. |
| */ |
| emc_dbg(emc, STEPS, "Step 7\n"); |
| emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P"); |
| |
| /* WAR 200024907 */ |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| u32 nRTP = 16; |
| |
| if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */ |
| nRTP = 14; |
| |
| if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */ |
| nRTP = 12; |
| |
| if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */ |
| nRTP = 10; |
| |
| if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */ |
| nRTP = 8; |
| |
| deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8); |
| |
| /* |
| * Originally there was a + .5 in the tRPST calculation. |
| * However since we can't do FP in the kernel and the tRTM |
| * computation was in a floating point ceiling function, adding |
| * one to tRTP should be ok. There is no other source of non |
| * integer values, so the result was always going to be |
| * something for the form: f_ceil(N + .5) = N + 1; |
| */ |
| tRPST = (last->emc_mrw & 0x80) >> 7; |
| tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) + |
| max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST + |
| 1 + nRTP; |
| |
| emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM, |
| next->burst_regs[EMC_RP_INDEX]); |
| |
| if (last->burst_regs[EMC_RP_INDEX] < tRTM) { |
| if (tRTM > (last->burst_regs[EMC_R2P_INDEX] + |
| last->burst_regs[EMC_RP_INDEX])) { |
| R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX]; |
| RP_war = last->burst_regs[EMC_RP_INDEX]; |
| TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; |
| |
| if (R2P_war > 63) { |
| RP_war = R2P_war + |
| last->burst_regs[EMC_RP_INDEX] - 63; |
| |
| if (TRPab_war < RP_war) |
| TRPab_war = RP_war; |
| |
| R2P_war = 63; |
| } |
| } else { |
| R2P_war = last->burst_regs[EMC_R2P_INDEX]; |
| RP_war = last->burst_regs[EMC_RP_INDEX]; |
| TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; |
| } |
| |
| if (RP_war < deltaTWATM) { |
| W2P_war = last->burst_regs[EMC_W2P_INDEX] |
| + deltaTWATM - RP_war; |
| if (W2P_war > 63) { |
| RP_war = RP_war + W2P_war - 63; |
| if (TRPab_war < RP_war) |
| TRPab_war = RP_war; |
| W2P_war = 63; |
| } |
| } else { |
| W2P_war = last->burst_regs[ |
| EMC_W2P_INDEX]; |
| } |
| |
| if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) || |
| (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) || |
| (last->burst_regs[EMC_RP_INDEX] ^ RP_war) || |
| (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) { |
| emc_writel(emc, RP_war, EMC_RP); |
| emc_writel(emc, R2P_war, EMC_R2P); |
| emc_writel(emc, W2P_war, EMC_W2P); |
| emc_writel(emc, TRPab_war, EMC_TRPAB); |
| } |
| |
| tegra210_emc_timing_update(emc); |
| } else { |
| emc_dbg(emc, INFO, "Skipped WAR\n"); |
| } |
| } |
| |
| if (!fsp_for_next_freq) { |
| mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80; |
| mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00; |
| } else { |
| mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40; |
| mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0; |
| } |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| emc_writel(emc, mr13_flip_fspwr, EMC_MRW3); |
| emc_writel(emc, next->emc_mrw, EMC_MRW); |
| emc_writel(emc, next->emc_mrw2, EMC_MRW2); |
| } |
| |
| /* |
| * Step 8: |
| * Program the shadow registers. |
| */ |
| emc_dbg(emc, STEPS, "Step 8\n"); |
| emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n"); |
| |
| for (i = 0; i < next->num_burst; i++) { |
| const u16 *offsets = emc->offsets->burst; |
| u16 offset; |
| |
| if (!offsets[i]) |
| continue; |
| |
| value = next->burst_regs[i]; |
| offset = offsets[i]; |
| |
| if (dram_type != DRAM_TYPE_LPDDR4 && |
| (offset == EMC_MRW6 || offset == EMC_MRW7 || |
| offset == EMC_MRW8 || offset == EMC_MRW9 || |
| offset == EMC_MRW10 || offset == EMC_MRW11 || |
| offset == EMC_MRW12 || offset == EMC_MRW13 || |
| offset == EMC_MRW14 || offset == EMC_MRW15 || |
| offset == EMC_TRAINING_CTRL)) |
| continue; |
| |
| /* Pain... And suffering. */ |
| if (offset == EMC_CFG) { |
| value &= ~EMC_CFG_DRAM_ACPD; |
| value &= ~EMC_CFG_DYN_SELF_REF; |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| value &= ~EMC_CFG_DRAM_CLKSTOP_SR; |
| value &= ~EMC_CFG_DRAM_CLKSTOP_PD; |
| } |
| } else if (offset == EMC_MRS_WAIT_CNT && |
| dram_type == DRAM_TYPE_LPDDR2 && |
