blob: 5296b8f3e0ab369377a5d7c3cad8014dbead02b9 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* The caprices of the preprocessor require that this be declared right here */
#define CREATE_TRACE_POINTS
#include "dm_services_types.h"
#include "dc.h"
#include "dc/inc/core_types.h"
#include "vid.h"
#include "amdgpu.h"
#include "amdgpu_display.h"
#include "amdgpu_ucode.h"
#include "atom.h"
#include "amdgpu_dm.h"
#include "amdgpu_pm.h"
#include "amd_shared.h"
#include "amdgpu_dm_irq.h"
#include "dm_helpers.h"
#include "amdgpu_dm_mst_types.h"
#if defined(CONFIG_DEBUG_FS)
#include "amdgpu_dm_debugfs.h"
#endif
#include "ivsrcid/ivsrcid_vislands30.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_dp_mst_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_edid.h>
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
#include "ivsrcid/irqsrcs_dcn_1_0.h"
#include "dcn/dcn_1_0_offset.h"
#include "dcn/dcn_1_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "soc15_common.h"
#endif
#include "modules/inc/mod_freesync.h"
#include "modules/power/power_helpers.h"
#include "modules/inc/mod_info_packet.h"
#define FIRMWARE_RAVEN_DMCU "amdgpu/raven_dmcu.bin"
MODULE_FIRMWARE(FIRMWARE_RAVEN_DMCU);
/**
* DOC: overview
*
* The AMDgpu display manager, **amdgpu_dm** (or even simpler,
* **dm**) sits between DRM and DC. It acts as a liason, converting DRM
* requests into DC requests, and DC responses into DRM responses.
*
* The root control structure is &struct amdgpu_display_manager.
*/
/* basic init/fini API */
static int amdgpu_dm_init(struct amdgpu_device *adev);
static void amdgpu_dm_fini(struct amdgpu_device *adev);
/*
* initializes drm_device display related structures, based on the information
* provided by DAL. The drm strcutures are: drm_crtc, drm_connector,
* drm_encoder, drm_mode_config
*
* Returns 0 on success
*/
static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev);
/* removes and deallocates the drm structures, created by the above function */
static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm);
static void
amdgpu_dm_update_connector_after_detect(struct amdgpu_dm_connector *aconnector);
static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
unsigned long possible_crtcs);
static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
uint32_t link_index);
static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *amdgpu_dm_connector,
uint32_t link_index,
struct amdgpu_encoder *amdgpu_encoder);
static int amdgpu_dm_encoder_init(struct drm_device *dev,
struct amdgpu_encoder *aencoder,
uint32_t link_index);
static int amdgpu_dm_connector_get_modes(struct drm_connector *connector);
static int amdgpu_dm_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state,
bool nonblock);
static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state);
static int amdgpu_dm_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state);
static void handle_cursor_update(struct drm_plane *plane,
struct drm_plane_state *old_plane_state);
static const enum drm_plane_type dm_plane_type_default[AMDGPU_MAX_PLANES] = {
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
};
static const enum drm_plane_type dm_plane_type_carizzo[AMDGPU_MAX_PLANES] = {
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_OVERLAY,/* YUV Capable Underlay */
};
static const enum drm_plane_type dm_plane_type_stoney[AMDGPU_MAX_PLANES] = {
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_OVERLAY, /* YUV Capable Underlay */
};
/*
* dm_vblank_get_counter
*
* @brief
* Get counter for number of vertical blanks
*
* @param
* struct amdgpu_device *adev - [in] desired amdgpu device
* int disp_idx - [in] which CRTC to get the counter from
*
* @return
* Counter for vertical blanks
*/
static u32 dm_vblank_get_counter(struct amdgpu_device *adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else {
struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc];
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(
acrtc->base.state);
if (acrtc_state->stream == NULL) {
DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n",
crtc);
return 0;
}
return dc_stream_get_vblank_counter(acrtc_state->stream);
}
}
static int dm_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
u32 *vbl, u32 *position)
{
uint32_t v_blank_start, v_blank_end, h_position, v_position;
if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
return -EINVAL;
else {
struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc];
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(
acrtc->base.state);
if (acrtc_state->stream == NULL) {
DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n",
crtc);
return 0;
}
/*
* TODO rework base driver to use values directly.
* for now parse it back into reg-format
*/
dc_stream_get_scanoutpos(acrtc_state->stream,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
*position = v_position | (h_position << 16);
*vbl = v_blank_start | (v_blank_end << 16);
}
return 0;
}
static bool dm_is_idle(void *handle)
{
/* XXX todo */
return true;
}
static int dm_wait_for_idle(void *handle)
{
/* XXX todo */
return 0;
}
static bool dm_check_soft_reset(void *handle)
{
return false;
}
static int dm_soft_reset(void *handle)
{
/* XXX todo */
return 0;
}
static struct amdgpu_crtc *
get_crtc_by_otg_inst(struct amdgpu_device *adev,
int otg_inst)
{
struct drm_device *dev = adev->ddev;
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
if (otg_inst == -1) {
WARN_ON(1);
return adev->mode_info.crtcs[0];
}
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->otg_inst == otg_inst)
return amdgpu_crtc;
}
return NULL;
}
static void dm_pflip_high_irq(void *interrupt_params)
{
struct amdgpu_crtc *amdgpu_crtc;
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
unsigned long flags;
amdgpu_crtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_PFLIP);
/* IRQ could occur when in initial stage */
/* TODO work and BO cleanup */
if (amdgpu_crtc == NULL) {
DRM_DEBUG_DRIVER("CRTC is null, returning.\n");
return;
}
spin_lock_irqsave(&adev->ddev->event_lock, flags);
if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){
DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d !=AMDGPU_FLIP_SUBMITTED(%d) on crtc:%d[%p] \n",
amdgpu_crtc->pflip_status,
AMDGPU_FLIP_SUBMITTED,
amdgpu_crtc->crtc_id,
amdgpu_crtc);
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
return;
}
/* wake up userspace */
if (amdgpu_crtc->event) {
/* Update to correct count(s) if racing with vblank irq */
drm_crtc_accurate_vblank_count(&amdgpu_crtc->base);
drm_crtc_send_vblank_event(&amdgpu_crtc->base, amdgpu_crtc->event);
/* page flip completed. clean up */
amdgpu_crtc->event = NULL;
} else
WARN_ON(1);
amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
DRM_DEBUG_DRIVER("%s - crtc :%d[%p], pflip_stat:AMDGPU_FLIP_NONE\n",
__func__, amdgpu_crtc->crtc_id, amdgpu_crtc);
drm_crtc_vblank_put(&amdgpu_crtc->base);
}
static void dm_crtc_high_irq(void *interrupt_params)
{
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
struct amdgpu_crtc *acrtc;
struct dm_crtc_state *acrtc_state;
acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VBLANK);
if (acrtc) {
drm_crtc_handle_vblank(&acrtc->base);
amdgpu_dm_crtc_handle_crc_irq(&acrtc->base);
acrtc_state = to_dm_crtc_state(acrtc->base.state);
if (acrtc_state->stream &&
acrtc_state->vrr_params.supported &&
acrtc_state->freesync_config.state == VRR_STATE_ACTIVE_VARIABLE) {
mod_freesync_handle_v_update(
adev->dm.freesync_module,
acrtc_state->stream,
&acrtc_state->vrr_params);
dc_stream_adjust_vmin_vmax(
adev->dm.dc,
acrtc_state->stream,
&acrtc_state->vrr_params.adjust);
}
}
}
static int dm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int dm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
/* Prototypes of private functions */
static int dm_early_init(void* handle);
/* Allocate memory for FBC compressed data */
static void amdgpu_dm_fbc_init(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = dev->dev_private;
struct dm_comressor_info *compressor = &adev->dm.compressor;
struct amdgpu_dm_connector *aconn = to_amdgpu_dm_connector(connector);
struct drm_display_mode *mode;
unsigned long max_size = 0;
if (adev->dm.dc->fbc_compressor == NULL)
return;
if (aconn->dc_link->connector_signal != SIGNAL_TYPE_EDP)
return;
if (compressor->bo_ptr)
return;
list_for_each_entry(mode, &connector->modes, head) {
if (max_size < mode->htotal * mode->vtotal)
max_size = mode->htotal * mode->vtotal;
}
if (max_size) {
int r = amdgpu_bo_create_kernel(adev, max_size * 4, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &compressor->bo_ptr,
&compressor->gpu_addr, &compressor->cpu_addr);
if (r)
DRM_ERROR("DM: Failed to initialize FBC\n");
else {
adev->dm.dc->ctx->fbc_gpu_addr = compressor->gpu_addr;
DRM_INFO("DM: FBC alloc %lu\n", max_size*4);
}
}
}
static int amdgpu_dm_init(struct amdgpu_device *adev)
{
struct dc_init_data init_data;
adev->dm.ddev = adev->ddev;
adev->dm.adev = adev;
/* Zero all the fields */
memset(&init_data, 0, sizeof(init_data));
mutex_init(&adev->dm.dc_lock);
if(amdgpu_dm_irq_init(adev)) {
DRM_ERROR("amdgpu: failed to initialize DM IRQ support.\n");
goto error;
}
init_data.asic_id.chip_family = adev->family;
init_data.asic_id.pci_revision_id = adev->rev_id;
init_data.asic_id.hw_internal_rev = adev->external_rev_id;
init_data.asic_id.vram_width = adev->gmc.vram_width;
/* TODO: initialize init_data.asic_id.vram_type here!!!! */
init_data.asic_id.atombios_base_address =
adev->mode_info.atom_context->bios;
init_data.driver = adev;
adev->dm.cgs_device = amdgpu_cgs_create_device(adev);
if (!adev->dm.cgs_device) {
DRM_ERROR("amdgpu: failed to create cgs device.\n");
goto error;
}
init_data.cgs_device = adev->dm.cgs_device;
init_data.dce_environment = DCE_ENV_PRODUCTION_DRV;
/*
* TODO debug why this doesn't work on Raven
*/
if (adev->flags & AMD_IS_APU &&
adev->asic_type >= CHIP_CARRIZO &&
adev->asic_type < CHIP_RAVEN)
init_data.flags.gpu_vm_support = true;
if (amdgpu_dc_feature_mask & DC_FBC_MASK)
init_data.flags.fbc_support = true;
/* Display Core create. */
adev->dm.dc = dc_create(&init_data);
if (adev->dm.dc) {
DRM_INFO("Display Core initialized with v%s!\n", DC_VER);
} else {
DRM_INFO("Display Core failed to initialize with v%s!\n", DC_VER);
goto error;
}
adev->dm.freesync_module = mod_freesync_create(adev->dm.dc);
if (!adev->dm.freesync_module) {
DRM_ERROR(
"amdgpu: failed to initialize freesync_module.\n");
} else
DRM_DEBUG_DRIVER("amdgpu: freesync_module init done %p.\n",
adev->dm.freesync_module);
amdgpu_dm_init_color_mod();
if (amdgpu_dm_initialize_drm_device(adev)) {
DRM_ERROR(
"amdgpu: failed to initialize sw for display support.\n");
goto error;
}
/* Update the actual used number of crtc */
adev->mode_info.num_crtc = adev->dm.display_indexes_num;
/* TODO: Add_display_info? */
/* TODO use dynamic cursor width */
adev->ddev->mode_config.cursor_width = adev->dm.dc->caps.max_cursor_size;
adev->ddev->mode_config.cursor_height = adev->dm.dc->caps.max_cursor_size;
if (drm_vblank_init(adev->ddev, adev->dm.display_indexes_num)) {
DRM_ERROR(
"amdgpu: failed to initialize sw for display support.\n");
goto error;
}
#if defined(CONFIG_DEBUG_FS)
if (dtn_debugfs_init(adev))
DRM_ERROR("amdgpu: failed initialize dtn debugfs support.\n");
#endif
DRM_DEBUG_DRIVER("KMS initialized.\n");
return 0;
error:
amdgpu_dm_fini(adev);
return -EINVAL;
}
static void amdgpu_dm_fini(struct amdgpu_device *adev)
{
amdgpu_dm_destroy_drm_device(&adev->dm);
/*
* TODO: pageflip, vlank interrupt
*
* amdgpu_dm_irq_fini(adev);
*/
if (adev->dm.cgs_device) {
amdgpu_cgs_destroy_device(adev->dm.cgs_device);
adev->dm.cgs_device = NULL;
}
if (adev->dm.freesync_module) {
mod_freesync_destroy(adev->dm.freesync_module);
adev->dm.freesync_module = NULL;
}
/* DC Destroy TODO: Replace destroy DAL */
if (adev->dm.dc)
dc_destroy(&adev->dm.dc);
mutex_destroy(&adev->dm.dc_lock);
return;
}
static int load_dmcu_fw(struct amdgpu_device *adev)
{
const char *fw_name_dmcu;
int r;
const struct dmcu_firmware_header_v1_0 *hdr;
switch(adev->asic_type) {
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
return 0;
case CHIP_RAVEN:
fw_name_dmcu = FIRMWARE_RAVEN_DMCU;
break;
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
return -EINVAL;
}
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
DRM_DEBUG_KMS("dm: DMCU firmware not supported on direct or SMU loading\n");
return 0;
}
r = request_firmware_direct(&adev->dm.fw_dmcu, fw_name_dmcu, adev->dev);
if (r == -ENOENT) {
/* DMCU firmware is not necessary, so don't raise a fuss if it's missing */
DRM_DEBUG_KMS("dm: DMCU firmware not found\n");
adev->dm.fw_dmcu = NULL;
return 0;
}
if (r) {
dev_err(adev->dev, "amdgpu_dm: Can't load firmware \"%s\"\n",
fw_name_dmcu);
return r;
}
r = amdgpu_ucode_validate(adev->dm.fw_dmcu);
if (r) {
dev_err(adev->dev, "amdgpu_dm: Can't validate firmware \"%s\"\n",
fw_name_dmcu);
release_firmware(adev->dm.fw_dmcu);
adev->dm.fw_dmcu = NULL;
return r;
}
hdr = (const struct dmcu_firmware_header_v1_0 *)adev->dm.fw_dmcu->data;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].ucode_id = AMDGPU_UCODE_ID_DMCU_ERAM;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].fw = adev->dm.fw_dmcu;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(hdr->header.ucode_size_bytes) - le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE);
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].ucode_id = AMDGPU_UCODE_ID_DMCU_INTV;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].fw = adev->dm.fw_dmcu;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE);
adev->dm.dmcu_fw_version = le32_to_cpu(hdr->header.ucode_version);
DRM_DEBUG_KMS("PSP loading DMCU firmware\n");
return 0;
}
static int dm_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return load_dmcu_fw(adev);
}
static int dm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if(adev->dm.fw_dmcu) {
release_firmware(adev->dm.fw_dmcu);
adev->dm.fw_dmcu = NULL;
}
return 0;
}
static int detect_mst_link_for_all_connectors(struct drm_device *dev)
{
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
int ret = 0;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
aconnector = to_amdgpu_dm_connector(connector);
if (aconnector->dc_link->type == dc_connection_mst_branch &&
aconnector->mst_mgr.aux) {
DRM_DEBUG_DRIVER("DM_MST: starting TM on aconnector: %p [id: %d]\n",
aconnector, aconnector->base.base.id);
ret = drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, true);
if (ret < 0) {
DRM_ERROR("DM_MST: Failed to start MST\n");
((struct dc_link *)aconnector->dc_link)->type = dc_connection_single;
return ret;
}
}
}
drm_modeset_unlock(&dev->mode_config.connection_mutex);
return ret;
}
static int dm_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct dmcu_iram_parameters params;
unsigned int linear_lut[16];
int i;
struct dmcu *dmcu = adev->dm.dc->res_pool->dmcu;
bool ret;
for (i = 0; i < 16; i++)
linear_lut[i] = 0xFFFF * i / 15;
params.set = 0;
params.backlight_ramping_start = 0xCCCC;
params.backlight_ramping_reduction = 0xCCCCCCCC;
params.backlight_lut_array_size = 16;
params.backlight_lut_array = linear_lut;
ret = dmcu_load_iram(dmcu, params);
if (!ret)
return -EINVAL;
return detect_mst_link_for_all_connectors(adev->ddev);
}
static void s3_handle_mst(struct drm_device *dev, bool suspend)
{
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_dp_mst_topology_mgr *mgr;
int ret;
bool need_hotplug = false;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
aconnector = to_amdgpu_dm_connector(connector);
if (aconnector->dc_link->type != dc_connection_mst_branch ||
aconnector->mst_port)
continue;
mgr = &aconnector->mst_mgr;
if (suspend) {
drm_dp_mst_topology_mgr_suspend(mgr);
} else {
ret = drm_dp_mst_topology_mgr_resume(mgr);
if (ret < 0) {
drm_dp_mst_topology_mgr_set_mst(mgr, false);
need_hotplug = true;
}
}
}
drm_modeset_unlock(&dev->mode_config.connection_mutex);
if (need_hotplug)
drm_kms_helper_hotplug_event(dev);
}
/**
* dm_hw_init() - Initialize DC device
* @handle: The base driver device containing the amdpgu_dm device.
*
* Initialize the &struct amdgpu_display_manager device. This involves calling
* the initializers of each DM component, then populating the struct with them.
*
* Although the function implies hardware initialization, both hardware and
* software are initialized here. Splitting them out to their relevant init
* hooks is a future TODO item.
*
* Some notable things that are initialized here:
*
* - Display Core, both software and hardware
* - DC modules that we need (freesync and color management)
* - DRM software states
* - Interrupt sources and handlers
* - Vblank support
* - Debug FS entries, if enabled
*/
static int dm_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* Create DAL display manager */
amdgpu_dm_init(adev);
amdgpu_dm_hpd_init(adev);
return 0;
}
/**
* dm_hw_fini() - Teardown DC device
* @handle: The base driver device containing the amdpgu_dm device.
*
* Teardown components within &struct amdgpu_display_manager that require
* cleanup. This involves cleaning up the DRM device, DC, and any modules that
* were loaded. Also flush IRQ workqueues and disable them.
*/
static int dm_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_dm_hpd_fini(adev);
amdgpu_dm_irq_fini(adev);
amdgpu_dm_fini(adev);
return 0;
}
static int dm_suspend(void *handle)
{
struct amdgpu_device *adev = handle;
struct amdgpu_display_manager *dm = &adev->dm;
int ret = 0;
WARN_ON(adev->dm.cached_state);
adev->dm.cached_state = drm_atomic_helper_suspend(adev->ddev);
s3_handle_mst(adev->ddev, true);
amdgpu_dm_irq_suspend(adev);
dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D3);
return ret;
}
static struct amdgpu_dm_connector *
amdgpu_dm_find_first_crtc_matching_connector(struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
uint32_t i;
struct drm_connector_state *new_con_state;
struct drm_connector *connector;
struct drm_crtc *crtc_from_state;
for_each_new_connector_in_state(state, connector, new_con_state, i) {
crtc_from_state = new_con_state->crtc;
if (crtc_from_state == crtc)
return to_amdgpu_dm_connector(connector);
}
return NULL;
}
static void emulated_link_detect(struct dc_link *link)
{
struct dc_sink_init_data sink_init_data = { 0 };
struct display_sink_capability sink_caps = { 0 };
enum dc_edid_status edid_status;
struct dc_context *dc_ctx = link->ctx;
struct dc_sink *sink = NULL;
struct dc_sink *prev_sink = NULL;
link->type = dc_connection_none;
prev_sink = link->local_sink;
if (prev_sink != NULL)
dc_sink_retain(prev_sink);
switch (link->connector_signal) {
case SIGNAL_TYPE_HDMI_TYPE_A: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A;
break;
}
case SIGNAL_TYPE_DVI_SINGLE_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
}
case SIGNAL_TYPE_DVI_DUAL_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK;
break;
}
case SIGNAL_TYPE_LVDS: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_LVDS;
break;
}
case SIGNAL_TYPE_EDP: {
sink_caps.transaction_type =
DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
sink_caps.signal = SIGNAL_TYPE_EDP;
break;
}
case SIGNAL_TYPE_DISPLAY_PORT: {
sink_caps.transaction_type =
DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
sink_caps.signal = SIGNAL_TYPE_VIRTUAL;
break;
}
default:
DC_ERROR("Invalid connector type! signal:%d\n",
link->connector_signal);
return;
}
sink_init_data.link = link;
sink_init_data.sink_signal = sink_caps.signal;
sink = dc_sink_create(&sink_init_data);
if (!sink) {
DC_ERROR("Failed to create sink!\n");
return;
}
link->local_sink = sink;
edid_status = dm_helpers_read_local_edid(
link->ctx,
link,
sink);
if (edid_status != EDID_OK)
DC_ERROR("Failed to read EDID");
}
static int dm_resume(void *handle)
{
struct amdgpu_device *adev = handle;
struct drm_device *ddev = adev->ddev;
struct amdgpu_display_manager *dm = &adev->dm;
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state;
struct dm_crtc_state *dm_new_crtc_state;
struct drm_plane *plane;
struct drm_plane_state *new_plane_state;
struct dm_plane_state *dm_new_plane_state;
enum dc_connection_type new_connection_type = dc_connection_none;
int i;
/* power on hardware */
dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D0);
/* program HPD filter */
dc_resume(dm->dc);
/* On resume we need to rewrite the MSTM control bits to enamble MST*/
s3_handle_mst(ddev, false);
/*
* early enable HPD Rx IRQ, should be done before set mode as short
* pulse interrupts are used for MST
*/
amdgpu_dm_irq_resume_early(adev);
/* Do detection*/
list_for_each_entry(connector, &ddev->mode_config.connector_list, head) {
aconnector = to_amdgpu_dm_connector(connector);
/*
* this is the case when traversing through already created
* MST connectors, should be skipped
*/
if (aconnector->mst_port)
continue;
mutex_lock(&aconnector->hpd_lock);
if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none)
emulated_link_detect(aconnector->dc_link);
else
dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD);
if (aconnector->fake_enable && aconnector->dc_link->local_sink)
aconnector->fake_enable = false;
aconnector->dc_sink = NULL;
amdgpu_dm_update_connector_after_detect(aconnector);
mutex_unlock(&aconnector->hpd_lock);
}
/* Force mode set in atomic commit */
for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i)
new_crtc_state->active_changed = true;
/*
* atomic_check is expected to create the dc states. We need to release
* them here, since they were duplicated as part of the suspend
* procedure.
