| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2003 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_shared.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_quota.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_qm.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_error.h" |
| #include "xfs_health.h" |
| |
| /* |
| * Lock order: |
| * |
| * ip->i_lock |
| * qi->qi_tree_lock |
| * dquot->q_qlock (xfs_dqlock() and friends) |
| * dquot->q_flush (xfs_dqflock() and friends) |
| * qi->qi_lru_lock |
| * |
| * If two dquots need to be locked the order is user before group/project, |
| * otherwise by the lowest id first, see xfs_dqlock2. |
| */ |
| |
| struct kmem_cache *xfs_dqtrx_cache; |
| static struct kmem_cache *xfs_dquot_cache; |
| |
| static struct lock_class_key xfs_dquot_group_class; |
| static struct lock_class_key xfs_dquot_project_class; |
| |
| /* Record observations of quota corruption with the health tracking system. */ |
| static void |
| xfs_dquot_mark_sick( |
| struct xfs_dquot *dqp) |
| { |
| struct xfs_mount *mp = dqp->q_mount; |
| |
| switch (dqp->q_type) { |
| case XFS_DQTYPE_USER: |
| xfs_fs_mark_sick(mp, XFS_SICK_FS_UQUOTA); |
| break; |
| case XFS_DQTYPE_GROUP: |
| xfs_fs_mark_sick(mp, XFS_SICK_FS_GQUOTA); |
| break; |
| case XFS_DQTYPE_PROJ: |
| xfs_fs_mark_sick(mp, XFS_SICK_FS_PQUOTA); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| /* |
| * This is called to free all the memory associated with a dquot |
| */ |
| void |
| xfs_qm_dqdestroy( |
| struct xfs_dquot *dqp) |
| { |
| ASSERT(list_empty(&dqp->q_lru)); |
| |
| kvfree(dqp->q_logitem.qli_item.li_lv_shadow); |
| mutex_destroy(&dqp->q_qlock); |
| |
| XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot); |
| kmem_cache_free(xfs_dquot_cache, dqp); |
| } |
| |
| /* |
| * If default limits are in force, push them into the dquot now. |
| * We overwrite the dquot limits only if they are zero and this |
| * is not the root dquot. |
| */ |
| void |
| xfs_qm_adjust_dqlimits( |
| struct xfs_dquot *dq) |
| { |
| struct xfs_mount *mp = dq->q_mount; |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| struct xfs_def_quota *defq; |
| int prealloc = 0; |
| |
| ASSERT(dq->q_id); |
| defq = xfs_get_defquota(q, xfs_dquot_type(dq)); |
| |
| if (!dq->q_blk.softlimit) { |
| dq->q_blk.softlimit = defq->blk.soft; |
| prealloc = 1; |
| } |
| if (!dq->q_blk.hardlimit) { |
| dq->q_blk.hardlimit = defq->blk.hard; |
| prealloc = 1; |
| } |
| if (!dq->q_ino.softlimit) |
| dq->q_ino.softlimit = defq->ino.soft; |
| if (!dq->q_ino.hardlimit) |
| dq->q_ino.hardlimit = defq->ino.hard; |
| if (!dq->q_rtb.softlimit) |
| dq->q_rtb.softlimit = defq->rtb.soft; |
| if (!dq->q_rtb.hardlimit) |
| dq->q_rtb.hardlimit = defq->rtb.hard; |
| |
| if (prealloc) |
| xfs_dquot_set_prealloc_limits(dq); |
| } |
| |
| /* Set the expiration time of a quota's grace period. */ |
| time64_t |
| xfs_dquot_set_timeout( |
| struct xfs_mount *mp, |
| time64_t timeout) |
| { |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| |
| return clamp_t(time64_t, timeout, qi->qi_expiry_min, |
| qi->qi_expiry_max); |
| } |
| |
| /* Set the length of the default grace period. */ |
| time64_t |
| xfs_dquot_set_grace_period( |
| time64_t grace) |
| { |
| return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX); |
| } |
| |
| /* |
| * Determine if this quota counter is over either limit and set the quota |
| * timers as appropriate. |
| */ |
| static inline void |
| xfs_qm_adjust_res_timer( |
| struct xfs_mount *mp, |
| struct xfs_dquot_res *res, |
| struct xfs_quota_limits *qlim) |
| { |