| opt_zcal_en_cc && !opt_cc_short_zcal && |
| opt_short_zcal) { |
| value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK << |
| EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) | |
| ((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) << |
| EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); |
| } else if (offset == EMC_ZCAL_WAIT_CNT && |
| dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc && |
| !opt_cc_short_zcal && opt_short_zcal) { |
| value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK << |
| EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) | |
| ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) << |
| EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); |
| } else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) { |
| value = 0; /* EMC_ZCAL_INTERVAL reset value. */ |
| } else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) { |
| value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS; |
| } else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) { |
| value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | |
| EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); |
| } else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) { |
| value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; |
| value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | |
| EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | |
| EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | |
| EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); |
| } else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) { |
| value &= 0xf800f800; |
| } else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) { |
| value &= 0xfffffff0; |
| } |
| |
| emc_writel(emc, value, offset); |
| } |
| |
| /* SW addition: do EMC refresh adjustment here. */ |
| tegra210_emc_adjust_timing(emc, next); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| value = (23 << EMC_MRW_MRW_MA_SHIFT) | |
| (next->run_clocks & EMC_MRW_MRW_OP_MASK); |
| emc_writel(emc, value, EMC_MRW); |
| } |
| |
| /* Per channel burst registers. */ |
| emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n"); |
| |
| for (i = 0; i < next->num_burst_per_ch; i++) { |
| const struct tegra210_emc_per_channel_regs *burst = |
| emc->offsets->burst_per_channel; |
| |
| if (!burst[i].offset) |
| continue; |
| |
| if (dram_type != DRAM_TYPE_LPDDR4 && |
| (burst[i].offset == EMC_MRW6 || |
| burst[i].offset == EMC_MRW7 || |
| burst[i].offset == EMC_MRW8 || |
| burst[i].offset == EMC_MRW9 || |
| burst[i].offset == EMC_MRW10 || |
| burst[i].offset == EMC_MRW11 || |
| burst[i].offset == EMC_MRW12 || |
| burst[i].offset == EMC_MRW13 || |
| burst[i].offset == EMC_MRW14 || |
| burst[i].offset == EMC_MRW15)) |
| continue; |
| |
| /* Filter out second channel if not in DUAL_CHANNEL mode. */ |
| if (emc->num_channels < 2 && burst[i].bank >= 1) |
| continue; |
| |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| next->burst_reg_per_ch[i], burst[i].offset); |
| emc_channel_writel(emc, burst[i].bank, |
| next->burst_reg_per_ch[i], |
| burst[i].offset); |
| } |
| |
| /* Vref regs. */ |
| emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n"); |
| |
| for (i = 0; i < next->vref_num; i++) { |
| const struct tegra210_emc_per_channel_regs *vref = |
| emc->offsets->vref_per_channel; |
| |
| if (!vref[i].offset) |
| continue; |
| |
| if (emc->num_channels < 2 && vref[i].bank >= 1) |
| continue; |
| |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| next->vref_perch_regs[i], vref[i].offset); |
| emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i], |
| vref[i].offset); |
| } |
| |
| /* Trimmers. */ |
| emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n"); |
| |
| for (i = 0; i < next->num_trim; i++) { |
| const u16 *offsets = emc->offsets->trim; |
| |
| if (!offsets[i]) |
| continue; |
| |
| if (compensate_trimmer_applicable && |
| (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || |
| offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || |
| offsets[i] == EMC_DATA_BRLSHFT_0 || |
| offsets[i] == EMC_DATA_BRLSHFT_1)) { |
| value = tegra210_emc_compensate(next, offsets[i]); |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| value, offsets[i]); |
| emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", |