*/
for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i) {
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream) {
WARN_ON(kref_read(&dm_new_crtc_state->stream->refcount) > 1);
dc_stream_release(dm_new_crtc_state->stream);
dm_new_crtc_state->stream = NULL;
}
}
for_each_new_plane_in_state(dm->cached_state, plane, new_plane_state, i) {
dm_new_plane_state = to_dm_plane_state(new_plane_state);
if (dm_new_plane_state->dc_state) {
WARN_ON(kref_read(&dm_new_plane_state->dc_state->refcount) > 1);
dc_plane_state_release(dm_new_plane_state->dc_state);
dm_new_plane_state->dc_state = NULL;
}
}
drm_atomic_helper_resume(ddev, dm->cached_state);
dm->cached_state = NULL;
amdgpu_dm_irq_resume_late(adev);
return 0;
}
/**
* DOC: DM Lifecycle
*
* DM (and consequently DC) is registered in the amdgpu base driver as a IP
* block. When CONFIG_DRM_AMD_DC is enabled, the DM device IP block is added to
* the base driver's device list to be initialized and torn down accordingly.
*
* The functions to do so are provided as hooks in &struct amd_ip_funcs.
*/
static const struct amd_ip_funcs amdgpu_dm_funcs = {
.name = "dm",
.early_init = dm_early_init,
.late_init = dm_late_init,
.sw_init = dm_sw_init,
.sw_fini = dm_sw_fini,
.hw_init = dm_hw_init,
.hw_fini = dm_hw_fini,
.suspend = dm_suspend,
.resume = dm_resume,
.is_idle = dm_is_idle,
.wait_for_idle = dm_wait_for_idle,
.check_soft_reset = dm_check_soft_reset,
.soft_reset = dm_soft_reset,
.set_clockgating_state = dm_set_clockgating_state,
.set_powergating_state = dm_set_powergating_state,
};
const struct amdgpu_ip_block_version dm_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_DCE,
.major = 1,
.minor = 0,
.rev = 0,
.funcs = &amdgpu_dm_funcs,
};
/**
* DOC: atomic
*
* *WIP*
*/
static const struct drm_mode_config_funcs amdgpu_dm_mode_funcs = {
.fb_create = amdgpu_display_user_framebuffer_create,
.output_poll_changed = drm_fb_helper_output_poll_changed,
.atomic_check = amdgpu_dm_atomic_check,
.atomic_commit = amdgpu_dm_atomic_commit,
};
static struct drm_mode_config_helper_funcs amdgpu_dm_mode_config_helperfuncs = {
.atomic_commit_tail = amdgpu_dm_atomic_commit_tail
};
static void
amdgpu_dm_update_connector_after_detect(struct amdgpu_dm_connector *aconnector)
{
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
struct dc_sink *sink;
/* MST handled by drm_mst framework */
if (aconnector->mst_mgr.mst_state == true)
return;
sink = aconnector->dc_link->local_sink;
/*
* Edid mgmt connector gets first update only in mode_valid hook and then
* the connector sink is set to either fake or physical sink depends on link status.
* Skip if already done during boot.
*/
if (aconnector->base.force != DRM_FORCE_UNSPECIFIED
&& aconnector->dc_em_sink) {
/*
* For S3 resume with headless use eml_sink to fake stream
* because on resume connector->sink is set to NULL
*/
mutex_lock(&dev->mode_config.mutex);
if (sink) {
if (aconnector->dc_sink) {
amdgpu_dm_update_freesync_caps(connector, NULL);
/*
* retain and release below are used to
* bump up refcount for sink because the link doesn't point
* to it anymore after disconnect, so on next crtc to connector
* reshuffle by UMD we will get into unwanted dc_sink release
*/
if (aconnector->dc_sink != aconnector->dc_em_sink)
dc_sink_release(aconnector->dc_sink);
}
aconnector->dc_sink = sink;
amdgpu_dm_update_freesync_caps(connector,
aconnector->edid);
} else {
amdgpu_dm_update_freesync_caps(connector, NULL);
if (!aconnector->dc_sink)
aconnector->dc_sink = aconnector->dc_em_sink;
else if (aconnector->dc_sink != aconnector->dc_em_sink)
dc_sink_retain(aconnector->dc_sink);
}
mutex_unlock(&dev->mode_config.mutex);
return;
}
/*
* TODO: temporary guard to look for proper fix
* if this sink is MST sink, we should not do anything
*/
if (sink && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
return;
if (aconnector->dc_sink == sink) {
/*
* We got a DP short pulse (Link Loss, DP CTS, etc...).
* Do nothing!!
*/
DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: dc_sink didn't change.\n",
aconnector->connector_id);
return;
}
DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: Old sink=%p New sink=%p\n",
aconnector->connector_id, aconnector->dc_sink, sink);
mutex_lock(&dev->mode_config.mutex);
/*
* 1. Update status of the drm connector
* 2. Send an event and let userspace tell us what to do
*/
if (sink) {
/*
* TODO: check if we still need the S3 mode update workaround.
* If yes, put it here.
*/
if (aconnector->dc_sink)
amdgpu_dm_update_freesync_caps(connector, NULL);
aconnector->dc_sink = sink;
if (sink->dc_edid.length == 0) {
aconnector->edid = NULL;
drm_dp_cec_unset_edid(&aconnector->dm_dp_aux.aux);
} else {
aconnector->edid =
(struct edid *) sink->dc_edid.raw_edid;
drm_connector_update_edid_property(connector,
aconnector->edid);
drm_dp_cec_set_edid(&aconnector->dm_dp_aux.aux,
aconnector->edid);
}
amdgpu_dm_update_freesync_caps(connector, aconnector->edid);
} else {
drm_dp_cec_unset_edid(&aconnector->dm_dp_aux.aux);
amdgpu_dm_update_freesync_caps(connector, NULL);
drm_connector_update_edid_property(connector, NULL);
aconnector->num_modes = 0;
aconnector->dc_sink = NULL;
aconnector->edid = NULL;
}
mutex_unlock(&dev->mode_config.mutex);
}
static void handle_hpd_irq(void *param)
{
struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param;
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
enum dc_connection_type new_connection_type = dc_connection_none;
/*
* In case of failure or MST no need to update connector status or notify the OS
* since (for MST case) MST does this in its own context.
*/
mutex_lock(&aconnector->hpd_lock);
if (aconnector->fake_enable)
aconnector->fake_enable = false;
if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(aconnector->dc_link);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED)
drm_kms_helper_hotplug_event(dev);
} else if (dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD)) {
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED)
drm_kms_helper_hotplug_event(dev);
}
mutex_unlock(&aconnector->hpd_lock);
}
static void dm_handle_hpd_rx_irq(struct amdgpu_dm_connector *aconnector)
{
uint8_t esi[DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI] = { 0 };
uint8_t dret;
bool new_irq_handled = false;
int dpcd_addr;
int dpcd_bytes_to_read;
const int max_process_count = 30;
int process_count = 0;
const struct dc_link_status *link_status = dc_link_get_status(aconnector->dc_link);
if (link_status->dpcd_caps->dpcd_rev.raw < 0x12) {
dpcd_bytes_to_read = DP_LANE0_1_STATUS - DP_SINK_COUNT;
/* DPCD 0x200 - 0x201 for downstream IRQ */
dpcd_addr = DP_SINK_COUNT;
} else {
dpcd_bytes_to_read = DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI;
/* DPCD 0x2002 - 0x2005 for downstream IRQ */
dpcd_addr = DP_SINK_COUNT_ESI;
}
dret = drm_dp_dpcd_read(
&aconnector->dm_dp_aux.aux,
dpcd_addr,
esi,
dpcd_bytes_to_read);
while (dret == dpcd_bytes_to_read &&
process_count < max_process_count) {
uint8_t retry;
dret = 0;
process_count++;
DRM_DEBUG_DRIVER("ESI %02x %02x %02x\n", esi[0], esi[1], esi[2]);
/* handle HPD short pulse irq */
if (aconnector->mst_mgr.mst_state)
drm_dp_mst_hpd_irq(
&aconnector->mst_mgr,
esi,
&new_irq_handled);
if (new_irq_handled) {
/* ACK at DPCD to notify down stream */
const int ack_dpcd_bytes_to_write =
dpcd_bytes_to_read - 1;
for (retry = 0; retry < 3; retry++) {
uint8_t wret;
wret = drm_dp_dpcd_write(
&aconnector->dm_dp_aux.aux,
dpcd_addr + 1,
&esi[1],
ack_dpcd_bytes_to_write);
if (wret == ack_dpcd_bytes_to_write)
break;
}
/* check if there is new irq to be handled */
dret = drm_dp_dpcd_read(
&aconnector->dm_dp_aux.aux,
dpcd_addr,
esi,
dpcd_bytes_to_read);
new_irq_handled = false;
} else {
break;
}
}
if (process_count == max_process_count)
DRM_DEBUG_DRIVER("Loop exceeded max iterations\n");
}
static void handle_hpd_rx_irq(void *param)
{
struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param;
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
struct dc_link *dc_link = aconnector->dc_link;
bool is_mst_root_connector = aconnector->mst_mgr.mst_state;
enum dc_connection_type new_connection_type = dc_connection_none;
/*
* TODO:Temporary add mutex to protect hpd interrupt not have a gpio
* conflict, after implement i2c helper, this mutex should be
* retired.
*/
if (dc_link->type != dc_connection_mst_branch)
mutex_lock(&aconnector->hpd_lock);
if (dc_link_handle_hpd_rx_irq(dc_link, NULL, NULL) &&
!is_mst_root_connector) {
/* Downstream Port status changed. */
if (!dc_link_detect_sink(dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(dc_link);
if (aconnector->fake_enable)
aconnector->fake_enable = false;
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
drm_kms_helper_hotplug_event(dev);
} else if (dc_link_detect(dc_link, DETECT_REASON_HPDRX)) {
if (aconnector->fake_enable)
aconnector->fake_enable = false;
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
drm_kms_helper_hotplug_event(dev);
}
}
if ((dc_link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) ||
(dc_link->type == dc_connection_mst_branch))
dm_handle_hpd_rx_irq(aconnector);
if (dc_link->type != dc_connection_mst_branch) {
drm_dp_cec_irq(&aconnector->dm_dp_aux.aux);
mutex_unlock(&aconnector->hpd_lock);
}
}
static void register_hpd_handlers(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_connector *connector;
struct amdgpu_dm_connector *aconnector;
const struct dc_link *dc_link;
struct dc_interrupt_params int_params = {0};
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
list_for_each_entry(connector,
&dev->mode_config.connector_list, head) {
aconnector = to_amdgpu_dm_connector(connector);
dc_link = aconnector->dc_link;
if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd) {
int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT;
int_params.irq_source = dc_link->irq_source_hpd;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
handle_hpd_irq,
(void *) aconnector);
}
if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd_rx) {
/* Also register for DP short pulse (hpd_rx). */
int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT;
int_params.irq_source = dc_link->irq_source_hpd_rx;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
handle_hpd_rx_irq,
(void *) aconnector);
}
}
}
/* Register IRQ sources and initialize IRQ callbacks */
static int dce110_register_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r;
int i;
unsigned client_id = AMDGPU_IRQ_CLIENTID_LEGACY;
if (adev->asic_type == CHIP_VEGA10 ||
adev->asic_type == CHIP_VEGA12 ||
adev->asic_type == CHIP_VEGA20 ||
adev->asic_type == CHIP_RAVEN)
client_id = SOC15_IH_CLIENTID_DCE;
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
/*
* Actions of amdgpu_irq_add_id():
* 1. Register a set() function with base driver.
* Base driver will call set() function to enable/disable an
* interrupt in DC hardware.
* 2. Register amdgpu_dm_irq_handler().
* Base driver will call amdgpu_dm_irq_handler() for ALL interrupts
* coming from DC hardware.
* amdgpu_dm_irq_handler() will re-direct the interrupt to DC
* for acknowledging and handling. */
/* Use VBLANK interrupt */
for (i = VISLANDS30_IV_SRCID_D1_VERTICAL_INTERRUPT0; i <= VISLANDS30_IV_SRCID_D6_VERTICAL_INTERRUPT0; i++) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->crtc_irq);
if (r) {
DRM_ERROR("Failed to add crtc irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_crtc_high_irq, c_irq_params);
}
/* Use GRPH_PFLIP interrupt */
for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP;
i <= VISLANDS30_IV_SRCID_D6_GRPH_PFLIP; i += 2) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->pageflip_irq);
if (r) {
DRM_ERROR("Failed to add page flip irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_pflip_high_irq, c_irq_params);
}
/* HPD */
r = amdgpu_irq_add_id(adev, client_id,
VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq);
if (r) {
DRM_ERROR("Failed to add hpd irq id!\n");
return r;
}
register_hpd_handlers(adev);
return 0;
}
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
/* Register IRQ sources and initialize IRQ callbacks */
static int dcn10_register_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r;
int i;
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
/*
* Actions of amdgpu_irq_add_id():
* 1. Register a set() function with base driver.
* Base driver will call set() function to enable/disable an
* interrupt in DC hardware.
* 2. Register amdgpu_dm_irq_handler().
* Base driver will call amdgpu_dm_irq_handler() for ALL interrupts
* coming from DC hardware.
* amdgpu_dm_irq_handler() will re-direct the interrupt to DC
* for acknowledging and handling.
*/
/* Use VSTARTUP interrupt */
for (i = DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP;
i <= DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP + adev->mode_info.num_crtc - 1;
i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->crtc_irq);
if (r) {
DRM_ERROR("Failed to add crtc irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_crtc_high_irq, c_irq_params);
}
/* Use GRPH_PFLIP interrupt */
for (i = DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT;
i <= DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT + adev->mode_info.num_crtc - 1;
i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->pageflip_irq);
if (r) {
DRM_ERROR("Failed to add page flip irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_pflip_high_irq, c_irq_params);
}
/* HPD */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, DCN_1_0__SRCID__DC_HPD1_INT,
&adev->hpd_irq);
if (r) {
DRM_ERROR("Failed to add hpd irq id!\n");
return r;
}
register_hpd_handlers(adev);
return 0;
}
#endif
/*
* Acquires the lock for the atomic state object and returns
* the new atomic state.
*
* This should only be called during atomic check.
*/
static int dm_atomic_get_state(struct drm_atomic_state *state,
struct dm_atomic_state **dm_state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_display_manager *dm = &adev->dm;
struct drm_private_state *priv_state;
int ret;
if (*dm_state)
return 0;
ret = drm_modeset_lock(&dm->atomic_obj_lock, state->acquire_ctx);
if (ret)
return ret;
priv_state = drm_atomic_get_private_obj_state(state, &dm->atomic_obj);
if (IS_ERR(priv_state))
return PTR_ERR(priv_state);
*dm_state = to_dm_atomic_state(priv_state);
return 0;
}
struct dm_atomic_state *
dm_atomic_get_new_state(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_display_manager *dm = &adev->dm;
struct drm_private_obj *obj;
struct drm_private_state *new_obj_state;
int i;
for_each_new_private_obj_in_state(state, obj, new_obj_state, i) {
if (obj->funcs == dm->atomic_obj.funcs)
return to_dm_atomic_state(new_obj_state);
}
return NULL;
}
struct dm_atomic_state *
dm_atomic_get_old_state(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_display_manager *dm = &adev->dm;
struct drm_private_obj *obj;
struct drm_private_state *old_obj_state;
int i;
for_each_old_private_obj_in_state(state, obj, old_obj_state, i) {
if (obj->funcs == dm->atomic_obj.funcs)
return to_dm_atomic_state(old_obj_state);
}
return NULL;
}
static struct drm_private_state *
dm_atomic_duplicate_state(struct drm_private_obj *obj)
{
struct dm_atomic_state *old_state, *new_state;
new_state = kzalloc(sizeof(*new_state), GFP_KERNEL);
if (!new_state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &new_state->base);
new_state->context = dc_create_state();
if (!new_state->context) {
kfree(new_state);
return NULL;
}
old_state = to_dm_atomic_state(obj->state);
if (old_state && old_state->context)
dc_resource_state_copy_construct(old_state->context,
new_state->context);
return &new_state->base;
}
static void dm_atomic_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct dm_atomic_state *dm_state = to_dm_atomic_state(state);
if (dm_state && dm_state->context)
dc_release_state(dm_state->context);
kfree(dm_state);
}
static struct drm_private_state_funcs dm_atomic_state_funcs = {
.atomic_duplicate_state = dm_atomic_duplicate_state,
.atomic_destroy_state = dm_atomic_destroy_state,
};
static int amdgpu_dm_mode_config_init(struct amdgpu_device *adev)
{
struct dm_atomic_state *state;
int r;
adev->mode_info.mode_config_initialized = true;
adev->ddev->mode_config.funcs = (void *)&amdgpu_dm_mode_funcs;
adev->ddev->mode_config.helper_private = &amdgpu_dm_mode_config_helperfuncs;
adev->ddev->mode_config.max_width = 16384;
adev->ddev->mode_config.max_height = 16384;
adev->ddev->mode_config.preferred_depth = 24;
adev->ddev->mode_config.prefer_shadow = 1;
/* indicates support for immediate flip */
adev->ddev->mode_config.async_page_flip = true;
adev->ddev->mode_config.fb_base = adev->gmc.aper_base;
drm_modeset_lock_init(&adev->dm.atomic_obj_lock);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->context = dc_create_state();
if (!state->context) {
kfree(state);
return -ENOMEM;
}
dc_resource_state_copy_construct_current(adev->dm.dc, state->context);
drm_atomic_private_obj_init(&adev->dm.atomic_obj,
&state->base,
&dm_atomic_state_funcs);
r = amdgpu_display_modeset_create_props(adev);
if (r)
return r;
return 0;
}
#define AMDGPU_DM_DEFAULT_MIN_BACKLIGHT 12
#define AMDGPU_DM_DEFAULT_MAX_BACKLIGHT 255
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
static void amdgpu_dm_update_backlight_caps(struct amdgpu_display_manager *dm)
{
#if defined(CONFIG_ACPI)
struct amdgpu_dm_backlight_caps caps;
if (dm->backlight_caps.caps_valid)
return;
amdgpu_acpi_get_backlight_caps(dm->adev, &caps);
if (caps.caps_valid) {
dm->backlight_caps.min_input_signal = caps.min_input_signal;
dm->backlight_caps.max_input_signal = caps.max_input_signal;
dm->backlight_caps.caps_valid = true;
} else {
dm->backlight_caps.min_input_signal =
AMDGPU_DM_DEFAULT_MIN_BACKLIGHT;
dm->backlight_caps.max_input_signal =
AMDGPU_DM_DEFAULT_MAX_BACKLIGHT;
}
#else
dm->backlight_caps.min_input_signal = AMDGPU_DM_DEFAULT_MIN_BACKLIGHT;
dm->backlight_caps.max_input_signal = AMDGPU_DM_DEFAULT_MAX_BACKLIGHT;
#endif
}
static int amdgpu_dm_backlight_update_status(struct backlight_device *bd)
{
struct amdgpu_display_manager *dm = bl_get_data(bd);
struct amdgpu_dm_backlight_caps caps;
uint32_t brightness = bd->props.brightness;
amdgpu_dm_update_backlight_caps(dm);
caps = dm->backlight_caps;
/*
* The brightness input is in the range 0-255
* It needs to be rescaled to be between the
* requested min and max input signal
*
* It also needs to be scaled up by 0x101 to
* match the DC interface which has a range of
* 0 to 0xffff
*/
brightness =
brightness
* 0x101
* (caps.max_input_signal - caps.min_input_signal)
/ AMDGPU_MAX_BL_LEVEL
+ caps.min_input_signal * 0x101;
if (dc_link_set_backlight_level(dm->backlight_link,
brightness, 0))
return 0;
else
return 1;
}
static int amdgpu_dm_backlight_get_brightness(struct backlight_device *bd)
{
struct amdgpu_display_manager *dm = bl_get_data(bd);
int ret = dc_link_get_backlight_level(dm->backlight_link);
if (ret == DC_ERROR_UNEXPECTED)
return bd->props.brightness;
return ret;
}
static const struct backlight_ops amdgpu_dm_backlight_ops = {
.get_brightness = amdgpu_dm_backlight_get_brightness,
.update_status = amdgpu_dm_backlight_update_status,
};
static void
amdgpu_dm_register_backlight_device(struct amdgpu_display_manager *dm)
{
char bl_name[16];
struct backlight_properties props = { 0 };
amdgpu_dm_update_backlight_caps(dm);
props.max_brightness = AMDGPU_MAX_BL_LEVEL;
props.brightness = AMDGPU_MAX_BL_LEVEL;
props.type = BACKLIGHT_RAW;
snprintf(bl_name, sizeof(bl_name), "amdgpu_bl%d",
dm->adev->ddev->primary->index);
dm->backlight_dev = backlight_device_register(bl_name,
dm->adev->ddev->dev,
dm,
&amdgpu_dm_backlight_ops,
&props);
if (IS_ERR(dm->backlight_dev))
DRM_ERROR("DM: Backlight registration failed!\n");
else
DRM_DEBUG_DRIVER("DM: Registered Backlight device: %s\n", bl_name);
}
#endif
static int initialize_plane(struct amdgpu_display_manager *dm,
struct amdgpu_mode_info *mode_info,
int plane_id)
{
struct drm_plane *plane;
unsigned long possible_crtcs;
int ret = 0;
plane = kzalloc(sizeof(struct drm_plane), GFP_KERNEL);
mode_info->planes[plane_id] = plane;
if (!plane) {
DRM_ERROR("KMS: Failed to allocate plane\n");
return -ENOMEM;
}
plane->type = mode_info->plane_type[plane_id];
/*
* HACK: IGT tests expect that each plane can only have
* one possible CRTC. For now, set one CRTC for each
* plane that is not an underlay, but still allow multiple
* CRTCs for underlay planes.