| ASSERT(res->hardlimit == 0 || res->softlimit <= res->hardlimit); |
| |
| if ((res->softlimit && res->count > res->softlimit) || |
| (res->hardlimit && res->count > res->hardlimit)) { |
| if (res->timer == 0) |
| res->timer = xfs_dquot_set_timeout(mp, |
| ktime_get_real_seconds() + qlim->time); |
| } else { |
| res->timer = 0; |
| } |
| } |
| |
| /* |
| * Check the limits and timers of a dquot and start or reset timers |
| * if necessary. |
| * This gets called even when quota enforcement is OFF, which makes our |
| * life a little less complicated. (We just don't reject any quota |
| * reservations in that case, when enforcement is off). |
| * We also return 0 as the values of the timers in Q_GETQUOTA calls, when |
| * enforcement's off. |
| * In contrast, warnings are a little different in that they don't |
| * 'automatically' get started when limits get exceeded. They do |
| * get reset to zero, however, when we find the count to be under |
| * the soft limit (they are only ever set non-zero via userspace). |
| */ |
| void |
| xfs_qm_adjust_dqtimers( |
| struct xfs_dquot *dq) |
| { |
| struct xfs_mount *mp = dq->q_mount; |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct xfs_def_quota *defq; |
| |
| ASSERT(dq->q_id); |
| defq = xfs_get_defquota(qi, xfs_dquot_type(dq)); |
| |
| xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk); |
| xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino); |
| xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb); |
| } |
| |
| /* |
| * initialize a buffer full of dquots and log the whole thing |
| */ |
| void |
| xfs_qm_init_dquot_blk( |
| struct xfs_trans *tp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type, |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| struct xfs_dqblk *d; |
| xfs_dqid_t curid; |
| unsigned int qflag; |
| unsigned int blftype; |
| int i; |
| |
| ASSERT(tp); |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| switch (type) { |
| case XFS_DQTYPE_USER: |
| qflag = XFS_UQUOTA_CHKD; |
| blftype = XFS_BLF_UDQUOT_BUF; |
| break; |
| case XFS_DQTYPE_PROJ: |
| qflag = XFS_PQUOTA_CHKD; |
| blftype = XFS_BLF_PDQUOT_BUF; |
| break; |
| case XFS_DQTYPE_GROUP: |
| qflag = XFS_GQUOTA_CHKD; |
| blftype = XFS_BLF_GDQUOT_BUF; |
| break; |
| default: |
| ASSERT(0); |
| return; |
| } |
| |
| d = bp->b_addr; |
| |
| /* |
| * ID of the first dquot in the block - id's are zero based. |
| */ |
| curid = id - (id % q->qi_dqperchunk); |
| memset(d, 0, BBTOB(q->qi_dqchunklen)); |
| for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) { |
| d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); |
| d->dd_diskdq.d_version = XFS_DQUOT_VERSION; |
| d->dd_diskdq.d_id = cpu_to_be32(curid); |
| d->dd_diskdq.d_type = type; |
| if (curid > 0 && xfs_has_bigtime(mp)) |
| d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME; |
| if (xfs_has_crc(mp)) { |
| uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid); |
| xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| } |
| |
| xfs_trans_dquot_buf(tp, bp, blftype); |
| |
| /* |
| * quotacheck uses delayed writes to update all the dquots on disk in an |
| * efficient manner instead of logging the individual dquot changes as |
| * they are made. However if we log the buffer allocated here and crash |
| * after quotacheck while the logged initialisation is still in the |
| * active region of the log, log recovery can replay the dquot buffer |
| * initialisation over the top of the checked dquots and corrupt quota |
| * accounting. |
| * |
| * To avoid this problem, quotacheck cannot log the initialised buffer. |