| (u32)(u64)offsets[i], value); |
| emc_writel(emc, value, offsets[i]); |
| } else { |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| next->trim_regs[i], offsets[i]); |
| emc_writel(emc, next->trim_regs[i], offsets[i]); |
| } |
| } |
| |
| /* Per channel trimmers. */ |
| emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n"); |
| |
| for (i = 0; i < next->num_trim_per_ch; i++) { |
| const struct tegra210_emc_per_channel_regs *trim = |
| &emc->offsets->trim_per_channel[0]; |
| unsigned int offset; |
| |
| if (!trim[i].offset) |
| continue; |
| |
| if (emc->num_channels < 2 && trim[i].bank >= 1) |
| continue; |
| |
| offset = trim[i].offset; |
| |
| if (compensate_trimmer_applicable && |
| (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || |
| offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || |
| offset == EMC_DATA_BRLSHFT_0 || |
| offset == EMC_DATA_BRLSHFT_1)) { |
| value = tegra210_emc_compensate(next, offset); |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| value, offset); |
| emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset, |
| value); |
| emc_channel_writel(emc, trim[i].bank, value, offset); |
| } else { |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| next->trim_perch_regs[i], offset); |
| emc_channel_writel(emc, trim[i].bank, |
| next->trim_perch_regs[i], offset); |
| } |
| } |
| |
| emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n"); |
| |
| for (i = 0; i < next->num_mc_regs; i++) { |
| const u16 *offsets = emc->offsets->burst_mc; |
| u32 *values = next->burst_mc_regs; |
| |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| values[i], offsets[i]); |
| mc_writel(emc->mc, values[i], offsets[i]); |
| } |
| |
| /* Registers to be programmed on the faster clock. */ |
| if (next->rate < last->rate) { |
| const u16 *la = emc->offsets->la_scale; |
| |
| emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n"); |
| |
| for (i = 0; i < next->num_up_down; i++) { |
| emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, |
| next->la_scale_regs[i], la[i]); |
| mc_writel(emc->mc, next->la_scale_regs[i], la[i]); |
| } |
| } |
| |
| /* Flush all the burst register writes. */ |
| mc_readl(emc->mc, MC_EMEM_ADR_CFG); |
| |
| /* |
| * Step 9: |
| * LPDDR4 section A. |
| */ |
| emc_dbg(emc, STEPS, "Step 9\n"); |
| |
| value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX]; |
| value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK; |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| emc_writel(emc, 0, EMC_ZCAL_INTERVAL); |
| emc_writel(emc, value, EMC_ZCAL_WAIT_CNT); |
| |
| value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE | |
| EMC_DBG_WRITE_ACTIVE_ONLY); |
| |
| emc_writel(emc, value, EMC_DBG); |
| emc_writel(emc, 0, EMC_ZCAL_INTERVAL); |
| emc_writel(emc, emc_dbg, EMC_DBG); |
| } |
| |
| /* |
| * Step 10: |
| * LPDDR4 and DDR3 common section. |
| */ |
| emc_dbg(emc, STEPS, "Step 10\n"); |
| |
| if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) { |
| if (dram_type == DRAM_TYPE_LPDDR4) |
| ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0); |
| else |
| ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4 && |
| dst_clk_period <= zqcal_before_cc_cutoff) { |
| ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0); |
| ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] & |
| 0xFFFF3F3F) | |
| (last->burst_regs[EMC_MRW6_INDEX] & |
| 0x0000C0C0), EMC_MRW6, 0); |
| ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] & |
| 0xFFFF0707) | |
| (last->burst_regs[EMC_MRW14_INDEX] & |
| 0x00003838), EMC_MRW14, 0); |
| |
| if (emc->num_devices > 1) { |
| ccfifo_writel(emc, |
| (next->burst_regs[EMC_MRW7_INDEX] & |
| 0xFFFF3F3F) | |
| (last->burst_regs[EMC_MRW7_INDEX] & |
| 0x0000C0C0), EMC_MRW7, 0); |
| ccfifo_writel(emc, |
| (next->burst_regs[EMC_MRW15_INDEX] & |
| 0xFFFF0707) | |
| (last->burst_regs[EMC_MRW15_INDEX] & |
| 0x00003838), EMC_MRW15, 0); |
| } |
| |
| if (opt_zcal_en_cc) { |
| if (emc->num_devices < 2) |
| ccfifo_writel(emc, |
| 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
| | EMC_ZQ_CAL_ZQ_CAL_CMD, |
| EMC_ZQ_CAL, 0); |
| else if (shared_zq_resistor) |
| ccfifo_writel(emc, |
| 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
| | EMC_ZQ_CAL_ZQ_CAL_CMD, |
| EMC_ZQ_CAL, 0); |
| else |
| ccfifo_writel(emc, |
| EMC_ZQ_CAL_ZQ_CAL_CMD, |