*/
possible_crtcs = 1 << plane_id;
if (plane_id >= dm->dc->caps.max_streams)
possible_crtcs = 0xff;
ret = amdgpu_dm_plane_init(dm, mode_info->planes[plane_id], possible_crtcs);
if (ret) {
DRM_ERROR("KMS: Failed to initialize plane\n");
return ret;
}
return ret;
}
static void register_backlight_device(struct amdgpu_display_manager *dm,
struct dc_link *link)
{
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
if ((link->connector_signal & (SIGNAL_TYPE_EDP | SIGNAL_TYPE_LVDS)) &&
link->type != dc_connection_none) {
/*
* Event if registration failed, we should continue with
* DM initialization because not having a backlight control
* is better then a black screen.
*/
amdgpu_dm_register_backlight_device(dm);
if (dm->backlight_dev)
dm->backlight_link = link;
}
#endif
}
/*
* In this architecture, the association
* connector -> encoder -> crtc
* id not really requried. The crtc and connector will hold the
* display_index as an abstraction to use with DAL component
*
* Returns 0 on success
*/
static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev)
{
struct amdgpu_display_manager *dm = &adev->dm;
int32_t i;
struct amdgpu_dm_connector *aconnector = NULL;
struct amdgpu_encoder *aencoder = NULL;
struct amdgpu_mode_info *mode_info = &adev->mode_info;
uint32_t link_cnt;
int32_t total_overlay_planes, total_primary_planes;
enum dc_connection_type new_connection_type = dc_connection_none;
link_cnt = dm->dc->caps.max_links;
if (amdgpu_dm_mode_config_init(dm->adev)) {
DRM_ERROR("DM: Failed to initialize mode config\n");
return -EINVAL;
}
/* Identify the number of planes to be initialized */
total_overlay_planes = dm->dc->caps.max_slave_planes;
total_primary_planes = dm->dc->caps.max_planes - dm->dc->caps.max_slave_planes;
/* First initialize overlay planes, index starting after primary planes */
for (i = (total_overlay_planes - 1); i >= 0; i--) {
if (initialize_plane(dm, mode_info, (total_primary_planes + i))) {
DRM_ERROR("KMS: Failed to initialize overlay plane\n");
goto fail;
}
}
/* Initialize primary planes */
for (i = (total_primary_planes - 1); i >= 0; i--) {
if (initialize_plane(dm, mode_info, i)) {
DRM_ERROR("KMS: Failed to initialize primary plane\n");
goto fail;
}
}
for (i = 0; i < dm->dc->caps.max_streams; i++)
if (amdgpu_dm_crtc_init(dm, mode_info->planes[i], i)) {
DRM_ERROR("KMS: Failed to initialize crtc\n");
goto fail;
}
dm->display_indexes_num = dm->dc->caps.max_streams;
/* loops over all connectors on the board */
for (i = 0; i < link_cnt; i++) {
struct dc_link *link = NULL;
if (i > AMDGPU_DM_MAX_DISPLAY_INDEX) {
DRM_ERROR(
"KMS: Cannot support more than %d display indexes\n",
AMDGPU_DM_MAX_DISPLAY_INDEX);
continue;
}
aconnector = kzalloc(sizeof(*aconnector), GFP_KERNEL);
if (!aconnector)
goto fail;
aencoder = kzalloc(sizeof(*aencoder), GFP_KERNEL);
if (!aencoder)
goto fail;
if (amdgpu_dm_encoder_init(dm->ddev, aencoder, i)) {
DRM_ERROR("KMS: Failed to initialize encoder\n");
goto fail;
}
if (amdgpu_dm_connector_init(dm, aconnector, i, aencoder)) {
DRM_ERROR("KMS: Failed to initialize connector\n");
goto fail;
}
link = dc_get_link_at_index(dm->dc, i);
if (!dc_link_detect_sink(link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(link);
amdgpu_dm_update_connector_after_detect(aconnector);
} else if (dc_link_detect(link, DETECT_REASON_BOOT)) {
amdgpu_dm_update_connector_after_detect(aconnector);
register_backlight_device(dm, link);
}
}
/* Software is initialized. Now we can register interrupt handlers. */
switch (adev->asic_type) {
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
if (dce110_register_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
case CHIP_RAVEN:
if (dcn10_register_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
#endif
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
goto fail;
}
if (adev->asic_type != CHIP_CARRIZO && adev->asic_type != CHIP_STONEY)
dm->dc->debug.disable_stutter = amdgpu_pp_feature_mask & PP_STUTTER_MODE ? false : true;
return 0;
fail:
kfree(aencoder);
kfree(aconnector);
for (i = 0; i < dm->dc->caps.max_planes; i++)
kfree(mode_info->planes[i]);
return -EINVAL;
}
static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm)
{
drm_mode_config_cleanup(dm->ddev);
drm_atomic_private_obj_fini(&dm->atomic_obj);
return;
}
/******************************************************************************
* amdgpu_display_funcs functions
*****************************************************************************/
/*
* dm_bandwidth_update - program display watermarks
*
* @adev: amdgpu_device pointer
*
* Calculate and program the display watermarks and line buffer allocation.
*/
static void dm_bandwidth_update(struct amdgpu_device *adev)
{
/* TODO: implement later */
}
static const struct amdgpu_display_funcs dm_display_funcs = {
.bandwidth_update = dm_bandwidth_update, /* called unconditionally */
.vblank_get_counter = dm_vblank_get_counter,/* called unconditionally */
.backlight_set_level = NULL, /* never called for DC */
.backlight_get_level = NULL, /* never called for DC */
.hpd_sense = NULL,/* called unconditionally */
.hpd_set_polarity = NULL, /* called unconditionally */
.hpd_get_gpio_reg = NULL, /* VBIOS parsing. DAL does it. */
.page_flip_get_scanoutpos =
dm_crtc_get_scanoutpos,/* called unconditionally */
.add_encoder = NULL, /* VBIOS parsing. DAL does it. */
.add_connector = NULL, /* VBIOS parsing. DAL does it. */
};
#if defined(CONFIG_DEBUG_KERNEL_DC)
static ssize_t s3_debug_store(struct device *device,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
int s3_state;
struct pci_dev *pdev = to_pci_dev(device);
struct drm_device *drm_dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_dev->dev_private;
ret = kstrtoint(buf, 0, &s3_state);
if (ret == 0) {
if (s3_state) {
dm_resume(adev);
drm_kms_helper_hotplug_event(adev->ddev);
} else
dm_suspend(adev);
}
return ret == 0 ? count : 0;
}
DEVICE_ATTR_WO(s3_debug);
#endif
static int dm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
case CHIP_BONAIRE:
case CHIP_HAWAII:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_KAVERI:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_KABINI:
case CHIP_MULLINS:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_FIJI:
case CHIP_TONGA:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_CARRIZO:
adev->mode_info.num_crtc = 3;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 9;
adev->mode_info.plane_type = dm_plane_type_carizzo;
break;
case CHIP_STONEY:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 9;
adev->mode_info.plane_type = dm_plane_type_stoney;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
adev->mode_info.num_crtc = 5;
adev->mode_info.num_hpd = 5;
adev->mode_info.num_dig = 5;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_POLARIS10:
case CHIP_VEGAM:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
adev->mode_info.plane_type = dm_plane_type_default;
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
adev->mode_info.plane_type = dm_plane_type_default;
break;
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
case CHIP_RAVEN:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 4;
adev->mode_info.num_dig = 4;
adev->mode_info.plane_type = dm_plane_type_default;
break;
#endif
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
return -EINVAL;
}
amdgpu_dm_set_irq_funcs(adev);
if (adev->mode_info.funcs == NULL)
adev->mode_info.funcs = &dm_display_funcs;
/*
* Note: Do NOT change adev->audio_endpt_rreg and
* adev->audio_endpt_wreg because they are initialised in
* amdgpu_device_init()
*/
#if defined(CONFIG_DEBUG_KERNEL_DC)
device_create_file(
adev->ddev->dev,
&dev_attr_s3_debug);
#endif
return 0;
}
static bool modeset_required(struct drm_crtc_state *crtc_state,
struct dc_stream_state *new_stream,
struct dc_stream_state *old_stream)
{
if (!drm_atomic_crtc_needs_modeset(crtc_state))
return false;
if (!crtc_state->enable)
return false;
return crtc_state->active;
}
static bool modereset_required(struct drm_crtc_state *crtc_state)
{
if (!drm_atomic_crtc_needs_modeset(crtc_state))
return false;
return !crtc_state->enable || !crtc_state->active;
}
static void amdgpu_dm_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs amdgpu_dm_encoder_funcs = {
.destroy = amdgpu_dm_encoder_destroy,
};
static bool fill_rects_from_plane_state(const struct drm_plane_state *state,
struct dc_plane_state *plane_state)
{
plane_state->src_rect.x = state->src_x >> 16;
plane_state->src_rect.y = state->src_y >> 16;
/* we ignore the mantissa for now and do not deal with floating pixels :( */
plane_state->src_rect.width = state->src_w >> 16;
if (plane_state->src_rect.width == 0)
return false;
plane_state->src_rect.height = state->src_h >> 16;
if (plane_state->src_rect.height == 0)
return false;
plane_state->dst_rect.x = state->crtc_x;
plane_state->dst_rect.y = state->crtc_y;
if (state->crtc_w == 0)
return false;
plane_state->dst_rect.width = state->crtc_w;
if (state->crtc_h == 0)
return false;
plane_state->dst_rect.height = state->crtc_h;
plane_state->clip_rect = plane_state->dst_rect;
switch (state->rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
plane_state->rotation = ROTATION_ANGLE_0;
break;
case DRM_MODE_ROTATE_90:
plane_state->rotation = ROTATION_ANGLE_90;
break;
case DRM_MODE_ROTATE_180:
plane_state->rotation = ROTATION_ANGLE_180;
break;
case DRM_MODE_ROTATE_270:
plane_state->rotation = ROTATION_ANGLE_270;
break;
default:
plane_state->rotation = ROTATION_ANGLE_0;
break;
}
return true;
}
static int get_fb_info(const struct amdgpu_framebuffer *amdgpu_fb,
uint64_t *tiling_flags)
{
struct amdgpu_bo *rbo = gem_to_amdgpu_bo(amdgpu_fb->base.obj[0]);
int r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r)) {
/* Don't show error message when returning -ERESTARTSYS */
if (r != -ERESTARTSYS)
DRM_ERROR("Unable to reserve buffer: %d\n", r);
return r;
}
if (tiling_flags)
amdgpu_bo_get_tiling_flags(rbo, tiling_flags);
amdgpu_bo_unreserve(rbo);
return r;
}
static int fill_plane_attributes_from_fb(struct amdgpu_device *adev,
struct dc_plane_state *plane_state,
const struct amdgpu_framebuffer *amdgpu_fb)
{
uint64_t tiling_flags;
unsigned int awidth;
const struct drm_framebuffer *fb = &amdgpu_fb->base;
int ret = 0;
struct drm_format_name_buf format_name;
ret = get_fb_info(
amdgpu_fb,
&tiling_flags);
if (ret)
return ret;
switch (fb->format->format) {
case DRM_FORMAT_C8:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS;
break;
case DRM_FORMAT_RGB565:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_RGB565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB8888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
plane_state->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR8888;
break;
case DRM_FORMAT_NV21:
plane_state->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr;
break;
case DRM_FORMAT_NV12:
plane_state->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb;
break;
default:
DRM_ERROR("Unsupported screen format %s\n",
drm_get_format_name(fb->format->format, &format_name));
return -EINVAL;
}
if (plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
plane_state->address.type = PLN_ADDR_TYPE_GRAPHICS;
plane_state->plane_size.grph.surface_size.x = 0;
plane_state->plane_size.grph.surface_size.y = 0;
plane_state->plane_size.grph.surface_size.width = fb->width;
plane_state->plane_size.grph.surface_size.height = fb->height;
plane_state->plane_size.grph.surface_pitch =
fb->pitches[0] / fb->format->cpp[0];
/* TODO: unhardcode */
plane_state->color_space = COLOR_SPACE_SRGB;
} else {
awidth = ALIGN(fb->width, 64);
plane_state->address.type = PLN_ADDR_TYPE_VIDEO_PROGRESSIVE;
plane_state->plane_size.video.luma_size.x = 0;
plane_state->plane_size.video.luma_size.y = 0;
plane_state->plane_size.video.luma_size.width = awidth;
plane_state->plane_size.video.luma_size.height = fb->height;
/* TODO: unhardcode */
plane_state->plane_size.video.luma_pitch = awidth;
plane_state->plane_size.video.chroma_size.x = 0;
plane_state->plane_size.video.chroma_size.y = 0;
plane_state->plane_size.video.chroma_size.width = awidth;
plane_state->plane_size.video.chroma_size.height = fb->height;
plane_state->plane_size.video.chroma_pitch = awidth / 2;
/* TODO: unhardcode */
plane_state->color_space = COLOR_SPACE_YCBCR709;
}
memset(&plane_state->tiling_info, 0, sizeof(plane_state->tiling_info));
/* Fill GFX8 params */
if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == DC_ARRAY_2D_TILED_THIN1) {
unsigned int bankw, bankh, mtaspect, tile_split, num_banks;
bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT);
num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
/* XXX fix me for VI */
plane_state->tiling_info.gfx8.num_banks = num_banks;
plane_state->tiling_info.gfx8.array_mode =
DC_ARRAY_2D_TILED_THIN1;
plane_state->tiling_info.gfx8.tile_split = tile_split;
plane_state->tiling_info.gfx8.bank_width = bankw;
plane_state->tiling_info.gfx8.bank_height = bankh;
plane_state->tiling_info.gfx8.tile_aspect = mtaspect;
plane_state->tiling_info.gfx8.tile_mode =
DC_ADDR_SURF_MICRO_TILING_DISPLAY;
} else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE)
== DC_ARRAY_1D_TILED_THIN1) {
plane_state->tiling_info.gfx8.array_mode = DC_ARRAY_1D_TILED_THIN1;
}
plane_state->tiling_info.gfx8.pipe_config =
AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
if (adev->asic_type == CHIP_VEGA10 ||
adev->asic_type == CHIP_VEGA12 ||
adev->asic_type == CHIP_VEGA20 ||
adev->asic_type == CHIP_RAVEN) {
/* Fill GFX9 params */
plane_state->tiling_info.gfx9.num_pipes =
adev->gfx.config.gb_addr_config_fields.num_pipes;
plane_state->tiling_info.gfx9.num_banks =
adev->gfx.config.gb_addr_config_fields.num_banks;
plane_state->tiling_info.gfx9.pipe_interleave =
adev->gfx.config.gb_addr_config_fields.pipe_interleave_size;
plane_state->tiling_info.gfx9.num_shader_engines =
adev->gfx.config.gb_addr_config_fields.num_se;
plane_state->tiling_info.gfx9.max_compressed_frags =
adev->gfx.config.gb_addr_config_fields.max_compress_frags;
plane_state->tiling_info.gfx9.num_rb_per_se =
adev->gfx.config.gb_addr_config_fields.num_rb_per_se;
plane_state->tiling_info.gfx9.swizzle =
AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE);
plane_state->tiling_info.gfx9.shaderEnable = 1;
}
plane_state->visible = true;
plane_state->scaling_quality.h_taps_c = 0;
plane_state->scaling_quality.v_taps_c = 0;
/* is this needed? is plane_state zeroed at allocation? */
plane_state->scaling_quality.h_taps = 0;
plane_state->scaling_quality.v_taps = 0;
plane_state->stereo_format = PLANE_STEREO_FORMAT_NONE;
return ret;
}
static int fill_plane_attributes(struct amdgpu_device *adev,
struct dc_plane_state *dc_plane_state,
struct drm_plane_state *plane_state,
struct drm_crtc_state *crtc_state)
{
const struct amdgpu_framebuffer *amdgpu_fb =
to_amdgpu_framebuffer(plane_state->fb);
const struct drm_crtc *crtc = plane_state->crtc;
int ret = 0;
if (!fill_rects_from_plane_state(plane_state, dc_plane_state))
return -EINVAL;
ret = fill_plane_attributes_from_fb(
crtc->dev->dev_private,
dc_plane_state,
amdgpu_fb);
if (ret)
return ret;
/*
* Always set input transfer function, since plane state is refreshed
* every time.