| * We must still dirty the buffer and write it back before the |
| * allocation transaction clears the log. Therefore, mark the buffer as |
| * ordered instead of logging it directly. This is safe for quotacheck |
| * because it detects and repairs allocated but initialized dquot blocks |
| * in the quota inodes. |
| */ |
| if (!(mp->m_qflags & qflag)) |
| xfs_trans_ordered_buf(tp, bp); |
| else |
| xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1); |
| } |
| |
| /* |
| * Initialize the dynamic speculative preallocation thresholds. The lo/hi |
| * watermarks correspond to the soft and hard limits by default. If a soft limit |
| * is not specified, we use 95% of the hard limit. |
| */ |
| void |
| xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) |
| { |
| uint64_t space; |
| |
| dqp->q_prealloc_hi_wmark = dqp->q_blk.hardlimit; |
| dqp->q_prealloc_lo_wmark = dqp->q_blk.softlimit; |
| if (!dqp->q_prealloc_lo_wmark) { |
| dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark; |
| do_div(dqp->q_prealloc_lo_wmark, 100); |
| dqp->q_prealloc_lo_wmark *= 95; |
| } |
| |
| space = dqp->q_prealloc_hi_wmark; |
| |
| do_div(space, 100); |
| dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space; |
| dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3; |
| dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5; |
| } |
| |
| /* |
| * Ensure that the given in-core dquot has a buffer on disk backing it, and |
| * return the buffer locked and held. This is called when the bmapi finds a |
| * hole. |
| */ |
| STATIC int |
| xfs_dquot_disk_alloc( |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_bmbt_irec map; |
| struct xfs_trans *tp; |
| struct xfs_mount *mp = dqp->q_mount; |
| struct xfs_buf *bp; |
| xfs_dqtype_t qtype = xfs_dquot_type(dqp); |
| struct xfs_inode *quotip = xfs_quota_inode(mp, qtype); |
| int nmaps = 1; |
| int error; |
| |
| trace_xfs_dqalloc(dqp); |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc, |
| XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp); |
| if (error) |
| return error; |
| |
| xfs_ilock(quotip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, quotip, 0); |
| |
| if (!xfs_this_quota_on(dqp->q_mount, qtype)) { |
| /* |
| * Return if this type of quotas is turned off while we didn't |
| * have an inode lock |
| */ |
| error = -ESRCH; |
| goto err_cancel; |
| } |
| |
| error = xfs_iext_count_may_overflow(quotip, XFS_DATA_FORK, |
| XFS_IEXT_ADD_NOSPLIT_CNT); |
| if (error == -EFBIG) |
| error = xfs_iext_count_upgrade(tp, quotip, |
| XFS_IEXT_ADD_NOSPLIT_CNT); |
| if (error) |
| goto err_cancel; |
| |
| /* Create the block mapping. */ |
| error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map, |
| &nmaps); |
| if (error) |
| goto err_cancel; |
| |
| ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB); |
| ASSERT(nmaps == 1); |
| ASSERT((map.br_startblock != DELAYSTARTBLOCK) && |
| (map.br_startblock != HOLESTARTBLOCK)); |
| |
| /* |
| * Keep track of the blkno to save a lookup later |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| /* now we can just get the buffer (there's nothing to read yet) */ |
| error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0, &bp); |
| if (error) |
| goto err_cancel; |
| bp->b_ops = &xfs_dquot_buf_ops; |
| |
| /* |
| * Make a chunk of dquots out of this buffer and log |
| * the entire thing. |
| */ |
| xfs_qm_init_dquot_blk(tp, dqp->q_id, qtype, bp); |
| xfs_buf_set_ref(bp, XFS_DQUOT_REF); |
| |
| /* |
| * Hold the buffer and join it to the dfops so that we'll still own |
| * the buffer when we return to the caller. The buffer disposal on |