| EMC_ZQ_CAL, 0); |
| } |
| } |
| } |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| value = (1000 * fake->dram_timings[T_RP]) / src_clk_period; |
| ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value); |
| ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period); |
| } |
| |
| if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) { |
| delay = 30; |
| |
| if (cya_allow_ref_cc) { |
| delay += (1000 * fake->dram_timings[T_RP]) / |
| src_clk_period; |
| delay += 4000 * fake->dram_timings[T_RFC]; |
| } |
| |
| ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV | |
| EMC_PIN_PIN_CKEB | |
| EMC_PIN_PIN_CKE), |
| EMC_PIN, delay); |
| } |
| |
| /* calculate reference delay multiplier */ |
| value = 1; |
| |
| if (ref_b4_sref_en) |
| value++; |
| |
| if (cya_allow_ref_cc) |
| value++; |
| |
| if (cya_issue_pc_ref) |
| value++; |
| |
| if (dram_type != DRAM_TYPE_LPDDR4) { |
| delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) + |
| (1000 * fake->dram_timings[T_RFC] / src_clk_period)); |
| delay = value * delay + 20; |
| } else { |
| delay = 0; |
| } |
| |
| /* |
| * Step 11: |
| * Ramp down. |
| */ |
| emc_dbg(emc, STEPS, "Step 11\n"); |
| |
| ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay); |
| |
| value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY; |
| ccfifo_writel(emc, value, EMC_DBG, 0); |
| |
| ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period, |
| 0); |
| |
| /* |
| * Step 12: |
| * And finally - trigger the clock change. |
| */ |
| emc_dbg(emc, STEPS, "Step 12\n"); |
| |
| ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0); |
| value &= ~EMC_DBG_WRITE_ACTIVE_ONLY; |
| ccfifo_writel(emc, value, EMC_DBG, 0); |
| |
| /* |
| * Step 13: |
| * Ramp up. |
| */ |
| emc_dbg(emc, STEPS, "Step 13\n"); |
| |
| ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0); |
| ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); |
| |
| /* |
| * Step 14: |
| * Bringup CKE pins. |
| */ |
| emc_dbg(emc, STEPS, "Step 14\n"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| value = emc_pin | EMC_PIN_PIN_CKE; |
| |
| if (emc->num_devices <= 1) |
| value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV); |
| else |
| value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV; |
| |
| ccfifo_writel(emc, value, EMC_PIN, 0); |
| } |
| |
| /* |
| * Step 15: (two step 15s ??) |
| * Calculate zqlatch wait time; has dependency on ramping times. |
| */ |
| emc_dbg(emc, STEPS, "Step 15\n"); |
| |
| if (dst_clk_period <= zqcal_before_cc_cutoff) { |
| s32 t = (s32)(ramp_up_wait + ramp_down_wait) / |
| (s32)dst_clk_period; |
| zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t; |
| } else { |
| zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj - |
| div_o3(1000 * next->dram_timings[T_PDEX], |
| dst_clk_period); |
| } |
| |
| emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj); |
| emc_dbg(emc, INFO, "dst_clk_period = %u\n", |
| dst_clk_period); |
| emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n", |
| next->dram_timings[T_PDEX]); |
| emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n", |
| max_t(s32, 0, zq_latch_dvfs_wait_time)); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) { |
| delay = div_o3(1000 * next->dram_timings[T_PDEX], |
| dst_clk_period); |
| |
| if (emc->num_devices < 2) { |
| if (dst_clk_period > zqcal_before_cc_cutoff) |
| ccfifo_writel(emc, |
| 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, |
| delay); |
| |
| value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; |
| ccfifo_writel(emc, value, EMC_MRW3, delay); |
| ccfifo_writel(emc, 0, EMC_SELF_REF, 0); |
| ccfifo_writel(emc, 0, EMC_REF, 0); |
| ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_LATCH_CMD, |
| EMC_ZQ_CAL, |
| max_t(s32, 0, zq_latch_dvfs_wait_time)); |
| } else if (shared_zq_resistor) { |
| if (dst_clk_period > zqcal_before_cc_cutoff) |
| ccfifo_writel(emc, |
| 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, |
| delay); |
| |
| ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, |
| max_t(s32, 0, zq_latch_dvfs_wait_time) + |
| delay); |
| ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_LATCH_CMD, |
| EMC_ZQ_CAL, 0); |
| |
| value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; |
| ccfifo_writel(emc, value, EMC_MRW3, 0); |
| ccfifo_writel(emc, 0, EMC_SELF_REF, 0); |