*/
ret = amdgpu_dm_set_degamma_lut(crtc_state, dc_plane_state);
if (ret) {
dc_transfer_func_release(dc_plane_state->in_transfer_func);
dc_plane_state->in_transfer_func = NULL;
}
return ret;
}
static void update_stream_scaling_settings(const struct drm_display_mode *mode,
const struct dm_connector_state *dm_state,
struct dc_stream_state *stream)
{
enum amdgpu_rmx_type rmx_type;
struct rect src = { 0 }; /* viewport in composition space*/
struct rect dst = { 0 }; /* stream addressable area */
/* no mode. nothing to be done */
if (!mode)
return;
/* Full screen scaling by default */
src.width = mode->hdisplay;
src.height = mode->vdisplay;
dst.width = stream->timing.h_addressable;
dst.height = stream->timing.v_addressable;
if (dm_state) {
rmx_type = dm_state->scaling;
if (rmx_type == RMX_ASPECT || rmx_type == RMX_OFF) {
if (src.width * dst.height <
src.height * dst.width) {
/* height needs less upscaling/more downscaling */
dst.width = src.width *
dst.height / src.height;
} else {
/* width needs less upscaling/more downscaling */
dst.height = src.height *
dst.width / src.width;
}
} else if (rmx_type == RMX_CENTER) {
dst = src;
}
dst.x = (stream->timing.h_addressable - dst.width) / 2;
dst.y = (stream->timing.v_addressable - dst.height) / 2;
if (dm_state->underscan_enable) {
dst.x += dm_state->underscan_hborder / 2;
dst.y += dm_state->underscan_vborder / 2;
dst.width -= dm_state->underscan_hborder;
dst.height -= dm_state->underscan_vborder;
}
}
stream->src = src;
stream->dst = dst;
DRM_DEBUG_DRIVER("Destination Rectangle x:%d y:%d width:%d height:%d\n",
dst.x, dst.y, dst.width, dst.height);
}
static enum dc_color_depth
convert_color_depth_from_display_info(const struct drm_connector *connector)
{
struct dm_connector_state *dm_conn_state =
to_dm_connector_state(connector->state);
uint32_t bpc = connector->display_info.bpc;
/* TODO: Remove this when there's support for max_bpc in drm */
if (dm_conn_state && bpc > dm_conn_state->max_bpc)
/* Round down to nearest even number. */
bpc = dm_conn_state->max_bpc - (dm_conn_state->max_bpc & 1);
switch (bpc) {
case 0:
/*
* Temporary Work around, DRM doesn't parse color depth for
* EDID revision before 1.4
* TODO: Fix edid parsing
*/
return COLOR_DEPTH_888;
case 6:
return COLOR_DEPTH_666;
case 8:
return COLOR_DEPTH_888;
case 10:
return COLOR_DEPTH_101010;
case 12:
return COLOR_DEPTH_121212;
case 14:
return COLOR_DEPTH_141414;
case 16:
return COLOR_DEPTH_161616;
default:
return COLOR_DEPTH_UNDEFINED;
}
}
static enum dc_aspect_ratio
get_aspect_ratio(const struct drm_display_mode *mode_in)
{
/* 1-1 mapping, since both enums follow the HDMI spec. */
return (enum dc_aspect_ratio) mode_in->picture_aspect_ratio;
}
static enum dc_color_space
get_output_color_space(const struct dc_crtc_timing *dc_crtc_timing)
{
enum dc_color_space color_space = COLOR_SPACE_SRGB;
switch (dc_crtc_timing->pixel_encoding) {
case PIXEL_ENCODING_YCBCR422:
case PIXEL_ENCODING_YCBCR444:
case PIXEL_ENCODING_YCBCR420:
{
/*
* 27030khz is the separation point between HDTV and SDTV
* according to HDMI spec, we use YCbCr709 and YCbCr601
* respectively
*/
if (dc_crtc_timing->pix_clk_khz > 27030) {
if (dc_crtc_timing->flags.Y_ONLY)
color_space =
COLOR_SPACE_YCBCR709_LIMITED;
else
color_space = COLOR_SPACE_YCBCR709;
} else {
if (dc_crtc_timing->flags.Y_ONLY)
color_space =
COLOR_SPACE_YCBCR601_LIMITED;
else
color_space = COLOR_SPACE_YCBCR601;
}
}
break;
case PIXEL_ENCODING_RGB:
color_space = COLOR_SPACE_SRGB;
break;
default:
WARN_ON(1);
break;
}
return color_space;
}
static void reduce_mode_colour_depth(struct dc_crtc_timing *timing_out)
{
if (timing_out->display_color_depth <= COLOR_DEPTH_888)
return;
timing_out->display_color_depth--;
}
static void adjust_colour_depth_from_display_info(struct dc_crtc_timing *timing_out,
const struct drm_display_info *info)
{
int normalized_clk;
if (timing_out->display_color_depth <= COLOR_DEPTH_888)
return;
do {
normalized_clk = timing_out->pix_clk_khz;
/* YCbCr 4:2:0 requires additional adjustment of 1/2 */
if (timing_out->pixel_encoding == PIXEL_ENCODING_YCBCR420)
normalized_clk /= 2;
/* Adjusting pix clock following on HDMI spec based on colour depth */
switch (timing_out->display_color_depth) {
case COLOR_DEPTH_101010:
normalized_clk = (normalized_clk * 30) / 24;
break;
case COLOR_DEPTH_121212:
normalized_clk = (normalized_clk * 36) / 24;
break;
case COLOR_DEPTH_161616:
normalized_clk = (normalized_clk * 48) / 24;
break;
default:
return;
}
if (normalized_clk <= info->max_tmds_clock)
return;
reduce_mode_colour_depth(timing_out);
} while (timing_out->display_color_depth > COLOR_DEPTH_888);
}
static void
fill_stream_properties_from_drm_display_mode(struct dc_stream_state *stream,
const struct drm_display_mode *mode_in,
const struct drm_connector *connector,
const struct dc_stream_state *old_stream)
{
struct dc_crtc_timing *timing_out = &stream->timing;
const struct drm_display_info *info = &connector->display_info;
memset(timing_out, 0, sizeof(struct dc_crtc_timing));
timing_out->h_border_left = 0;
timing_out->h_border_right = 0;
timing_out->v_border_top = 0;
timing_out->v_border_bottom = 0;
/* TODO: un-hardcode */
if (drm_mode_is_420_only(info, mode_in)
&& stream->sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A)
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420;
else if ((connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB444)
&& stream->sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A)
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR444;
else
timing_out->pixel_encoding = PIXEL_ENCODING_RGB;
timing_out->timing_3d_format = TIMING_3D_FORMAT_NONE;
timing_out->display_color_depth = convert_color_depth_from_display_info(
connector);
timing_out->scan_type = SCANNING_TYPE_NODATA;
timing_out->hdmi_vic = 0;
if(old_stream) {
timing_out->vic = old_stream->timing.vic;
timing_out->flags.HSYNC_POSITIVE_POLARITY = old_stream->timing.flags.HSYNC_POSITIVE_POLARITY;
timing_out->flags.VSYNC_POSITIVE_POLARITY = old_stream->timing.flags.VSYNC_POSITIVE_POLARITY;
} else {
timing_out->vic = drm_match_cea_mode(mode_in);
if (mode_in->flags & DRM_MODE_FLAG_PHSYNC)
timing_out->flags.HSYNC_POSITIVE_POLARITY = 1;
if (mode_in->flags & DRM_MODE_FLAG_PVSYNC)
timing_out->flags.VSYNC_POSITIVE_POLARITY = 1;
}
timing_out->h_addressable = mode_in->crtc_hdisplay;
timing_out->h_total = mode_in->crtc_htotal;
timing_out->h_sync_width =
mode_in->crtc_hsync_end - mode_in->crtc_hsync_start;
timing_out->h_front_porch =
mode_in->crtc_hsync_start - mode_in->crtc_hdisplay;
timing_out->v_total = mode_in->crtc_vtotal;
timing_out->v_addressable = mode_in->crtc_vdisplay;
timing_out->v_front_porch =
mode_in->crtc_vsync_start - mode_in->crtc_vdisplay;
timing_out->v_sync_width =
mode_in->crtc_vsync_end - mode_in->crtc_vsync_start;
timing_out->pix_clk_khz = mode_in->crtc_clock;
timing_out->aspect_ratio = get_aspect_ratio(mode_in);
stream->output_color_space = get_output_color_space(timing_out);
stream->out_transfer_func->type = TF_TYPE_PREDEFINED;
stream->out_transfer_func->tf = TRANSFER_FUNCTION_SRGB;
if (stream->sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A)
adjust_colour_depth_from_display_info(timing_out, info);
}
static void fill_audio_info(struct audio_info *audio_info,
const struct drm_connector *drm_connector,
const struct dc_sink *dc_sink)
{
int i = 0;
int cea_revision = 0;
const struct dc_edid_caps *edid_caps = &dc_sink->edid_caps;
audio_info->manufacture_id = edid_caps->manufacturer_id;
audio_info->product_id = edid_caps->product_id;
cea_revision = drm_connector->display_info.cea_rev;
strscpy(audio_info->display_name,
edid_caps->display_name,
AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
if (cea_revision >= 3) {
audio_info->mode_count = edid_caps->audio_mode_count;
for (i = 0; i < audio_info->mode_count; ++i) {
audio_info->modes[i].format_code =
(enum audio_format_code)
(edid_caps->audio_modes[i].format_code);
audio_info->modes[i].channel_count =
edid_caps->audio_modes[i].channel_count;
audio_info->modes[i].sample_rates.all =
edid_caps->audio_modes[i].sample_rate;
audio_info->modes[i].sample_size =
edid_caps->audio_modes[i].sample_size;
}
}
audio_info->flags.all = edid_caps->speaker_flags;
/* TODO: We only check for the progressive mode, check for interlace mode too */
if (drm_connector->latency_present[0]) {
audio_info->video_latency = drm_connector->video_latency[0];
audio_info->audio_latency = drm_connector->audio_latency[0];
}
/* TODO: For DP, video and audio latency should be calculated from DPCD caps */
}
static void
copy_crtc_timing_for_drm_display_mode(const struct drm_display_mode *src_mode,
struct drm_display_mode *dst_mode)
{
dst_mode->crtc_hdisplay = src_mode->crtc_hdisplay;
dst_mode->crtc_vdisplay = src_mode->crtc_vdisplay;
dst_mode->crtc_clock = src_mode->crtc_clock;
dst_mode->crtc_hblank_start = src_mode->crtc_hblank_start;
dst_mode->crtc_hblank_end = src_mode->crtc_hblank_end;
dst_mode->crtc_hsync_start = src_mode->crtc_hsync_start;
dst_mode->crtc_hsync_end = src_mode->crtc_hsync_end;
dst_mode->crtc_htotal = src_mode->crtc_htotal;
dst_mode->crtc_hskew = src_mode->crtc_hskew;
dst_mode->crtc_vblank_start = src_mode->crtc_vblank_start;
dst_mode->crtc_vblank_end = src_mode->crtc_vblank_end;
dst_mode->crtc_vsync_start = src_mode->crtc_vsync_start;
dst_mode->crtc_vsync_end = src_mode->crtc_vsync_end;
dst_mode->crtc_vtotal = src_mode->crtc_vtotal;
}
static void
decide_crtc_timing_for_drm_display_mode(struct drm_display_mode *drm_mode,
const struct drm_display_mode *native_mode,
bool scale_enabled)
{
if (scale_enabled) {
copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode);
} else if (native_mode->clock == drm_mode->clock &&
native_mode->htotal == drm_mode->htotal &&
native_mode->vtotal == drm_mode->vtotal) {
copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode);
} else {
/* no scaling nor amdgpu inserted, no need to patch */
}
}
static struct dc_sink *
create_fake_sink(struct amdgpu_dm_connector *aconnector)
{
struct dc_sink_init_data sink_init_data = { 0 };
struct dc_sink *sink = NULL;
sink_init_data.link = aconnector->dc_link;
sink_init_data.sink_signal = aconnector->dc_link->connector_signal;
sink = dc_sink_create(&sink_init_data);
if (!sink) {
DRM_ERROR("Failed to create sink!\n");
return NULL;
}
sink->sink_signal = SIGNAL_TYPE_VIRTUAL;
return sink;
}
static void set_multisync_trigger_params(
struct dc_stream_state *stream)
{
if (stream->triggered_crtc_reset.enabled) {
stream->triggered_crtc_reset.event = CRTC_EVENT_VSYNC_RISING;
stream->triggered_crtc_reset.delay = TRIGGER_DELAY_NEXT_LINE;
}
}
static void set_master_stream(struct dc_stream_state *stream_set[],
int stream_count)
{
int j, highest_rfr = 0, master_stream = 0;
for (j = 0; j < stream_count; j++) {
if (stream_set[j] && stream_set[j]->triggered_crtc_reset.enabled) {
int refresh_rate = 0;
refresh_rate = (stream_set[j]->timing.pix_clk_khz*1000)/
(stream_set[j]->timing.h_total*stream_set[j]->timing.v_total);
if (refresh_rate > highest_rfr) {
highest_rfr = refresh_rate;
master_stream = j;
}
}
}
for (j = 0; j < stream_count; j++) {
if (stream_set[j])
stream_set[j]->triggered_crtc_reset.event_source = stream_set[master_stream];
}
}
static void dm_enable_per_frame_crtc_master_sync(struct dc_state *context)
{
int i = 0;
if (context->stream_count < 2)
return;
for (i = 0; i < context->stream_count ; i++) {
if (!context->streams[i])
continue;
/*
* TODO: add a function to read AMD VSDB bits and set
* crtc_sync_master.multi_sync_enabled flag
* For now it's set to false
*/
set_multisync_trigger_params(context->streams[i]);
}
set_master_stream(context->streams, context->stream_count);
}
static struct dc_stream_state *
create_stream_for_sink(struct amdgpu_dm_connector *aconnector,
const struct drm_display_mode *drm_mode,
const struct dm_connector_state *dm_state,
const struct dc_stream_state *old_stream)
{
struct drm_display_mode *preferred_mode = NULL;
struct drm_connector *drm_connector;
struct dc_stream_state *stream = NULL;
struct drm_display_mode mode = *drm_mode;
bool native_mode_found = false;
bool scale = dm_state ? (dm_state->scaling != RMX_OFF) : false;
int mode_refresh;
int preferred_refresh = 0;
struct dc_sink *sink = NULL;
if (aconnector == NULL) {
DRM_ERROR("aconnector is NULL!\n");
return stream;
}
drm_connector = &aconnector->base;
if (!aconnector->dc_sink) {
if (!aconnector->mst_port) {
sink = create_fake_sink(aconnector);
if (!sink)
return stream;
}
} else {
sink = aconnector->dc_sink;
}
stream = dc_create_stream_for_sink(sink);
if (stream == NULL) {
DRM_ERROR("Failed to create stream for sink!\n");
goto finish;
}
list_for_each_entry(preferred_mode, &aconnector->base.modes, head) {
/* Search for preferred mode */
if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED) {
native_mode_found = true;
break;
}
}
if (!native_mode_found)
preferred_mode = list_first_entry_or_null(
&aconnector->base.modes,
struct drm_display_mode,
head);
mode_refresh = drm_mode_vrefresh(&mode);
if (preferred_mode == NULL) {
/*
* This may not be an error, the use case is when we have no
* usermode calls to reset and set mode upon hotplug. In this
* case, we call set mode ourselves to restore the previous mode
* and the modelist may not be filled in in time.
*/
DRM_DEBUG_DRIVER("No preferred mode found\n");
} else {
decide_crtc_timing_for_drm_display_mode(
&mode, preferred_mode,
dm_state ? (dm_state->scaling != RMX_OFF) : false);
preferred_refresh = drm_mode_vrefresh(preferred_mode);
}
if (!dm_state)
drm_mode_set_crtcinfo(&mode, 0);
/*
* If scaling is enabled and refresh rate didn't change
* we copy the vic and polarities of the old timings
*/
if (!scale || mode_refresh != preferred_refresh)
fill_stream_properties_from_drm_display_mode(stream,
&mode, &aconnector->base, NULL);
else
fill_stream_properties_from_drm_display_mode(stream,
&mode, &aconnector->base, old_stream);
update_stream_scaling_settings(&mode, dm_state, stream);
fill_audio_info(
&stream->audio_info,
drm_connector,
sink);
update_stream_signal(stream);
if (dm_state && dm_state->freesync_capable)
stream->ignore_msa_timing_param = true;
finish:
if (sink && sink->sink_signal == SIGNAL_TYPE_VIRTUAL && aconnector->base.force != DRM_FORCE_ON)
dc_sink_release(sink);
return stream;
}
static void amdgpu_dm_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static void dm_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct dm_crtc_state *cur = to_dm_crtc_state(state);
/* TODO Destroy dc_stream objects are stream object is flattened */
if (cur->stream)
dc_stream_release(cur->stream);
__drm_atomic_helper_crtc_destroy_state(state);
kfree(state);
}
static void dm_crtc_reset_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state;
if (crtc->state)
dm_crtc_destroy_state(crtc, crtc->state);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (WARN_ON(!state))
return;
crtc->state = &state->base;
crtc->state->crtc = crtc;
}
static struct drm_crtc_state *
dm_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state, *cur;
cur = to_dm_crtc_state(crtc->state);
if (WARN_ON(!crtc->state))
return NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
if (cur->stream) {
state->stream = cur->stream;
dc_stream_retain(state->stream);
}
state->vrr_params = cur->vrr_params;
state->vrr_infopacket = cur->vrr_infopacket;
state->abm_level = cur->abm_level;
state->vrr_supported = cur->vrr_supported;
state->freesync_config = cur->freesync_config;
state->crc_enabled = cur->crc_enabled;
/* TODO Duplicate dc_stream after objects are stream object is flattened */
return &state->base;
}
static inline int dm_set_vblank(struct drm_crtc *crtc, bool enable)
{
enum dc_irq_source irq_source;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = crtc->dev->dev_private;
irq_source = IRQ_TYPE_VBLANK + acrtc->otg_inst;
return dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY;
}
static int dm_enable_vblank(struct drm_crtc *crtc)
{
return dm_set_vblank(crtc, true);
}
static void dm_disable_vblank(struct drm_crtc *crtc)
{
dm_set_vblank(crtc, false);
}
/* Implemented only the options currently availible for the driver */
static const struct drm_crtc_funcs amdgpu_dm_crtc_funcs = {
.reset = dm_crtc_reset_state,
.destroy = amdgpu_dm_crtc_destroy,
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = dm_crtc_duplicate_state,
.atomic_destroy_state = dm_crtc_destroy_state,
.set_crc_source = amdgpu_dm_crtc_set_crc_source,
.verify_crc_source = amdgpu_dm_crtc_verify_crc_source,
.enable_vblank = dm_enable_vblank,
.disable_vblank = dm_disable_vblank,
};
static enum drm_connector_status
amdgpu_dm_connector_detect(struct drm_connector *connector, bool force)
{
bool connected;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
/*
* Notes:
* 1. This interface is NOT called in context of HPD irq.
* 2. This interface *is called* in context of user-mode ioctl. Which
* makes it a bad place for *any* MST-related activity.
*/
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED &&
!aconnector->fake_enable)
connected = (aconnector->dc_sink != NULL);
else
connected = (aconnector->base.force == DRM_FORCE_ON);
return (connected ? connector_status_connected :
connector_status_disconnected);
}
int amdgpu_dm_connector_atomic_set_property(struct drm_connector *connector,
struct drm_connector_state *connector_state,
struct drm_property *property,
uint64_t val)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = dev->dev_private;
struct dm_connector_state *dm_old_state =
to_dm_connector_state(connector->state);
struct dm_connector_state *dm_new_state =
to_dm_connector_state(connector_state);
int ret = -EINVAL;
if (property == dev->mode_config.scaling_mode_property) {
enum amdgpu_rmx_type rmx_type;
switch (val) {
case DRM_MODE_SCALE_CENTER:
rmx_type = RMX_CENTER;
break;
case DRM_MODE_SCALE_ASPECT:
rmx_type = RMX_ASPECT;
break;
case DRM_MODE_SCALE_FULLSCREEN:
rmx_type = RMX_FULL;
break;
case DRM_MODE_SCALE_NONE:
default:
rmx_type = RMX_OFF;
break;
}
if (dm_old_state->scaling == rmx_type)
return 0;
dm_new_state->scaling = rmx_type;
ret = 0;
} else if (property == adev->mode_info.underscan_hborder_property) {
dm_new_state->underscan_hborder = val;
ret = 0;
} else if (property == adev->mode_info.underscan_vborder_property) {
dm_new_state->underscan_vborder = val;
ret = 0;
} else if (property == adev->mode_info.underscan_property) {
dm_new_state->underscan_enable = val;
ret = 0;
} else if (property == adev->mode_info.max_bpc_property) {
dm_new_state->max_bpc = val;
ret = 0;
} else if (property == adev->mode_info.abm_level_property) {
dm_new_state->abm_level = val;
ret = 0;
}
return ret;
}
int amdgpu_dm_connector_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = dev->dev_private;
struct dm_connector_state *dm_state =
to_dm_connector_state(state);
int ret = -EINVAL;
if (property == dev->mode_config.scaling_mode_property) {
switch (dm_state->scaling) {
case RMX_CENTER:
*val = DRM_MODE_SCALE_CENTER;
break;
case RMX_ASPECT:
*val = DRM_MODE_SCALE_ASPECT;
break;
case RMX_FULL:
*val = DRM_MODE_SCALE_FULLSCREEN;
break;
case RMX_OFF:
default:
*val = DRM_MODE_SCALE_NONE;
break;
}
ret = 0;
} else if (property == adev->mode_info.underscan_hborder_property) {
*val = dm_state->underscan_hborder;
ret = 0;
} else if (property == adev->mode_info.underscan_vborder_property) {
*val = dm_state->underscan_vborder;
ret = 0;
} else if (property == adev->mode_info.underscan_property) {
*val = dm_state->underscan_enable;
ret = 0;
} else if (property == adev->mode_info.max_bpc_property) {
*val = dm_state->max_bpc;
ret = 0;
} else if (property == adev->mode_info.abm_level_property) {
*val = dm_state->abm_level;
ret = 0;
}
return ret;
}
static void amdgpu_dm_connector_destroy(struct drm_connector *connector)
{
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
const struct dc_link *link = aconnector->dc_link;
struct amdgpu_device *adev = connector->dev->dev_private;
struct amdgpu_display_manager *dm = &adev->dm;
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
if ((link->connector_signal & (SIGNAL_TYPE_EDP | SIGNAL_TYPE_LVDS)) &&
link->type != dc_connection_none &&
dm->backlight_dev) {
backlight_device_unregister(dm->backlight_dev);
dm->backlight_dev = NULL;
}
#endif
drm_dp_cec_unregister_connector(&aconnector->dm_dp_aux.aux);
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
void amdgpu_dm_connector_funcs_reset(struct drm_connector *connector)
{
struct dm_connector_state *state =
to_dm_connector_state(connector->state);
if (connector->state)
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(state);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state) {
state->scaling = RMX_OFF;
state->underscan_enable = false;
state->underscan_hborder = 0;
state->underscan_vborder = 0;
state->max_bpc = 8;
__drm_atomic_helper_connector_reset(connector, &state->base);
}
}
struct drm_connector_state *
amdgpu_dm_connector_atomic_duplicate_state(struct drm_connector *connector)
{
struct dm_connector_state *state =
to_dm_connector_state(connector->state);
struct dm_connector_state *new_state =
kmemdup(state, sizeof(*state), GFP_KERNEL);
if (!new_state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &new_state->base);
new_state->freesync_capable = state->freesync_capable;
new_state->abm_level = state->abm_level;
new_state->scaling = state->scaling;
new_state->underscan_enable = state->underscan_enable;
new_state->underscan_hborder = state->underscan_hborder;
new_state->underscan_vborder = state->underscan_vborder;
new_state->max_bpc = state->max_bpc;
return &new_state->base;
}
static const struct drm_connector_funcs amdgpu_dm_connector_funcs = {
.reset = amdgpu_dm_connector_funcs_reset,
.detect = amdgpu_dm_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = amdgpu_dm_connector_destroy,
.atomic_duplicate_state = amdgpu_dm_connector_atomic_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_set_property = amdgpu_dm_connector_atomic_set_property,
.atomic_get_property = amdgpu_dm_connector_atomic_get_property
};
static int get_modes(struct drm_connector *connector)
{
return amdgpu_dm_connector_get_modes(connector);
}
static void create_eml_sink(struct amdgpu_dm_connector *aconnector)
{
struct dc_sink_init_data init_params = {
.link = aconnector->dc_link,
.sink_signal = SIGNAL_TYPE_VIRTUAL
};
struct edid *edid;
if (!aconnector->base.edid_blob_ptr) {
DRM_ERROR("No EDID firmware found on connector: %s ,forcing to OFF!\n",
aconnector->base.name);
aconnector->base.force = DRM_FORCE_OFF;
aconnector->base.override_edid = false;
return;
}
edid = (struct edid *) aconnector->base.edid_blob_ptr->data;
aconnector->edid = edid;
aconnector->dc_em_sink = dc_link_add_remote_sink(
aconnector->dc_link,
(uint8_t *)edid,
(edid->extensions + 1) * EDID_LENGTH,
&init_params);
if (aconnector->base.force == DRM_FORCE_ON)
aconnector->dc_sink = aconnector->dc_link->local_sink ?
aconnector->dc_link->local_sink :
aconnector->dc_em_sink;
}
static void handle_edid_mgmt(struct amdgpu_dm_connector *aconnector)
{
struct dc_link *link = (struct dc_link *)aconnector->dc_link;
/*
* In case of headless boot with force on for DP managed connector
* Those settings have to be != 0 to get initial modeset
*/
if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT) {
link->verified_link_cap.lane_count = LANE_COUNT_FOUR;
link->verified_link_cap.link_rate = LINK_RATE_HIGH2;
}
aconnector->base.override_edid = true;
create_eml_sink(aconnector);
}
enum drm_mode_status amdgpu_dm_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int result = MODE_ERROR;
struct dc_sink *dc_sink;
struct amdgpu_device *adev = connector->dev->dev_private;
/* TODO: Unhardcode stream count */
struct dc_stream_state *stream;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
enum dc_status dc_result = DC_OK;
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(mode->flags & DRM_MODE_FLAG_DBLSCAN))
return result;
/*
* Only run this the first time mode_valid is called to initilialize
* EDID mgmt
*/
if (aconnector->base.force != DRM_FORCE_UNSPECIFIED &&
!aconnector->dc_em_sink)
handle_edid_mgmt(aconnector);
dc_sink = to_amdgpu_dm_connector(connector)->dc_sink;
if (dc_sink == NULL) {
DRM_ERROR("dc_sink is NULL!\n");
goto fail;
}
stream = create_stream_for_sink(aconnector, mode, NULL, NULL);
if (stream == NULL) {
DRM_ERROR("Failed to create stream for sink!\n");
goto fail;
}
dc_result = dc_validate_stream(adev->dm.dc, stream);
if (dc_result == DC_OK)
result = MODE_OK;
else
DRM_DEBUG_KMS("Mode %dx%d (clk %d) failed DC validation with error %d\n",
mode->vdisplay,
mode->hdisplay,
mode->clock,
dc_result);
dc_stream_release(stream);
fail:
/* TODO: error handling*/
return result;
}
static const struct drm_connector_helper_funcs
amdgpu_dm_connector_helper_funcs = {
/*
* If hotplugging a second bigger display in FB Con mode, bigger resolution
* modes will be filtered by drm_mode_validate_size(), and those modes
* are missing after user start lightdm. So we need to renew modes list.
* in get_modes call back, not just return the modes count
*/
.get_modes = get_modes,
.mode_valid = amdgpu_dm_connector_mode_valid,
};
static void dm_crtc_helper_disable(struct drm_crtc *crtc)
{
}
static int dm_crtc_helper_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct amdgpu_device *adev = crtc->dev->dev_private;
struct dc *dc = adev->dm.dc;
struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(state);
int ret = -EINVAL;
if (unlikely(!dm_crtc_state->stream &&
modeset_required(state, NULL, dm_crtc_state->stream))) {
WARN_ON(1);
return ret;
}
/* In some use cases, like reset, no stream is attached */
if (!dm_crtc_state->stream)
return 0;
if (dc_validate_stream(dc, dm_crtc_state->stream) == DC_OK)
return 0;
return ret;
}
static bool dm_crtc_helper_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static const struct drm_crtc_helper_funcs amdgpu_dm_crtc_helper_funcs = {
.disable = dm_crtc_helper_disable,
.atomic_check = dm_crtc_helper_atomic_check,
.mode_fixup = dm_crtc_helper_mode_fixup
};
static void dm_encoder_helper_disable(struct drm_encoder *encoder)
{
}
static int dm_encoder_helper_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
return 0;
}
const struct drm_encoder_helper_funcs amdgpu_dm_encoder_helper_funcs = {
.disable = dm_encoder_helper_disable,
.atomic_check = dm_encoder_helper_atomic_check
};
static void dm_drm_plane_reset(struct drm_plane *plane)
{
struct dm_plane_state *amdgpu_state = NULL;
if (plane->state)
plane->funcs->atomic_destroy_state(plane, plane->state);
amdgpu_state = kzalloc(sizeof(*amdgpu_state), GFP_KERNEL);
WARN_ON(amdgpu_state == NULL);
if (amdgpu_state) {
plane->state = &amdgpu_state->base;
plane->state->plane = plane;
plane->state->rotation = DRM_MODE_ROTATE_0;
}
}
static struct drm_plane_state *
dm_drm_plane_duplicate_state(struct drm_plane *plane)
{
struct dm_plane_state *dm_plane_state, *old_dm_plane_state;
old_dm_plane_state = to_dm_plane_state(plane->state);
dm_plane_state = kzalloc(sizeof(*dm_plane_state), GFP_KERNEL);
if (!dm_plane_state)
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &dm_plane_state->base);
if (old_dm_plane_state->dc_state) {
dm_plane_state->dc_state = old_dm_plane_state->dc_state;
dc_plane_state_retain(dm_plane_state->dc_state);
}
return &dm_plane_state->base;
}
void dm_drm_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct dm_plane_state *dm_plane_state = to_dm_plane_state(state);
if (dm_plane_state->dc_state)
dc_plane_state_release(dm_plane_state->dc_state);
drm_atomic_helper_plane_destroy_state(plane, state);
}
static const struct drm_plane_funcs dm_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_primary_helper_destroy,
.reset = dm_drm_plane_reset,
.atomic_duplicate_state = dm_drm_plane_duplicate_state,
.atomic_destroy_state = dm_drm_plane_destroy_state,
};
static int dm_plane_helper_prepare_fb(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct amdgpu_framebuffer *afb;
struct drm_gem_object *obj;
struct amdgpu_device *adev;
struct amdgpu_bo *rbo;
uint64_t chroma_addr = 0;
struct dm_plane_state *dm_plane_state_new, *dm_plane_state_old;
unsigned int awidth;
uint32_t domain;
int r;
dm_plane_state_old = to_dm_plane_state(plane->state);
dm_plane_state_new = to_dm_plane_state(new_state);
if (!new_state->fb) {
DRM_DEBUG_DRIVER("No FB bound\n");
return 0;
}
afb = to_amdgpu_framebuffer(new_state->fb);
obj = new_state->fb->obj[0];
rbo = gem_to_amdgpu_bo(obj);
adev = amdgpu_ttm_adev(rbo->tbo.bdev);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
if (plane->type != DRM_PLANE_TYPE_CURSOR)
domain = amdgpu_display_supported_domains(adev);
else
domain = AMDGPU_GEM_DOMAIN_VRAM;
r = amdgpu_bo_pin(rbo, domain);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
DRM_ERROR("Failed to pin framebuffer with error %d\n", r);
amdgpu_bo_unreserve(rbo);
return r;
}
r = amdgpu_ttm_alloc_gart(&rbo->tbo);
if (unlikely(r != 0)) {
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
DRM_ERROR("%p bind failed\n", rbo);
return r;
}
amdgpu_bo_unreserve(rbo);
afb->address = amdgpu_bo_gpu_offset(rbo);
amdgpu_bo_ref(rbo);
if (dm_plane_state_new->dc_state &&
dm_plane_state_old->dc_state != dm_plane_state_new->dc_state) {
struct dc_plane_state *plane_state = dm_plane_state_new->dc_state;
if (plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
plane_state->address.grph.addr.low_part = lower_32_bits(afb->address);
plane_state->address.grph.addr.high_part = upper_32_bits(afb->address);
} else {
awidth = ALIGN(new_state->fb->width, 64);
plane_state->address.type = PLN_ADDR_TYPE_VIDEO_PROGRESSIVE;
plane_state->address.video_progressive.luma_addr.low_part
= lower_32_bits(afb->address);
plane_state->address.video_progressive.luma_addr.high_part
= upper_32_bits(afb->address);
chroma_addr = afb->address + (u64)awidth * new_state->fb->height;
plane_state->address.video_progressive.chroma_addr.low_part
= lower_32_bits(chroma_addr);
plane_state->address.video_progressive.chroma_addr.high_part
= upper_32_bits(chroma_addr);
}
}
return 0;
}
static void dm_plane_helper_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct amdgpu_bo *rbo;
int r;
if (!old_state->fb)
return;
rbo = gem_to_amdgpu_bo(old_state->fb->obj[0]);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r)) {
DRM_ERROR("failed to reserve rbo before unpin\n");
return;
}
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
amdgpu_bo_unref(&rbo);
}
static int dm_plane_atomic_check(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct amdgpu_device *adev = plane->dev->dev_private;
struct dc *dc = adev->dm.dc;
struct dm_plane_state *dm_plane_state = to_dm_plane_state(state);
if (!dm_plane_state->dc_state)
return 0;
if (!fill_rects_from_plane_state(state, dm_plane_state->dc_state))
return -EINVAL;
if (dc_validate_plane(dc, dm_plane_state->dc_state) == DC_OK)
return 0;
return -EINVAL;
}
static int dm_plane_atomic_async_check(struct drm_plane *plane,
struct drm_plane_state *new_plane_state)
{
struct drm_plane_state *old_plane_state =
drm_atomic_get_old_plane_state(new_plane_state->state, plane);
/* Only support async updates on cursor planes. */
if (plane->type != DRM_PLANE_TYPE_CURSOR)
return -EINVAL;
/*
* DRM calls prepare_fb and cleanup_fb on new_plane_state for
* async commits so don't allow fb changes.
*/
if (old_plane_state->fb != new_plane_state->fb)
return -EINVAL;
return 0;
}
static void dm_plane_atomic_async_update(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct drm_plane_state *old_state =
drm_atomic_get_old_plane_state(new_state->state, plane);
if (plane->state->fb != new_state->fb)
drm_atomic_set_fb_for_plane(plane->state, new_state->fb);
plane->state->src_x = new_state->src_x;
plane->state->src_y = new_state->src_y;
plane->state->src_w = new_state->src_w;
plane->state->src_h = new_state->src_h;
plane->state->crtc_x = new_state->crtc_x;
plane->state->crtc_y = new_state->crtc_y;
plane->state->crtc_w = new_state->crtc_w;
plane->state->crtc_h = new_state->crtc_h;
handle_cursor_update(plane, old_state);
}
static const struct drm_plane_helper_funcs dm_plane_helper_funcs = {
.prepare_fb = dm_plane_helper_prepare_fb,
.cleanup_fb = dm_plane_helper_cleanup_fb,
.atomic_check = dm_plane_atomic_check,
.atomic_async_check = dm_plane_atomic_async_check,
.atomic_async_update = dm_plane_atomic_async_update
};
/*
* TODO: these are currently initialized to rgb formats only.
* For future use cases we should either initialize them dynamically based on
* plane capabilities, or initialize this array to all formats, so internal drm
* check will succeed, and let DC implement proper check
*/
static const uint32_t rgb_formats[] = {
DRM_FORMAT_RGB888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ARGB2101010,
DRM_FORMAT_ABGR2101010,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
};
static const uint32_t yuv_formats[] = {
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
};
static const u32 cursor_formats[] = {
DRM_FORMAT_ARGB8888
};
static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
unsigned long possible_crtcs)
{
int res = -EPERM;
switch (plane->type) {
case DRM_PLANE_TYPE_PRIMARY:
res = drm_universal_plane_init(
dm->adev->ddev,
plane,
possible_crtcs,
&dm_plane_funcs,
rgb_formats,
ARRAY_SIZE(rgb_formats),
NULL, plane->type, NULL);
break;
case DRM_PLANE_TYPE_OVERLAY:
res = drm_universal_plane_init(
dm->adev->ddev,
plane,
possible_crtcs,
&dm_plane_funcs,
yuv_formats,
ARRAY_SIZE(yuv_formats),
NULL, plane->type, NULL);
break;
case DRM_PLANE_TYPE_CURSOR:
res = drm_universal_plane_init(
dm->adev->ddev,
plane,
possible_crtcs,
&dm_plane_funcs,
cursor_formats,
ARRAY_SIZE(cursor_formats),
NULL, plane->type, NULL);
break;
}
drm_plane_helper_add(plane, &dm_plane_helper_funcs);
/* Create (reset) the plane state */
if (plane->funcs->reset)
plane->funcs->reset(plane);
return res;
}
static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
uint32_t crtc_index)
{
struct amdgpu_crtc *acrtc = NULL;
struct drm_plane *cursor_plane;
int res = -ENOMEM;
cursor_plane = kzalloc(sizeof(*cursor_plane), GFP_KERNEL);
if (!cursor_plane)
goto fail;
cursor_plane->type = DRM_PLANE_TYPE_CURSOR;
res = amdgpu_dm_plane_init(dm, cursor_plane, 0);
acrtc = kzalloc(sizeof(struct amdgpu_crtc), GFP_KERNEL);
if (!acrtc)
goto fail;
res = drm_crtc_init_with_planes(
dm->ddev,
&acrtc->base,
plane,
cursor_plane,
&amdgpu_dm_crtc_funcs, NULL);
if (res)
goto fail;
drm_crtc_helper_add(&acrtc->base, &amdgpu_dm_crtc_helper_funcs);
/* Create (reset) the plane state */
if (acrtc->base.funcs->reset)
acrtc->base.funcs->reset(&acrtc->base);
acrtc->max_cursor_width = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->max_cursor_height = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->crtc_id = crtc_index;
acrtc->base.enabled = false;
acrtc->otg_inst = -1;
dm->adev->mode_info.crtcs[crtc_index] = acrtc;
drm_crtc_enable_color_mgmt(&acrtc->base, MAX_COLOR_LUT_ENTRIES,
true, MAX_COLOR_LUT_ENTRIES);
drm_mode_crtc_set_gamma_size(&acrtc->base, MAX_COLOR_LEGACY_LUT_ENTRIES);
return 0;
fail:
kfree(acrtc);
kfree(cursor_plane);
return res;
}
static int to_drm_connector_type(enum signal_type st)
{
switch (st) {
case SIGNAL_TYPE_HDMI_TYPE_A:
return DRM_MODE_CONNECTOR_HDMIA;
case SIGNAL_TYPE_EDP:
return DRM_MODE_CONNECTOR_eDP;
case SIGNAL_TYPE_LVDS:
return DRM_MODE_CONNECTOR_LVDS;
case SIGNAL_TYPE_RGB:
return DRM_MODE_CONNECTOR_VGA;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
return DRM_MODE_CONNECTOR_DisplayPort;
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_DVI_SINGLE_LINK:
return DRM_MODE_CONNECTOR_DVID;
case SIGNAL_TYPE_VIRTUAL:
return DRM_MODE_CONNECTOR_VIRTUAL;
default:
return DRM_MODE_CONNECTOR_Unknown;
}
}
static struct drm_encoder *amdgpu_dm_connector_to_encoder(struct drm_connector *connector)
{
return drm_encoder_find(connector->dev, NULL, connector->encoder_ids[0]);
}
static void amdgpu_dm_get_native_mode(struct drm_connector *connector)
{
struct drm_encoder *encoder;
struct amdgpu_encoder *amdgpu_encoder;
encoder = amdgpu_dm_connector_to_encoder(connector);
if (encoder == NULL)
return;
amdgpu_encoder = to_amdgpu_encoder(encoder);
amdgpu_encoder->native_mode.clock = 0;
if (!list_empty(&connector->probed_modes)) {
struct drm_display_mode *preferred_mode = NULL;
list_for_each_entry(preferred_mode,
&connector->probed_modes,
head) {
if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED)
amdgpu_encoder->native_mode = *preferred_mode;
break;
}
}
}
static struct drm_display_mode *
amdgpu_dm_create_common_mode(struct drm_encoder *encoder,
char *name,
int hdisplay, int vdisplay)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_display_mode *mode = NULL;
struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode;
mode = drm_mode_duplicate(dev, native_mode);
if (mode == NULL)
return NULL;
mode->hdisplay = hdisplay;
mode->vdisplay = vdisplay;
mode->type &= ~DRM_MODE_TYPE_PREFERRED;
strscpy(mode->name, name, DRM_DISPLAY_MODE_LEN);
return mode;
}
static void amdgpu_dm_connector_add_common_modes(struct drm_encoder *encoder,
struct drm_connector *connector)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_display_mode *mode = NULL;
struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode;
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
int i;
int n;
struct mode_size {
char name[DRM_DISPLAY_MODE_LEN];
int w;
int h;
} common_modes[] = {
{ "640x480", 640, 480},
{ "800x600", 800, 600},
{ "1024x768", 1024, 768},
{ "1280x720", 1280, 720},
{ "1280x800", 1280, 800},
{"1280x1024", 1280, 1024},
{ "1440x900", 1440, 900},
{"1680x1050", 1680, 1050},
{"1600x1200", 1600, 1200},
{"1920x1080", 1920, 1080},
{"1920x1200", 1920, 1200}
};
n = ARRAY_SIZE(common_modes);
for (i = 0; i < n; i++) {
struct drm_display_mode *curmode = NULL;
bool mode_existed = false;
if (common_modes[i].w > native_mode->hdisplay ||
common_modes[i].h > native_mode->vdisplay ||
(common_modes[i].w == native_mode->hdisplay &&
common_modes[i].h == native_mode->vdisplay))
continue;
list_for_each_entry(curmode, &connector->probed_modes, head) {
if (common_modes[i].w == curmode->hdisplay &&
common_modes[i].h == curmode->vdisplay) {
mode_existed = true;
break;
}
}
if (mode_existed)
continue;
mode = amdgpu_dm_create_common_mode(encoder,
common_modes[i].name, common_modes[i].w,
common_modes[i].h);
drm_mode_probed_add(connector, mode);
amdgpu_dm_connector->num_modes++;
}
}
static void amdgpu_dm_connector_ddc_get_modes(struct drm_connector *connector,
struct edid *edid)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
if (edid) {
/* empty probed_modes */
INIT_LIST_HEAD(&connector->probed_modes);
amdgpu_dm_connector->num_modes =
drm_add_edid_modes(connector, edid);
amdgpu_dm_get_native_mode(connector);
} else {
amdgpu_dm_connector->num_modes = 0;
}
}
static int amdgpu_dm_connector_get_modes(struct drm_connector *connector)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
struct drm_encoder *encoder;
struct edid *edid = amdgpu_dm_connector->edid;
encoder = amdgpu_dm_connector_to_encoder(connector);
if (!edid || !drm_edid_is_valid(edid)) {
amdgpu_dm_connector->num_modes =
drm_add_modes_noedid(connector, 640, 480);
} else {
amdgpu_dm_connector_ddc_get_modes(connector, edid);
amdgpu_dm_connector_add_common_modes(encoder, connector);
}
amdgpu_dm_fbc_init(connector);
return amdgpu_dm_connector->num_modes;
}
void amdgpu_dm_connector_init_helper(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *aconnector,
int connector_type,
struct dc_link *link,
int link_index)
{
struct amdgpu_device *adev = dm->ddev->dev_private;
aconnector->connector_id = link_index;
aconnector->dc_link = link;
aconnector->base.interlace_allowed = false;
aconnector->base.doublescan_allowed = false;
aconnector->base.stereo_allowed = false;
aconnector->base.dpms = DRM_MODE_DPMS_OFF;
aconnector->hpd.hpd = AMDGPU_HPD_NONE; /* not used */
mutex_init(&aconnector->hpd_lock);
/*
* configure support HPD hot plug connector_>polled default value is 0
* which means HPD hot plug not supported
*/
switch (connector_type) {
case DRM_MODE_CONNECTOR_HDMIA:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
aconnector->base.ycbcr_420_allowed =
link->link_enc->features.hdmi_ycbcr420_supported ? true : false;
break;
case DRM_MODE_CONNECTOR_DisplayPort:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
aconnector->base.ycbcr_420_allowed =
link->link_enc->features.dp_ycbcr420_supported ? true : false;
break;
case DRM_MODE_CONNECTOR_DVID:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
break;
default:
break;
}
drm_object_attach_property(&aconnector->base.base,
dm->ddev->mode_config.scaling_mode_property,
DRM_MODE_SCALE_NONE);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_property,
UNDERSCAN_OFF);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_hborder_property,
0);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_vborder_property,
0);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.max_bpc_property,
0);
if (connector_type == DRM_MODE_CONNECTOR_eDP &&
dc_is_dmcu_initialized(adev->dm.dc)) {
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.abm_level_property, 0);
}
if (connector_type == DRM_MODE_CONNECTOR_HDMIA ||
connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector_type == DRM_MODE_CONNECTOR_eDP) {
drm_connector_attach_vrr_capable_property(
&aconnector->base);
}
}
static int amdgpu_dm_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
struct amdgpu_i2c_adapter *i2c = i2c_get_adapdata(i2c_adap);
struct ddc_service *ddc_service = i2c->ddc_service;
struct i2c_command cmd;
int i;
int result = -EIO;
cmd.payloads = kcalloc(num, sizeof(struct i2c_payload), GFP_KERNEL);
if (!cmd.payloads)
return result;
cmd.number_of_payloads = num;
cmd.engine = I2C_COMMAND_ENGINE_DEFAULT;
cmd.speed = 100;
for (i = 0; i < num; i++) {
cmd.payloads[i].write = !(msgs[i].flags & I2C_M_RD);
cmd.payloads[i].address = msgs[i].addr;
cmd.payloads[i].length = msgs[i].len;
cmd.payloads[i].data = msgs[i].buf;
}
if (dc_submit_i2c(
ddc_service->ctx->dc,
ddc_service->ddc_pin->hw_info.ddc_channel,
&cmd))
result = num;
kfree(cmd.payloads);
return result;
}
static u32 amdgpu_dm_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm amdgpu_dm_i2c_algo = {
.master_xfer = amdgpu_dm_i2c_xfer,
.functionality = amdgpu_dm_i2c_func,
};
static struct amdgpu_i2c_adapter *
create_i2c(struct ddc_service *ddc_service,
int link_index,
int *res)
{
struct amdgpu_device *adev = ddc_service->ctx->driver_context;
struct amdgpu_i2c_adapter *i2c;
i2c = kzalloc(sizeof(struct amdgpu_i2c_adapter), GFP_KERNEL);
if (!i2c)
return NULL;
i2c->base.owner = THIS_MODULE;
i2c->base.class = I2C_CLASS_DDC;
i2c->base.dev.parent = &adev->pdev->dev;
i2c->base.algo = &amdgpu_dm_i2c_algo;
snprintf(i2c->base.name, sizeof(i2c->base.name), "AMDGPU DM i2c hw bus %d", link_index);
i2c_set_adapdata(&i2c->base, i2c);
i2c->ddc_service = ddc_service;
i2c->ddc_service->ddc_pin->hw_info.ddc_channel = link_index;
return i2c;
}
/*
* Note: this function assumes that dc_link_detect() was called for the
* dc_link which will be represented by this aconnector.