| ccfifo_writel(emc, 0, EMC_REF, 0); |
| |
| ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, |
| tZQCAL_lpddr4 / dst_clk_period); |
| } else { |
| if (dst_clk_period > zqcal_before_cc_cutoff) |
| ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD, |
| EMC_ZQ_CAL, delay); |
| |
| value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; |
| ccfifo_writel(emc, value, EMC_MRW3, delay); |
| ccfifo_writel(emc, 0, EMC_SELF_REF, 0); |
| ccfifo_writel(emc, 0, EMC_REF, 0); |
| |
| ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, |
| max_t(s32, 0, zq_latch_dvfs_wait_time)); |
| } |
| } |
| |
| /* WAR: delay for zqlatch */ |
| ccfifo_writel(emc, 0, 0, 10); |
| |
| /* |
| * Step 16: |
| * LPDDR4 Conditional Training Kickoff. Removed. |
| */ |
| |
| /* |
| * Step 17: |
| * MANSR exit self refresh. |
| */ |
| emc_dbg(emc, STEPS, "Step 17\n"); |
| |
| if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4) |
| ccfifo_writel(emc, 0, EMC_SELF_REF, 0); |
| |
| /* |
| * Step 18: |
| * Send MRWs to LPDDR3/DDR3. |
| */ |
| emc_dbg(emc, STEPS, "Step 18\n"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR2) { |
| ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0); |
| ccfifo_writel(emc, next->emc_mrw, EMC_MRW, 0); |
| if (is_lpddr3) |
| ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0); |
| } else if (dram_type == DRAM_TYPE_DDR3) { |
| if (opt_dll_mode) |
| ccfifo_writel(emc, next->emc_emrs & |
| ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0); |
| ccfifo_writel(emc, next->emc_emrs2 & |
| ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0); |
| ccfifo_writel(emc, next->emc_mrs | |
| EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0); |
| } |
| |
| /* |
| * Step 19: |
| * ZQCAL for LPDDR3/DDR3 |
| */ |
| emc_dbg(emc, STEPS, "Step 19\n"); |
| |
| if (opt_zcal_en_cc) { |
| if (dram_type == DRAM_TYPE_LPDDR2) { |
| value = opt_cc_short_zcal ? 90000 : 360000; |
| value = div_o3(value, dst_clk_period); |
| value = value << |
| EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT | |
| value << |
| EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT; |
| ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0); |
| |
| value = opt_cc_short_zcal ? 0x56 : 0xab; |
| ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | |
| EMC_MRW_USE_MRW_EXT_CNT | |
| 10 << EMC_MRW_MRW_MA_SHIFT | |
| value << EMC_MRW_MRW_OP_SHIFT, |
| EMC_MRW, 0); |
| |
| if (emc->num_devices > 1) { |
| value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | |
| EMC_MRW_USE_MRW_EXT_CNT | |
| 10 << EMC_MRW_MRW_MA_SHIFT | |
| value << EMC_MRW_MRW_OP_SHIFT; |
| ccfifo_writel(emc, value, EMC_MRW, 0); |
| } |
| } else if (dram_type == DRAM_TYPE_DDR3) { |
| value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG; |
| |
| ccfifo_writel(emc, value | |
| 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, |
| 0); |
| |
| if (emc->num_devices > 1) { |
| value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT | |
| EMC_ZQ_CAL_ZQ_CAL_CMD; |
| ccfifo_writel(emc, value, EMC_ZQ_CAL, 0); |
| } |
| } |
| } |
| |
| if (bg_reg_mode_change) { |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| |
| if (ramp_up_wait <= 1250000) |
| delay = (1250000 - ramp_up_wait) / dst_clk_period; |
| else |
| delay = 0; |
| |
| ccfifo_writel(emc, |
| next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX], |
| EMC_PMACRO_BG_BIAS_CTRL_0, delay); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| } |
| |
| /* |
| * Step 20: |
| * Issue ref and optional QRST. |
| */ |
| emc_dbg(emc, STEPS, "Step 20\n"); |
| |
| if (dram_type != DRAM_TYPE_LPDDR4) |
| ccfifo_writel(emc, 0, EMC_REF, 0); |
| |
| if (opt_do_sw_qrst) { |
| ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0); |
| ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2); |
| } |
| |
| /* |
| * Step 21: |
| * Restore ZCAL and ZCAL interval. |
| */ |
| emc_dbg(emc, STEPS, "Step 21\n"); |
| |
| if (save_restore_clkstop_pd || opt_zcal_en_cc) { |
| ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, |
| EMC_DBG, 0); |
| if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4) |
| ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], |
| EMC_ZCAL_INTERVAL, 0); |
| |
| if (save_restore_clkstop_pd) |
| ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] & |
| ~EMC_CFG_DYN_SELF_REF, |