*/
static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *aconnector,
uint32_t link_index,
struct amdgpu_encoder *aencoder)
{
int res = 0;
int connector_type;
struct dc *dc = dm->dc;
struct dc_link *link = dc_get_link_at_index(dc, link_index);
struct amdgpu_i2c_adapter *i2c;
link->priv = aconnector;
DRM_DEBUG_DRIVER("%s()\n", __func__);
i2c = create_i2c(link->ddc, link->link_index, &res);
if (!i2c) {
DRM_ERROR("Failed to create i2c adapter data\n");
return -ENOMEM;
}
aconnector->i2c = i2c;
res = i2c_add_adapter(&i2c->base);
if (res) {
DRM_ERROR("Failed to register hw i2c %d\n", link->link_index);
goto out_free;
}
connector_type = to_drm_connector_type(link->connector_signal);
res = drm_connector_init(
dm->ddev,
&aconnector->base,
&amdgpu_dm_connector_funcs,
connector_type);
if (res) {
DRM_ERROR("connector_init failed\n");
aconnector->connector_id = -1;
goto out_free;
}
drm_connector_helper_add(
&aconnector->base,
&amdgpu_dm_connector_helper_funcs);
if (aconnector->base.funcs->reset)
aconnector->base.funcs->reset(&aconnector->base);
amdgpu_dm_connector_init_helper(
dm,
aconnector,
connector_type,
link,
link_index);
drm_connector_attach_encoder(
&aconnector->base, &aencoder->base);
drm_connector_register(&aconnector->base);
#if defined(CONFIG_DEBUG_FS)
res = connector_debugfs_init(aconnector);
if (res) {
DRM_ERROR("Failed to create debugfs for connector");
goto out_free;
}
#endif
if (connector_type == DRM_MODE_CONNECTOR_DisplayPort
|| connector_type == DRM_MODE_CONNECTOR_eDP)
amdgpu_dm_initialize_dp_connector(dm, aconnector);
out_free:
if (res) {
kfree(i2c);
aconnector->i2c = NULL;
}
return res;
}
int amdgpu_dm_get_encoder_crtc_mask(struct amdgpu_device *adev)
{
switch (adev->mode_info.num_crtc) {
case 1:
return 0x1;
case 2:
return 0x3;
case 3:
return 0x7;
case 4:
return 0xf;
case 5:
return 0x1f;
case 6:
default:
return 0x3f;
}
}
static int amdgpu_dm_encoder_init(struct drm_device *dev,
struct amdgpu_encoder *aencoder,
uint32_t link_index)
{
struct amdgpu_device *adev = dev->dev_private;
int res = drm_encoder_init(dev,
&aencoder->base,
&amdgpu_dm_encoder_funcs,
DRM_MODE_ENCODER_TMDS,
NULL);
aencoder->base.possible_crtcs = amdgpu_dm_get_encoder_crtc_mask(adev);
if (!res)
aencoder->encoder_id = link_index;
else
aencoder->encoder_id = -1;
drm_encoder_helper_add(&aencoder->base, &amdgpu_dm_encoder_helper_funcs);
return res;
}
static void manage_dm_interrupts(struct amdgpu_device *adev,
struct amdgpu_crtc *acrtc,
bool enable)
{
/*
* this is not correct translation but will work as soon as VBLANK
* constant is the same as PFLIP
*/
int irq_type =
amdgpu_display_crtc_idx_to_irq_type(
adev,
acrtc->crtc_id);
if (enable) {
drm_crtc_vblank_on(&acrtc->base);
amdgpu_irq_get(
adev,
&adev->pageflip_irq,
irq_type);
} else {
amdgpu_irq_put(
adev,
&adev->pageflip_irq,
irq_type);
drm_crtc_vblank_off(&acrtc->base);
}
}
static bool
is_scaling_state_different(const struct dm_connector_state *dm_state,
const struct dm_connector_state *old_dm_state)
{
if (dm_state->scaling != old_dm_state->scaling)
return true;
if (!dm_state->underscan_enable && old_dm_state->underscan_enable) {
if (old_dm_state->underscan_hborder != 0 && old_dm_state->underscan_vborder != 0)
return true;
} else if (dm_state->underscan_enable && !old_dm_state->underscan_enable) {
if (dm_state->underscan_hborder != 0 && dm_state->underscan_vborder != 0)
return true;
} else if (dm_state->underscan_hborder != old_dm_state->underscan_hborder ||
dm_state->underscan_vborder != old_dm_state->underscan_vborder)
return true;
return false;
}
static void remove_stream(struct amdgpu_device *adev,
struct amdgpu_crtc *acrtc,
struct dc_stream_state *stream)
{
/* this is the update mode case */
acrtc->otg_inst = -1;
acrtc->enabled = false;
}
static int get_cursor_position(struct drm_plane *plane, struct drm_crtc *crtc,
struct dc_cursor_position *position)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
int x, y;
int xorigin = 0, yorigin = 0;
if (!crtc || !plane->state->fb) {
position->enable = false;
position->x = 0;
position->y = 0;
return 0;
}
if ((plane->state->crtc_w > amdgpu_crtc->max_cursor_width) ||
(plane->state->crtc_h > amdgpu_crtc->max_cursor_height)) {
DRM_ERROR("%s: bad cursor width or height %d x %d\n",
__func__,
plane->state->crtc_w,
plane->state->crtc_h);
return -EINVAL;
}
x = plane->state->crtc_x;
y = plane->state->crtc_y;
/* avivo cursor are offset into the total surface */
x += crtc->primary->state->src_x >> 16;
y += crtc->primary->state->src_y >> 16;
if (x < 0) {
xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
x = 0;
}
if (y < 0) {
yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
y = 0;
}
position->enable = true;
position->x = x;
position->y = y;
position->x_hotspot = xorigin;
position->y_hotspot = yorigin;
return 0;
}
static void handle_cursor_update(struct drm_plane *plane,
struct drm_plane_state *old_plane_state)
{
struct amdgpu_device *adev = plane->dev->dev_private;
struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(plane->state->fb);
struct drm_crtc *crtc = afb ? plane->state->crtc : old_plane_state->crtc;
struct dm_crtc_state *crtc_state = crtc ? to_dm_crtc_state(crtc->state) : NULL;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
uint64_t address = afb ? afb->address : 0;
struct dc_cursor_position position;
struct dc_cursor_attributes attributes;
int ret;
if (!plane->state->fb && !old_plane_state->fb)
return;
DRM_DEBUG_DRIVER("%s: crtc_id=%d with size %d to %d\n",
__func__,
amdgpu_crtc->crtc_id,
plane->state->crtc_w,
plane->state->crtc_h);
ret = get_cursor_position(plane, crtc, &position);
if (ret)
return;
if (!position.enable) {
/* turn off cursor */
if (crtc_state && crtc_state->stream) {
mutex_lock(&adev->dm.dc_lock);
dc_stream_set_cursor_position(crtc_state->stream,
&position);
mutex_unlock(&adev->dm.dc_lock);
}
return;
}
amdgpu_crtc->cursor_width = plane->state->crtc_w;
amdgpu_crtc->cursor_height = plane->state->crtc_h;
attributes.address.high_part = upper_32_bits(address);
attributes.address.low_part = lower_32_bits(address);
attributes.width = plane->state->crtc_w;
attributes.height = plane->state->crtc_h;
attributes.color_format = CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA;
attributes.rotation_angle = 0;
attributes.attribute_flags.value = 0;
attributes.pitch = attributes.width;
if (crtc_state->stream) {
mutex_lock(&adev->dm.dc_lock);
if (!dc_stream_set_cursor_attributes(crtc_state->stream,
&attributes))
DRM_ERROR("DC failed to set cursor attributes\n");
if (!dc_stream_set_cursor_position(crtc_state->stream,
&position))
DRM_ERROR("DC failed to set cursor position\n");
mutex_unlock(&adev->dm.dc_lock);
}
}
static void prepare_flip_isr(struct amdgpu_crtc *acrtc)
{
assert_spin_locked(&acrtc->base.dev->event_lock);
WARN_ON(acrtc->event);
acrtc->event = acrtc->base.state->event;
/* Set the flip status */
acrtc->pflip_status = AMDGPU_FLIP_SUBMITTED;
/* Mark this event as consumed */
acrtc->base.state->event = NULL;
DRM_DEBUG_DRIVER("crtc:%d, pflip_stat:AMDGPU_FLIP_SUBMITTED\n",
acrtc->crtc_id);
}
struct dc_stream_status *dc_state_get_stream_status(
struct dc_state *state,
struct dc_stream_state *stream)
{
uint8_t i;
for (i = 0; i < state->stream_count; i++) {
if (stream == state->streams[i])
return &state->stream_status[i];
}
return NULL;
}
static void update_freesync_state_on_stream(
struct amdgpu_display_manager *dm,
struct dm_crtc_state *new_crtc_state,
struct dc_stream_state *new_stream,
struct dc_plane_state *surface,
u32 flip_timestamp_in_us)
{
struct mod_vrr_params vrr_params = new_crtc_state->vrr_params;
struct dc_info_packet vrr_infopacket = {0};
struct mod_freesync_config config = new_crtc_state->freesync_config;
if (!new_stream)
return;
/*
* TODO: Determine why min/max totals and vrefresh can be 0 here.
* For now it's sufficient to just guard against these conditions.
*/
if (!new_stream->timing.h_total || !new_stream->timing.v_total)
return;
if (new_crtc_state->vrr_supported &&
config.min_refresh_in_uhz &&
config.max_refresh_in_uhz) {
config.state = new_crtc_state->base.vrr_enabled ?
VRR_STATE_ACTIVE_VARIABLE :
VRR_STATE_INACTIVE;
} else {
config.state = VRR_STATE_UNSUPPORTED;
}
mod_freesync_build_vrr_params(dm->freesync_module,
new_stream,
&config, &vrr_params);
if (surface) {
mod_freesync_handle_preflip(
dm->freesync_module,
surface,
new_stream,
flip_timestamp_in_us,
&vrr_params);
}
mod_freesync_build_vrr_infopacket(
dm->freesync_module,
new_stream,
&vrr_params,
PACKET_TYPE_VRR,
TRANSFER_FUNC_UNKNOWN,
&vrr_infopacket);
new_crtc_state->freesync_timing_changed =
(memcmp(&new_crtc_state->vrr_params.adjust,
&vrr_params.adjust,
sizeof(vrr_params.adjust)) != 0);
new_crtc_state->freesync_vrr_info_changed =
(memcmp(&new_crtc_state->vrr_infopacket,
&vrr_infopacket,
sizeof(vrr_infopacket)) != 0);
new_crtc_state->vrr_params = vrr_params;
new_crtc_state->vrr_infopacket = vrr_infopacket;
new_stream->adjust = new_crtc_state->vrr_params.adjust;
new_stream->vrr_infopacket = vrr_infopacket;
if (new_crtc_state->freesync_vrr_info_changed)
DRM_DEBUG_KMS("VRR packet update: crtc=%u enabled=%d state=%d",
new_crtc_state->base.crtc->base.id,
(int)new_crtc_state->base.vrr_enabled,
(int)vrr_params.state);
if (new_crtc_state->freesync_timing_changed)
DRM_DEBUG_KMS("VRR timing update: crtc=%u min=%u max=%u\n",
new_crtc_state->base.crtc->base.id,
vrr_params.adjust.v_total_min,
vrr_params.adjust.v_total_max);
}
/*
* Executes flip
*
* Waits on all BO's fences and for proper vblank count
*/
static void amdgpu_dm_do_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
uint32_t target,
struct dc_state *state)
{
unsigned long flags;
uint64_t timestamp_ns;
uint32_t target_vblank;
int r, vpos, hpos;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(fb);
struct amdgpu_bo *abo = gem_to_amdgpu_bo(fb->obj[0]);
struct amdgpu_device *adev = crtc->dev->dev_private;
bool async_flip = (crtc->state->pageflip_flags & DRM_MODE_PAGE_FLIP_ASYNC) != 0;
struct dc_flip_addrs addr = { {0} };
/* TODO eliminate or rename surface_update */
struct dc_surface_update surface_updates[1] = { {0} };
struct dc_stream_update stream_update = {0};
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(crtc->state);
struct dc_stream_status *stream_status;
struct dc_plane_state *surface;
/* Prepare wait for target vblank early - before the fence-waits */
target_vblank = target - (uint32_t)drm_crtc_vblank_count(crtc) +
amdgpu_get_vblank_counter_kms(crtc->dev, acrtc->crtc_id);
/*
* TODO This might fail and hence better not used, wait
* explicitly on fences instead
* and in general should be called for
* blocking commit to as per framework helpers
*/
r = amdgpu_bo_reserve(abo, true);
if (unlikely(r != 0)) {
DRM_ERROR("failed to reserve buffer before flip\n");
WARN_ON(1);
}
/* Wait for all fences on this FB */
WARN_ON(reservation_object_wait_timeout_rcu(abo->tbo.resv, true, false,
MAX_SCHEDULE_TIMEOUT) < 0);
amdgpu_bo_unreserve(abo);
/*
* Wait until we're out of the vertical blank period before the one
* targeted by the flip
*/
while ((acrtc->enabled &&
(amdgpu_display_get_crtc_scanoutpos(adev->ddev, acrtc->crtc_id,
0, &vpos, &hpos, NULL,
NULL, &crtc->hwmode)
& (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK)) ==
(DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK) &&
(int)(target_vblank -
amdgpu_get_vblank_counter_kms(adev->ddev, acrtc->crtc_id)) > 0)) {
usleep_range(1000, 1100);
}
/* Flip */
spin_lock_irqsave(&crtc->dev->event_lock, flags);
WARN_ON(acrtc->pflip_status != AMDGPU_FLIP_NONE);
WARN_ON(!acrtc_state->stream);
addr.address.grph.addr.low_part = lower_32_bits(afb->address);
addr.address.grph.addr.high_part = upper_32_bits(afb->address);
addr.flip_immediate = async_flip;
timestamp_ns = ktime_get_ns();
addr.flip_timestamp_in_us = div_u64(timestamp_ns, 1000);
if (acrtc->base.state->event)
prepare_flip_isr(acrtc);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
stream_status = dc_stream_get_status(acrtc_state->stream);
if (!stream_status) {
DRM_ERROR("No stream status for CRTC: id=%d\n",
acrtc->crtc_id);
return;
}
surface = stream_status->plane_states[0];
surface_updates->surface = surface;
if (!surface) {
DRM_ERROR("No surface for CRTC: id=%d\n",
acrtc->crtc_id);
return;
}
surface_updates->flip_addr = &addr;
if (acrtc_state->stream) {
update_freesync_state_on_stream(
&adev->dm,
acrtc_state,
acrtc_state->stream,
surface,
addr.flip_timestamp_in_us);
if (acrtc_state->freesync_timing_changed)
stream_update.adjust =
&acrtc_state->stream->adjust;
if (acrtc_state->freesync_vrr_info_changed)
stream_update.vrr_infopacket =
&acrtc_state->stream->vrr_infopacket;
}
/* Update surface timing information. */
surface->time.time_elapsed_in_us[surface->time.index] =
addr.flip_timestamp_in_us - surface->time.prev_update_time_in_us;
surface->time.prev_update_time_in_us = addr.flip_timestamp_in_us;
surface->time.index++;
if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
surface->time.index = 0;
mutex_lock(&adev->dm.dc_lock);
dc_commit_updates_for_stream(adev->dm.dc,
surface_updates,
1,
acrtc_state->stream,
&stream_update,
&surface_updates->surface,
state);
mutex_unlock(&adev->dm.dc_lock);
DRM_DEBUG_DRIVER("%s Flipping to hi: 0x%x, low: 0x%x \n",
__func__,
addr.address.grph.addr.high_part,
addr.address.grph.addr.low_part);
}
/*
* TODO this whole function needs to go
*
* dc_surface_update is needlessly complex. See if we can just replace this
* with a dc_plane_state and follow the atomic model a bit more closely here.