| EMC_CFG, 0); |
| ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); |
| } |
| |
| /* |
| * Step 22: |
| * Restore EMC_CFG_PIPE_CLK. |
| */ |
| emc_dbg(emc, STEPS, "Step 22\n"); |
| |
| ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0); |
| |
| if (bg_reg_mode_change) { |
| if (enable_bg_reg) |
| emc_writel(emc, |
| next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, |
| EMC_PMACRO_BG_BIAS_CTRL_0); |
| else |
| emc_writel(emc, |
| next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & |
| ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, |
| EMC_PMACRO_BG_BIAS_CTRL_0); |
| } |
| |
| /* |
| * Step 23: |
| */ |
| emc_dbg(emc, STEPS, "Step 23\n"); |
| |
| value = emc_readl(emc, EMC_CFG_DIG_DLL); |
| value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; |
| value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | |
| (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); |
| emc_writel(emc, value, EMC_CFG_DIG_DLL); |
| |
| tegra210_emc_do_clock_change(emc, clksrc); |
| |
| /* |
| * Step 24: |
| * Save training results. Removed. |
| */ |
| |
| /* |
| * Step 25: |
| * Program MC updown registers. |
| */ |
| emc_dbg(emc, STEPS, "Step 25\n"); |
| |
| if (next->rate > last->rate) { |
| for (i = 0; i < next->num_up_down; i++) |
| mc_writel(emc->mc, next->la_scale_regs[i], |
| emc->offsets->la_scale[i]); |
| |
| tegra210_emc_timing_update(emc); |
| } |
| |
| /* |
| * Step 26: |
| * Restore ZCAL registers. |
| */ |
| emc_dbg(emc, STEPS, "Step 26\n"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR4) { |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], |
| EMC_ZCAL_WAIT_CNT); |
| emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], |
| EMC_ZCAL_INTERVAL); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| } |
| |
| if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc && |
| !opt_short_zcal && opt_cc_short_zcal) { |
| udelay(2); |
| |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| if (dram_type == DRAM_TYPE_LPDDR2) |
| emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX], |
| EMC_MRS_WAIT_CNT); |
| else if (dram_type == DRAM_TYPE_DDR3) |
| emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], |
| EMC_ZCAL_WAIT_CNT); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| } |
| |
| /* |
| * Step 27: |
| * Restore EMC_CFG, FDPD registers. |
| */ |
| emc_dbg(emc, STEPS, "Step 27\n"); |
| |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp, |
| EMC_FDPD_CTRL_CMD_NO_RAMP); |
| emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); |
| |
| /* |
| * Step 28: |
| * Training recover. Removed. |
| */ |
| emc_dbg(emc, STEPS, "Step 28\n"); |
| |
| tegra210_emc_set_shadow_bypass(emc, ACTIVE); |
| emc_writel(emc, |
| next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX], |
| EMC_PMACRO_AUTOCAL_CFG_COMMON); |
| tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); |
| |
| /* |
| * Step 29: |
| * Power fix WAR. |
| */ |
| emc_dbg(emc, STEPS, "Step 29\n"); |
| |
| emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 | |
| EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7, |
| EMC_PMACRO_CFG_PM_GLOBAL_0); |
| emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR, |
| EMC_PMACRO_TRAINING_CTRL_0); |
| emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR, |
| EMC_PMACRO_TRAINING_CTRL_1); |
| emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0); |
| |
| /* |
| * Step 30: |
| * Re-enable autocal. |
| */ |
| emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n"); |
| |
| if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) { |
| value = emc_readl(emc, EMC_CFG_DIG_DLL); |
| value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; |
| value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; |
| value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; |
| value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | |
| (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); |
| emc_writel(emc, value, EMC_CFG_DIG_DLL); |
| tegra210_emc_timing_update(emc); |
| } |
| |
| emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); |
| |
| /* Done! Yay. */ |
| } |
| |
| const struct tegra210_emc_sequence tegra210_emc_r21021 = { |
| .revision = 0x7, |
| .set_clock = tegra210_emc_r21021_set_clock, |
| .periodic_compensation = tegra210_emc_r21021_periodic_compensation, |
| }; |