*/
static bool commit_planes_to_stream(
struct amdgpu_display_manager *dm,
struct dc *dc,
struct dc_plane_state **plane_states,
uint8_t new_plane_count,
struct dm_crtc_state *dm_new_crtc_state,
struct dm_crtc_state *dm_old_crtc_state,
struct dc_state *state)
{
/* no need to dynamically allocate this. it's pretty small */
struct dc_surface_update updates[MAX_SURFACES];
struct dc_flip_addrs *flip_addr;
struct dc_plane_info *plane_info;
struct dc_scaling_info *scaling_info;
int i;
struct dc_stream_state *dc_stream = dm_new_crtc_state->stream;
struct dc_stream_update *stream_update =
kzalloc(sizeof(struct dc_stream_update), GFP_KERNEL);
unsigned int abm_level;
if (!stream_update) {
BREAK_TO_DEBUGGER();
return false;
}
flip_addr = kcalloc(MAX_SURFACES, sizeof(struct dc_flip_addrs),
GFP_KERNEL);
plane_info = kcalloc(MAX_SURFACES, sizeof(struct dc_plane_info),
GFP_KERNEL);
scaling_info = kcalloc(MAX_SURFACES, sizeof(struct dc_scaling_info),
GFP_KERNEL);
if (!flip_addr || !plane_info || !scaling_info) {
kfree(flip_addr);
kfree(plane_info);
kfree(scaling_info);
kfree(stream_update);
return false;
}
memset(updates, 0, sizeof(updates));
stream_update->src = dc_stream->src;
stream_update->dst = dc_stream->dst;
stream_update->out_transfer_func = dc_stream->out_transfer_func;
if (dm_new_crtc_state->abm_level != dm_old_crtc_state->abm_level) {
abm_level = dm_new_crtc_state->abm_level;
stream_update->abm_level = &abm_level;
}
for (i = 0; i < new_plane_count; i++) {
updates[i].surface = plane_states[i];
updates[i].gamma =
(struct dc_gamma *)plane_states[i]->gamma_correction;
updates[i].in_transfer_func = plane_states[i]->in_transfer_func;
flip_addr[i].address = plane_states[i]->address;
flip_addr[i].flip_immediate = plane_states[i]->flip_immediate;
plane_info[i].color_space = plane_states[i]->color_space;
plane_info[i].format = plane_states[i]->format;
plane_info[i].plane_size = plane_states[i]->plane_size;
plane_info[i].rotation = plane_states[i]->rotation;
plane_info[i].horizontal_mirror = plane_states[i]->horizontal_mirror;
plane_info[i].stereo_format = plane_states[i]->stereo_format;
plane_info[i].tiling_info = plane_states[i]->tiling_info;
plane_info[i].visible = plane_states[i]->visible;
plane_info[i].per_pixel_alpha = plane_states[i]->per_pixel_alpha;
plane_info[i].dcc = plane_states[i]->dcc;
scaling_info[i].scaling_quality = plane_states[i]->scaling_quality;
scaling_info[i].src_rect = plane_states[i]->src_rect;
scaling_info[i].dst_rect = plane_states[i]->dst_rect;
scaling_info[i].clip_rect = plane_states[i]->clip_rect;
updates[i].flip_addr = &flip_addr[i];
updates[i].plane_info = &plane_info[i];
updates[i].scaling_info = &scaling_info[i];
}
mutex_lock(&dm->dc_lock);
dc_commit_updates_for_stream(
dc,
updates,
new_plane_count,
dc_stream, stream_update, plane_states, state);
mutex_unlock(&dm->dc_lock);
kfree(flip_addr);
kfree(plane_info);
kfree(scaling_info);
kfree(stream_update);
return true;
}
static void amdgpu_dm_commit_planes(struct drm_atomic_state *state,
struct dc_state *dc_state,
struct drm_device *dev,
struct amdgpu_display_manager *dm,
struct drm_crtc *pcrtc,
bool *wait_for_vblank)
{
uint32_t i;
struct drm_plane *plane;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct dc_stream_state *dc_stream_attach;
struct dc_plane_state *plane_states_constructed[MAX_SURFACES];
struct amdgpu_crtc *acrtc_attach = to_amdgpu_crtc(pcrtc);
struct drm_crtc_state *new_pcrtc_state =
drm_atomic_get_new_crtc_state(state, pcrtc);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(new_pcrtc_state);
struct dm_crtc_state *dm_old_crtc_state =
to_dm_crtc_state(drm_atomic_get_old_crtc_state(state, pcrtc));
int planes_count = 0;
unsigned long flags;
/* update planes when needed */
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
struct drm_crtc *crtc = new_plane_state->crtc;
struct drm_crtc_state *new_crtc_state;
struct drm_framebuffer *fb = new_plane_state->fb;
bool pflip_needed;
struct dm_plane_state *dm_new_plane_state = to_dm_plane_state(new_plane_state);
if (plane->type == DRM_PLANE_TYPE_CURSOR) {
handle_cursor_update(plane, old_plane_state);
continue;
}
if (!fb || !crtc || pcrtc != crtc)
continue;
new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->active)
continue;
pflip_needed = !state->allow_modeset;
spin_lock_irqsave(&crtc->dev->event_lock, flags);
if (acrtc_attach->pflip_status != AMDGPU_FLIP_NONE) {
DRM_ERROR("%s: acrtc %d, already busy\n",
__func__,
acrtc_attach->crtc_id);
/* In commit tail framework this cannot happen */
WARN_ON(1);
}
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
if (!pflip_needed || plane->type == DRM_PLANE_TYPE_OVERLAY) {
WARN_ON(!dm_new_plane_state->dc_state);
plane_states_constructed[planes_count] = dm_new_plane_state->dc_state;
dc_stream_attach = acrtc_state->stream;
planes_count++;
} else if (new_crtc_state->planes_changed) {
/* Assume even ONE crtc with immediate flip means
* entire can't wait for VBLANK
* TODO Check if it's correct
*/
*wait_for_vblank =
new_pcrtc_state->pageflip_flags & DRM_MODE_PAGE_FLIP_ASYNC ?
false : true;
/* TODO: Needs rework for multiplane flip */
if (plane->type == DRM_PLANE_TYPE_PRIMARY)
drm_crtc_vblank_get(crtc);
amdgpu_dm_do_flip(
crtc,
fb,
(uint32_t)drm_crtc_vblank_count(crtc) + *wait_for_vblank,
dc_state);
}
}
if (planes_count) {
unsigned long flags;
if (new_pcrtc_state->event) {
drm_crtc_vblank_get(pcrtc);
spin_lock_irqsave(&pcrtc->dev->event_lock, flags);
prepare_flip_isr(acrtc_attach);
spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags);
}
dc_stream_attach->abm_level = acrtc_state->abm_level;
if (false == commit_planes_to_stream(dm,
dm->dc,
plane_states_constructed,
planes_count,
acrtc_state,
dm_old_crtc_state,
dc_state))
dm_error("%s: Failed to attach plane!\n", __func__);
} else {
/*TODO BUG Here should go disable planes on CRTC. */
}
}
/*
* amdgpu_dm_crtc_copy_transient_flags - copy mirrored flags from DRM to DC
* @crtc_state: the DRM CRTC state
* @stream_state: the DC stream state.
*
* Copy the mirrored transient state flags from DRM, to DC. It is used to bring
* a dc_stream_state's flags in sync with a drm_crtc_state's flags.
*/
static void amdgpu_dm_crtc_copy_transient_flags(struct drm_crtc_state *crtc_state,
struct dc_stream_state *stream_state)
{
stream_state->mode_changed = crtc_state->mode_changed;
}
static int amdgpu_dm_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state,
bool nonblock)
{
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct amdgpu_device *adev = dev->dev_private;
int i;
/*
* We evade vblanks and pflips on crtc that
* should be changed. We do it here to flush & disable
* interrupts before drm_swap_state is called in drm_atomic_helper_commit
* it will update crtc->dm_crtc_state->stream pointer which is used in
* the ISRs.
*/
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct dm_crtc_state *dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
if (drm_atomic_crtc_needs_modeset(new_crtc_state) && dm_old_crtc_state->stream)
manage_dm_interrupts(adev, acrtc, false);
}
/*
* Add check here for SoC's that support hardware cursor plane, to
* unset legacy_cursor_update
*/
return drm_atomic_helper_commit(dev, state, nonblock);
/*TODO Handle EINTR, reenable IRQ*/
}
/**
* amdgpu_dm_atomic_commit_tail() - AMDgpu DM's commit tail implementation.
* @state: The atomic state to commit
*
* This will tell DC to commit the constructed DC state from atomic_check,
* programming the hardware. Any failures here implies a hardware failure, since
* atomic check should have filtered anything non-kosher.
*/
static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_display_manager *dm = &adev->dm;
struct dm_atomic_state *dm_state;
struct dc_state *dc_state = NULL, *dc_state_temp = NULL;
uint32_t i, j;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
unsigned long flags;
bool wait_for_vblank = true;
struct drm_connector *connector;
struct drm_connector_state *old_con_state, *new_con_state;
struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state;
int crtc_disable_count = 0;
drm_atomic_helper_update_legacy_modeset_state(dev, state);
dm_state = dm_atomic_get_new_state(state);
if (dm_state && dm_state->context) {
dc_state = dm_state->context;
} else {
/* No state changes, retain current state. */
dc_state_temp = dc_create_state();
ASSERT(dc_state_temp);
dc_state = dc_state_temp;
dc_resource_state_copy_construct_current(dm->dc, dc_state);
}
/* update changed items */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
DRM_DEBUG_DRIVER(
"amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, "
"planes_changed:%d, mode_changed:%d,active_changed:%d,"
"connectors_changed:%d\n",
acrtc->crtc_id,
new_crtc_state->enable,
new_crtc_state->active,
new_crtc_state->planes_changed,
new_crtc_state->mode_changed,
new_crtc_state->active_changed,
new_crtc_state->connectors_changed);
/* Copy all transient state flags into dc state */
if (dm_new_crtc_state->stream) {
amdgpu_dm_crtc_copy_transient_flags(&dm_new_crtc_state->base,
dm_new_crtc_state->stream);
}
/* handles headless hotplug case, updating new_state and
* aconnector as needed
*/
if (modeset_required(new_crtc_state, dm_new_crtc_state->stream, dm_old_crtc_state->stream)) {
DRM_DEBUG_DRIVER("Atomic commit: SET crtc id %d: [%p]\n", acrtc->crtc_id, acrtc);
if (!dm_new_crtc_state->stream) {
/*
* this could happen because of issues with
* userspace notifications delivery.
* In this case userspace tries to set mode on
* display which is disconnected in fact.
* dc_sink is NULL in this case on aconnector.
* We expect reset mode will come soon.
*
* This can also happen when unplug is done
* during resume sequence ended
*
* In this case, we want to pretend we still
* have a sink to keep the pipe running so that
* hw state is consistent with the sw state
*/
DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n",
__func__, acrtc->base.base.id);
continue;
}
if (dm_old_crtc_state->stream)
remove_stream(adev, acrtc, dm_old_crtc_state->stream);
pm_runtime_get_noresume(dev->dev);
acrtc->enabled = true;
acrtc->hw_mode = new_crtc_state->mode;
crtc->hwmode = new_crtc_state->mode;
} else if (modereset_required(new_crtc_state)) {
DRM_DEBUG_DRIVER("Atomic commit: RESET. crtc id %d:[%p]\n", acrtc->crtc_id, acrtc);
/* i.e. reset mode */
if (dm_old_crtc_state->stream)
remove_stream(adev, acrtc, dm_old_crtc_state->stream);
}
} /* for_each_crtc_in_state() */
if (dc_state) {
dm_enable_per_frame_crtc_master_sync(dc_state);
mutex_lock(&dm->dc_lock);
WARN_ON(!dc_commit_state(dm->dc, dc_state));
mutex_unlock(&dm->dc_lock);
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream != NULL) {
const struct dc_stream_status *status =
dc_stream_get_status(dm_new_crtc_state->stream);
if (!status)
status = dc_state_get_stream_status(dc_state,
dm_new_crtc_state->stream);
if (!status)
DC_ERR("got no status for stream %p on acrtc%p\n", dm_new_crtc_state->stream, acrtc);
else
acrtc->otg_inst = status->primary_otg_inst;
}
}
/* Handle scaling, underscan, and abm changes*/
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc);
struct dc_stream_status *status = NULL;
if (acrtc) {
new_crtc_state = drm_atomic_get_new_crtc_state(state, &acrtc->base);
old_crtc_state = drm_atomic_get_old_crtc_state(state, &acrtc->base);
}
/* Skip any modesets/resets */
if (!acrtc || drm_atomic_crtc_needs_modeset(new_crtc_state))
continue;
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
/* Skip anything that is not scaling or underscan changes */
if (!is_scaling_state_different(dm_new_con_state, dm_old_con_state) &&
(dm_new_crtc_state->abm_level == dm_old_crtc_state->abm_level))
continue;
update_stream_scaling_settings(&dm_new_con_state->base.crtc->mode,
dm_new_con_state, (struct dc_stream_state *)dm_new_crtc_state->stream);
if (!dm_new_crtc_state->stream)
continue;
status = dc_stream_get_status(dm_new_crtc_state->stream);
WARN_ON(!status);
WARN_ON(!status->plane_count);
dm_new_crtc_state->stream->abm_level = dm_new_crtc_state->abm_level;
/*TODO How it works with MPO ?*/
if (!commit_planes_to_stream(
dm,
dm->dc,
status->plane_states,
status->plane_count,
dm_new_crtc_state,
to_dm_crtc_state(old_crtc_state),
dc_state))
dm_error("%s: Failed to update stream scaling!\n", __func__);
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
/*
* loop to enable interrupts on newly arrived crtc
*/
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
bool modeset_needed;
if (old_crtc_state->active && !new_crtc_state->active)
crtc_disable_count++;
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
modeset_needed = modeset_required(
new_crtc_state,
dm_new_crtc_state->stream,
dm_old_crtc_state->stream);
if (dm_new_crtc_state->stream == NULL || !modeset_needed)
continue;
manage_dm_interrupts(adev, acrtc, true);
}
/* update planes when needed per crtc*/
for_each_new_crtc_in_state(state, crtc, new_crtc_state, j) {
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream)
amdgpu_dm_commit_planes(state, dc_state, dev,
dm, crtc, &wait_for_vblank);
}
/*
* send vblank event on all events not handled in flip and
* mark consumed event for drm_atomic_helper_commit_hw_done
*/
spin_lock_irqsave(&adev->ddev->event_lock, flags);
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->event)
drm_send_event_locked(dev, &new_crtc_state->event->base);
new_crtc_state->event = NULL;
}
spin_unlock_irqrestore(&adev->ddev->event_lock, flags);
if (wait_for_vblank)
drm_atomic_helper_wait_for_flip_done(dev, state);
/*
* FIXME:
* Delay hw_done() until flip_done() is signaled. This is to block
* another commit from freeing the CRTC state while we're still
* waiting on flip_done.
*/
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_cleanup_planes(dev, state);
/*
* Finally, drop a runtime PM reference for each newly disabled CRTC,
* so we can put the GPU into runtime suspend if we're not driving any
* displays anymore
*/
for (i = 0; i < crtc_disable_count; i++)
pm_runtime_put_autosuspend(dev->dev);
pm_runtime_mark_last_busy(dev->dev);
if (dc_state_temp)
dc_release_state(dc_state_temp);
}
static int dm_force_atomic_commit(struct drm_connector *connector)
{
int ret = 0;
struct drm_device *ddev = connector->dev;
struct drm_atomic_state *state = drm_atomic_state_alloc(ddev);
struct amdgpu_crtc *disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc);
struct drm_plane *plane = disconnected_acrtc->base.primary;
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
struct drm_plane_state *plane_state;
if (!state)
return -ENOMEM;
state->acquire_ctx = ddev->mode_config.acquire_ctx;
/* Construct an atomic state to restore previous display setting */
/*
* Attach connectors to drm_atomic_state
*/
conn_state = drm_atomic_get_connector_state(state, connector);
ret = PTR_ERR_OR_ZERO(conn_state);
if (ret)
goto err;
/* Attach crtc to drm_atomic_state*/
crtc_state = drm_atomic_get_crtc_state(state, &disconnected_acrtc->base);
ret = PTR_ERR_OR_ZERO(crtc_state);
if (ret)
goto err;
/* force a restore */
crtc_state->mode_changed = true;
/* Attach plane to drm_atomic_state */
plane_state = drm_atomic_get_plane_state(state, plane);
ret = PTR_ERR_OR_ZERO(plane_state);
if (ret)
goto err;
/* Call commit internally with the state we just constructed */
ret = drm_atomic_commit(state);
if (!ret)
return 0;
err:
DRM_ERROR("Restoring old state failed with %i\n", ret);
drm_atomic_state_put(state);
return ret;
}
/*
* This function handles all cases when set mode does not come upon hotplug.
* This includes when a display is unplugged then plugged back into the
* same port and when running without usermode desktop manager supprot
*/
void dm_restore_drm_connector_state(struct drm_device *dev,
struct drm_connector *connector)
{
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
struct amdgpu_crtc *disconnected_acrtc;
struct dm_crtc_state *acrtc_state;
if (!aconnector->dc_sink || !connector->state || !connector->encoder)
return;
disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc);
if (!disconnected_acrtc)
return;
acrtc_state = to_dm_crtc_state(disconnected_acrtc->base.state);
if (!acrtc_state->stream)
return;
/*
* If the previous sink is not released and different from the current,
* we deduce we are in a state where we can not rely on usermode call
* to turn on the display, so we do it here
*/
if (acrtc_state->stream->sink != aconnector->dc_sink)
dm_force_atomic_commit(&aconnector->base);
}
/*
* Grabs all modesetting locks to serialize against any blocking commits,
* Waits for completion of all non blocking commits.
*/
static int do_aquire_global_lock(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_commit *commit;
long ret;
/*
* Adding all modeset locks to aquire_ctx will
* ensure that when the framework release it the
* extra locks we are locking here will get released to
*/
ret = drm_modeset_lock_all_ctx(dev, state->acquire_ctx);
if (ret)
return ret;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
if (commit)
drm_crtc_commit_get(commit);
spin_unlock(&crtc->commit_lock);
if (!commit)
continue;
/*
* Make sure all pending HW programming completed and
* page flips done
*/
ret = wait_for_completion_interruptible_timeout(&commit->hw_done, 10*HZ);
if (ret > 0)
ret = wait_for_completion_interruptible_timeout(
&commit->flip_done, 10*HZ);
if (ret == 0)
DRM_ERROR("[CRTC:%d:%s] hw_done or flip_done "
"timed out\n", crtc->base.id, crtc->name);
drm_crtc_commit_put(commit);
}
return ret < 0 ? ret : 0;
}
static void get_freesync_config_for_crtc(
struct dm_crtc_state *new_crtc_state,
struct dm_connector_state *new_con_state)
{
struct mod_freesync_config config = {0};
struct amdgpu_dm_connector *aconnector =
to_amdgpu_dm_connector(new_con_state->base.connector);
new_crtc_state->vrr_supported = new_con_state->freesync_capable;
if (new_con_state->freesync_capable) {
config.state = new_crtc_state->base.vrr_enabled ?
VRR_STATE_ACTIVE_VARIABLE :
VRR_STATE_INACTIVE;
config.min_refresh_in_uhz =
aconnector->min_vfreq * 1000000;
config.max_refresh_in_uhz =
aconnector->max_vfreq * 1000000;
config.vsif_supported = true;
config.btr = true;
}
new_crtc_state->freesync_config = config;
}
static void reset_freesync_config_for_crtc(
struct dm_crtc_state *new_crtc_state)
{
new_crtc_state->vrr_supported = false;
memset(&new_crtc_state->vrr_params, 0,
sizeof(new_crtc_state->vrr_params));
memset(&new_crtc_state->vrr_infopacket, 0,
sizeof(new_crtc_state->vrr_infopacket));
}
static int dm_update_crtcs_state(struct amdgpu_display_manager *dm,
struct drm_atomic_state *state,
bool enable,
bool *lock_and_validation_needed)
{
struct dm_atomic_state *dm_state = NULL;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
int i;
struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state;
struct dc_stream_state *new_stream;
int ret = 0;
/*
* TODO Move this code into dm_crtc_atomic_check once we get rid of dc_validation_set
* update changed items
*/
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = NULL;
struct amdgpu_dm_connector *aconnector = NULL;
struct drm_connector_state *drm_new_conn_state = NULL, *drm_old_conn_state = NULL;
struct dm_connector_state *dm_new_conn_state = NULL, *dm_old_conn_state = NULL;
struct drm_plane_state *new_plane_state = NULL;
new_stream = NULL;
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
acrtc = to_amdgpu_crtc(crtc);
new_plane_state = drm_atomic_get_new_plane_state(state, new_crtc_state->crtc->primary);
if (new_crtc_state->enable && new_plane_state && !new_plane_state->fb) {
ret = -EINVAL;
goto fail;
}
aconnector = amdgpu_dm_find_first_crtc_matching_connector(state, crtc);
/* TODO This hack should go away */
if (aconnector && enable) {
/* Make sure fake sink is created in plug-in scenario */
drm_new_conn_state = drm_atomic_get_new_connector_state(state,
&aconnector->base);
drm_old_conn_state = drm_atomic_get_old_connector_state(state,
&aconnector->base);
if (IS_ERR(drm_new_conn_state)) {
ret = PTR_ERR_OR_ZERO(drm_new_conn_state);
break;
}
dm_new_conn_state = to_dm_connector_state(drm_new_conn_state);
dm_old_conn_state = to_dm_connector_state(drm_old_conn_state);
new_stream = create_stream_for_sink(aconnector,
&new_crtc_state->mode,
dm_new_conn_state,
dm_old_crtc_state->stream);
/*
* we can have no stream on ACTION_SET if a display
* was disconnected during S3, in this case it is not an
* error, the OS will be updated after detection, and
* will do the right thing on next atomic commit
*/
if (!new_stream) {
DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n",
__func__, acrtc->base.base.id);
break;
}
dm_new_crtc_state->abm_level = dm_new_conn_state->abm_level;
if (dc_is_stream_unchanged(new_stream, dm_old_crtc_state->stream) &&
dc_is_stream_scaling_unchanged(new_stream, dm_old_crtc_state->stream)) {
new_crtc_state->mode_changed = false;
DRM_DEBUG_DRIVER("Mode change not required, setting mode_changed to %d",
new_crtc_state->mode_changed);
}
}
if (!drm_atomic_crtc_needs_modeset(new_crtc_state))
goto next_crtc;
DRM_DEBUG_DRIVER(
"amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, "
"planes_changed:%d, mode_changed:%d,active_changed:%d,"
"connectors_changed:%d\n",
acrtc->crtc_id,
new_crtc_state->enable,
new_crtc_state->active,
new_crtc_state->planes_changed,
new_crtc_state->mode_changed,
new_crtc_state->active_changed,
new_crtc_state->connectors_changed);
/* Remove stream for any changed/disabled CRTC */
if (!enable) {
if (!dm_old_crtc_state->stream)
goto next_crtc;
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
DRM_DEBUG_DRIVER("Disabling DRM crtc: %d\n",
crtc->base.id);
/* i.e. reset mode */
if (dc_remove_stream_from_ctx(
dm->dc,
dm_state->context,
dm_old_crtc_state->stream) != DC_OK) {
ret = -EINVAL;
goto fail;
}
dc_stream_release(dm_old_crtc_state->stream);
dm_new_crtc_state->stream = NULL;
reset_freesync_config_for_crtc(dm_new_crtc_state);
*lock_and_validation_needed = true;
} else {/* Add stream for any updated/enabled CRTC */
/*
* Quick fix to prevent NULL pointer on new_stream when
* added MST connectors not found in existing crtc_state in the chained mode
* TODO: need to dig out the root cause of that
*/
if (!aconnector || (!aconnector->dc_sink && aconnector->mst_port))
goto next_crtc;
if (modereset_required(new_crtc_state))
goto next_crtc;
if (modeset_required(new_crtc_state, new_stream,
dm_old_crtc_state->stream)) {
WARN_ON(dm_new_crtc_state->stream);
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
dm_new_crtc_state->stream = new_stream;
dc_stream_retain(new_stream);
DRM_DEBUG_DRIVER("Enabling DRM crtc: %d\n",
crtc->base.id);
if (dc_add_stream_to_ctx(
dm->dc,
dm_state->context,
dm_new_crtc_state->stream) != DC_OK) {
ret = -EINVAL;
goto fail;
}
*lock_and_validation_needed = true;
}
}
next_crtc:
/* Release extra reference */
if (new_stream)
dc_stream_release(new_stream);
/*
* We want to do dc stream updates that do not require a
* full modeset below.
*/
if (!(enable && aconnector && new_crtc_state->enable &&
new_crtc_state->active))
continue;
/*
* Given above conditions, the dc state cannot be NULL because:
* 1. We're in the process of enabling CRTCs (just been added
* to the dc context, or already is on the context)
* 2. Has a valid connector attached, and
* 3. Is currently active and enabled.
* => The dc stream state currently exists.
*/
BUG_ON(dm_new_crtc_state->stream == NULL);
/* Scaling or underscan settings */
if (is_scaling_state_different(dm_old_conn_state, dm_new_conn_state))
update_stream_scaling_settings(
&new_crtc_state->mode, dm_new_conn_state, dm_new_crtc_state->stream);
/*
* Color management settings. We also update color properties
* when a modeset is needed, to ensure it gets reprogrammed.
*/
if (dm_new_crtc_state->base.color_mgmt_changed ||
drm_atomic_crtc_needs_modeset(new_crtc_state)) {
ret = amdgpu_dm_set_regamma_lut(dm_new_crtc_state);
if (ret)
goto fail;
amdgpu_dm_set_ctm(dm_new_crtc_state);
}
/* Update Freesync settings. */
get_freesync_config_for_crtc(dm_new_crtc_state,
dm_new_conn_state);
}
return ret;
fail:
if (new_stream)
dc_stream_release(new_stream);
return ret;
}
static int dm_update_planes_state(struct dc *dc,
struct drm_atomic_state *state,
bool enable,
bool *lock_and_validation_needed)
{
struct dm_atomic_state *dm_state = NULL;
struct drm_crtc *new_plane_crtc, *old_plane_crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_plane *plane;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct dm_crtc_state *dm_new_crtc_state, *dm_old_crtc_state;
struct dm_plane_state *dm_new_plane_state, *dm_old_plane_state;
int i ;
/* TODO return page_flip_needed() function */
bool pflip_needed = !state->allow_modeset;
int ret = 0;
/* Add new planes, in reverse order as DC expectation */
for_each_oldnew_plane_in_state_reverse(state, plane, old_plane_state, new_plane_state, i) {
new_plane_crtc = new_plane_state->crtc;
old_plane_crtc = old_plane_state->crtc;
dm_new_plane_state = to_dm_plane_state(new_plane_state);
dm_old_plane_state = to_dm_plane_state(old_plane_state);
/*TODO Implement atomic check for cursor plane */
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
/* Remove any changed/removed planes */
if (!enable) {
if (pflip_needed &&
plane->type != DRM_PLANE_TYPE_OVERLAY)
continue;
if (!old_plane_crtc)
continue;
old_crtc_state = drm_atomic_get_old_crtc_state(
state, old_plane_crtc);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
if (!dm_old_crtc_state->stream)
continue;
DRM_DEBUG_ATOMIC("Disabling DRM plane: %d on DRM crtc %d\n",
plane->base.id, old_plane_crtc->base.id);
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
return ret;
if (!dc_remove_plane_from_context(
dc,
dm_old_crtc_state->stream,
dm_old_plane_state->dc_state,
dm_state->context)) {
ret = EINVAL;
return ret;
}
dc_plane_state_release(dm_old_plane_state->dc_state);
dm_new_plane_state->dc_state = NULL;
*lock_and_validation_needed = true;
} else { /* Add new planes */
struct dc_plane_state *dc_new_plane_state;
if (drm_atomic_plane_disabling(plane->state, new_plane_state))
continue;
if (!new_plane_crtc)
continue;
new_crtc_state = drm_atomic_get_new_crtc_state(state, new_plane_crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (!dm_new_crtc_state->stream)
continue;
if (pflip_needed &&
plane->type != DRM_PLANE_TYPE_OVERLAY)
continue;
WARN_ON(dm_new_plane_state->dc_state);
dc_new_plane_state = dc_create_plane_state(dc);
if (!dc_new_plane_state)
return -ENOMEM;
DRM_DEBUG_DRIVER("Enabling DRM plane: %d on DRM crtc %d\n",
plane->base.id, new_plane_crtc->base.id);
ret = fill_plane_attributes(
new_plane_crtc->dev->dev_private,
dc_new_plane_state,
new_plane_state,
new_crtc_state);
if (ret) {
dc_plane_state_release(dc_new_plane_state);
return ret;
}
ret = dm_atomic_get_state(state, &dm_state);
if (ret) {
dc_plane_state_release(dc_new_plane_state);
return ret;
}
/*
* Any atomic check errors that occur after this will
* not need a release. The plane state will be attached
* to the stream, and therefore part of the atomic
* state. It'll be released when the atomic state is
* cleaned.
*/
if (!dc_add_plane_to_context(
dc,
dm_new_crtc_state->stream,
dc_new_plane_state,
dm_state->context)) {
dc_plane_state_release(dc_new_plane_state);
return -EINVAL;
}
dm_new_plane_state->dc_state = dc_new_plane_state;
/* Tell DC to do a full surface update every time there
* is a plane change. Inefficient, but works for now.
*/
dm_new_plane_state->dc_state->update_flags.bits.full_update = 1;
*lock_and_validation_needed = true;
}
}
return ret;
}
static int
dm_determine_update_type_for_commit(struct dc *dc,
struct drm_atomic_state *state,
enum surface_update_type *out_type)
{
struct dm_atomic_state *dm_state = NULL, *old_dm_state = NULL;
int i, j, num_plane, ret = 0;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct dm_plane_state *new_dm_plane_state, *old_dm_plane_state;
struct drm_crtc *new_plane_crtc, *old_plane_crtc;
struct drm_plane *plane;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state, *old_crtc_state;
struct dm_crtc_state *new_dm_crtc_state, *old_dm_crtc_state;
struct dc_stream_status *status = NULL;
struct dc_surface_update *updates = kzalloc(MAX_SURFACES * sizeof(struct dc_surface_update), GFP_KERNEL);
struct dc_plane_state *surface = kzalloc(MAX_SURFACES * sizeof(struct dc_plane_state), GFP_KERNEL);
struct dc_stream_update stream_update;
enum surface_update_type update_type = UPDATE_TYPE_FAST;
if (!updates || !surface) {
DRM_ERROR("Plane or surface update failed to allocate");
/* Set type to FULL to avoid crashing in DC*/
update_type = UPDATE_TYPE_FULL;
goto cleanup;
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
new_dm_crtc_state = to_dm_crtc_state(new_crtc_state);
old_dm_crtc_state = to_dm_crtc_state(old_crtc_state);
num_plane = 0;
if (new_dm_crtc_state->stream) {
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, j) {
new_plane_crtc = new_plane_state->crtc;
old_plane_crtc = old_plane_state->crtc;
new_dm_plane_state = to_dm_plane_state(new_plane_state);
old_dm_plane_state = to_dm_plane_state(old_plane_state);
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
if (!state->allow_modeset)
continue;
if (crtc == new_plane_crtc) {
updates[num_plane].surface = &surface[num_plane];
if (new_crtc_state->mode_changed) {
updates[num_plane].surface->src_rect =
new_dm_plane_state->dc_state->src_rect;
updates[num_plane].surface->dst_rect =
new_dm_plane_state->dc_state->dst_rect;
updates[num_plane].surface->rotation =
new_dm_plane_state->dc_state->rotation;
updates[num_plane].surface->in_transfer_func =
new_dm_plane_state->dc_state->in_transfer_func;
stream_update.dst = new_dm_crtc_state->stream->dst;
stream_update.src = new_dm_crtc_state->stream->src;
}
if (new_crtc_state->color_mgmt_changed) {
updates[num_plane].gamma =
new_dm_plane_state->dc_state->gamma_correction;
updates[num_plane].in_transfer_func =
new_dm_plane_state->dc_state->in_transfer_func;
stream_update.gamut_remap =
&new_dm_crtc_state->stream->gamut_remap_matrix;
stream_update.out_transfer_func =
new_dm_crtc_state->stream->out_transfer_func;
}
num_plane++;
}
}
if (num_plane > 0) {
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto cleanup;
old_dm_state = dm_atomic_get_old_state(state);
if (!old_dm_state) {
ret = -EINVAL;
goto cleanup;
}
status = dc_state_get_stream_status(old_dm_state->context,
new_dm_crtc_state->stream);
update_type = dc_check_update_surfaces_for_stream(dc, updates, num_plane,
&stream_update, status);
if (update_type > UPDATE_TYPE_MED) {
update_type = UPDATE_TYPE_FULL;
goto cleanup;
}
}
} else if (!new_dm_crtc_state->stream && old_dm_crtc_state->stream) {
update_type = UPDATE_TYPE_FULL;
goto cleanup;
}
}
cleanup:
kfree(updates);
kfree(surface);
*out_type = update_type;
return ret;
}
/**
* amdgpu_dm_atomic_check() - Atomic check implementation for AMDgpu DM.
* @dev: The DRM device
* @state: The atomic state to commit
*
* Validate that the given atomic state is programmable by DC into hardware.
* This involves constructing a &struct dc_state reflecting the new hardware
* state we wish to commit, then querying DC to see if it is programmable. It's
* important not to modify the existing DC state. Otherwise, atomic_check
* may unexpectedly commit hardware changes.
*
* When validating the DC state, it's important that the right locks are
* acquired. For full updates case which removes/adds/updates streams on one
* CRTC while flipping on another CRTC, acquiring global lock will guarantee
* that any such full update commit will wait for completion of any outstanding
* flip using DRMs synchronization events. See
* dm_determine_update_type_for_commit()
*
* Note that DM adds the affected connectors for all CRTCs in state, when that
* might not seem necessary. This is because DC stream creation requires the
* DC sink, which is tied to the DRM connector state. Cleaning this up should
* be possible but non-trivial - a possible TODO item.
*
* Return: -Error code if validation failed.
*/
static int amdgpu_dm_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct amdgpu_device *adev = dev->dev_private;
struct dm_atomic_state *dm_state = NULL;
struct dc *dc = adev->dm.dc;
struct drm_connector *connector;
struct drm_connector_state *old_con_state, *new_con_state;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
enum surface_update_type update_type = UPDATE_TYPE_FAST;
enum surface_update_type overall_update_type = UPDATE_TYPE_FAST;
int ret, i;
/*
* This bool will be set for true for any modeset/reset
* or plane update which implies non fast surface update.
*/
bool lock_and_validation_needed = false;
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
goto fail;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (!drm_atomic_crtc_needs_modeset(new_crtc_state) &&
!new_crtc_state->color_mgmt_changed &&
old_crtc_state->vrr_enabled == new_crtc_state->vrr_enabled)
continue;
if (!new_crtc_state->enable)
continue;
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ret;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
goto fail;
}
/* Remove exiting planes if they are modified */
ret = dm_update_planes_state(dc, state, false, &lock_and_validation_needed);
if (ret) {
goto fail;
}
/* Disable all crtcs which require disable */
ret = dm_update_crtcs_state(&adev->dm, state, false, &lock_and_validation_needed);
if (ret) {
goto fail;
}
/* Enable all crtcs which require enable */
ret = dm_update_crtcs_state(&adev->dm, state, true, &lock_and_validation_needed);
if (ret) {
goto fail;
}
/* Add new/modified planes */
ret = dm_update_planes_state(dc, state, true, &lock_and_validation_needed);
if (ret) {
goto fail;
}
/* Run this here since we want to validate the streams we created */
ret = drm_atomic_helper_check_planes(dev, state);
if (ret)
goto fail;
/* Check scaling and underscan changes*/
/* TODO Removed scaling changes validation due to inability to commit
* new stream into context w\o causing full reset. Need to
* decide how to handle.
*/
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state);
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc);
/* Skip any modesets/resets */
if (!acrtc || drm_atomic_crtc_needs_modeset(
drm_atomic_get_new_crtc_state(state, &acrtc->base)))
continue;
/* Skip any thing not scale or underscan changes */
if (!is_scaling_state_different(dm_new_con_state, dm_old_con_state))
continue;
overall_update_type = UPDATE_TYPE_FULL;
lock_and_validation_needed = true;
}
ret = dm_determine_update_type_for_commit(dc, state, &update_type);
if (ret)
goto fail;
if (overall_update_type < update_type)
overall_update_type = update_type;
/*
* lock_and_validation_needed was an old way to determine if we need to set
* the global lock. Leaving it in to check if we broke any corner cases
* lock_and_validation_needed true = UPDATE_TYPE_FULL or UPDATE_TYPE_MED
* lock_and_validation_needed false = UPDATE_TYPE_FAST
*/
if (lock_and_validation_needed && overall_update_type <= UPDATE_TYPE_FAST)
WARN(1, "Global lock should be Set, overall_update_type should be UPDATE_TYPE_MED or UPDATE_TYPE_FULL");
else if (!lock_and_validation_needed && overall_update_type > UPDATE_TYPE_FAST)
WARN(1, "Global lock should NOT be set, overall_update_type should be UPDATE_TYPE_FAST");
if (overall_update_type > UPDATE_TYPE_FAST) {
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
ret = do_aquire_global_lock(dev, state);
if (ret)
goto fail;
if (dc_validate_global_state(dc, dm_state->context) != DC_OK) {
ret = -EINVAL;
goto fail;
}
} else if (state->legacy_cursor_update) {
/*
* This is a fast cursor update coming from the plane update
* helper, check if it can be done asynchronously for better
* performance.
*/
state->async_update = !drm_atomic_helper_async_check(dev, state);
}
/* Must be success */
WARN_ON(ret);
return ret;
fail:
if (ret == -EDEADLK)
DRM_DEBUG_DRIVER("Atomic check stopped to avoid deadlock.\n");
else if (ret == -EINTR || ret == -EAGAIN || ret == -ERESTARTSYS)
DRM_DEBUG_DRIVER("Atomic check stopped due to signal.\n");
else
DRM_DEBUG_DRIVER("Atomic check failed with err: %d \n", ret);
return ret;
}
static bool is_dp_capable_without_timing_msa(struct dc *dc,
struct amdgpu_dm_connector *amdgpu_dm_connector)
{
uint8_t dpcd_data;
bool capable = false;
if (amdgpu_dm_connector->dc_link &&
dm_helpers_dp_read_dpcd(
NULL,
amdgpu_dm_connector->dc_link,
DP_DOWN_STREAM_PORT_COUNT,
&dpcd_data,
sizeof(dpcd_data))) {
capable = (dpcd_data & DP_MSA_TIMING_PAR_IGNORED) ? true:false;
}
return capable;
}
void amdgpu_dm_update_freesync_caps(struct drm_connector *connector,
struct edid *edid)
{
int i;
bool edid_check_required;
struct detailed_timing *timing;
struct detailed_non_pixel *data;
struct detailed_data_monitor_range *range;
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
struct dm_connector_state *dm_con_state = NULL;
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = dev->dev_private;
bool freesync_capable = false;
if (!connector->state) {
DRM_ERROR("%s - Connector has no state", __func__);
goto update;
}
if (!edid) {
dm_con_state = to_dm_connector_state(connector->state);
amdgpu_dm_connector->min_vfreq = 0;
amdgpu_dm_connector->max_vfreq = 0;
amdgpu_dm_connector->pixel_clock_mhz = 0;
goto update;
}
dm_con_state = to_dm_connector_state(connector->state);
edid_check_required = false;
if (!amdgpu_dm_connector->dc_sink) {
DRM_ERROR("dc_sink NULL, could not add free_sync module.\n");
goto update;
}
if (!adev->dm.freesync_module)
goto update;
/*
* if edid non zero restrict freesync only for dp and edp
*/
if (edid) {
if (amdgpu_dm_connector->dc_sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT
|| amdgpu_dm_connector->dc_sink->sink_signal == SIGNAL_TYPE_EDP) {
edid_check_required = is_dp_capable_without_timing_msa(
adev->dm.dc,
amdgpu_dm_connector);
}
}
if (edid_check_required == true && (edid->version > 1 ||
(edid->version == 1 && edid->revision > 1))) {
for (i = 0; i < 4; i++) {
timing = &edid->detailed_timings[i];
data = &timing->data.other_data;
range = &data->data.range;
/*
* Check if monitor has continuous frequency mode
*/
if (data->type != EDID_DETAIL_MONITOR_RANGE)
continue;
/*
* Check for flag range limits only. If flag == 1 then
* no additional timing information provided.
* Default GTF, GTF Secondary curve and CVT are not
* supported
*/
if (range->flags != 1)
continue;
amdgpu_dm_connector->min_vfreq = range->min_vfreq;
amdgpu_dm_connector->max_vfreq = range->max_vfreq;
amdgpu_dm_connector->pixel_clock_mhz =
range->pixel_clock_mhz * 10;
break;
}
if (amdgpu_dm_connector->max_vfreq -
amdgpu_dm_connector->min_vfreq > 10) {
freesync_capable = true;
}
}
update:
if (dm_con_state)
dm_con_state->freesync_capable = freesync_capable;
if (connector->vrr_capable_property)
drm_connector_set_vrr_capable_property(connector,
freesync_capable);
}