| * error must be paid attention to very carefully, as it has been |
| * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota |
| * code when allocating a new dquot record" in 2005, and the later |
| * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep |
| * the buffer locked across the _defer_finish call. We can now do |
| * this correctly with xfs_defer_bjoin. |
| * |
| * Above, we allocated a disk block for the dquot information and used |
| * get_buf to initialize the dquot. If the _defer_finish fails, the old |
| * transaction is gone but the new buffer is not joined or held to any |
| * transaction, so we must _buf_relse it. |
| * |
| * If everything succeeds, the caller of this function is returned a |
| * buffer that is locked and held to the transaction. The caller |
| * is responsible for unlocking any buffer passed back, either |
| * manually or by committing the transaction. On error, the buffer is |
| * released and not passed back. |
| * |
| * Keep the quota inode ILOCKed until after the transaction commit to |
| * maintain the atomicity of bmap/rmap updates. |
| */ |
| xfs_trans_bhold(tp, bp); |
| error = xfs_trans_commit(tp); |
| xfs_iunlock(quotip, XFS_ILOCK_EXCL); |
| if (error) { |
| xfs_buf_relse(bp); |
| return error; |
| } |
| |
| *bpp = bp; |
| return 0; |
| |
| err_cancel: |
| xfs_trans_cancel(tp); |
| xfs_iunlock(quotip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| /* |
| * Read in the in-core dquot's on-disk metadata and return the buffer. |
| * Returns ENOENT to signal a hole. |
| */ |
| STATIC int |
| xfs_dquot_disk_read( |
| struct xfs_mount *mp, |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_bmbt_irec map; |
| struct xfs_buf *bp; |
| xfs_dqtype_t qtype = xfs_dquot_type(dqp); |
| struct xfs_inode *quotip = xfs_quota_inode(mp, qtype); |
| uint lock_mode; |
| int nmaps = 1; |
| int error; |
| |
| lock_mode = xfs_ilock_data_map_shared(quotip); |
| if (!xfs_this_quota_on(mp, qtype)) { |
| /* |
| * Return if this type of quotas is turned off while we |
| * didn't have the quota inode lock. |
| */ |
| xfs_iunlock(quotip, lock_mode); |
| return -ESRCH; |
| } |
| |
| /* |
| * Find the block map; no allocations yet |
| */ |
| error = xfs_bmapi_read(quotip, dqp->q_fileoffset, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0); |
| xfs_iunlock(quotip, lock_mode); |
| if (error) |
| return error; |
| |
| ASSERT(nmaps == 1); |
| ASSERT(map.br_blockcount >= 1); |
| ASSERT(map.br_startblock != DELAYSTARTBLOCK); |
| if (map.br_startblock == HOLESTARTBLOCK) |
| return -ENOENT; |
| |
| trace_xfs_dqtobp_read(dqp); |
| |
| /* |
| * store the blkno etc so that we don't have to do the |
| * mapping all the time |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0, &bp, |
| &xfs_dquot_buf_ops); |
| if (xfs_metadata_is_sick(error)) |
| xfs_dquot_mark_sick(dqp); |
| if (error) { |
| ASSERT(bp == NULL); |
| return error; |
| } |
| |
| ASSERT(xfs_buf_islocked(bp)); |
| xfs_buf_set_ref(bp, XFS_DQUOT_REF); |
| *bpp = bp; |
| |
| return 0; |
| } |
| |
| /* Allocate and initialize everything we need for an incore dquot. */ |
| STATIC struct xfs_dquot * |
| xfs_dquot_alloc( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type) |
| { |
| struct xfs_dquot *dqp; |
| |
| dqp = kmem_cache_zalloc(xfs_dquot_cache, GFP_KERNEL | __GFP_NOFAIL); |
| |
| dqp->q_type = type; |
| dqp->q_id = id; |
| dqp->q_mount = mp; |
| INIT_LIST_HEAD(&dqp->q_lru); |
| mutex_init(&dqp->q_qlock); |
| init_waitqueue_head(&dqp->q_pinwait); |
| dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk; |
| /* |
| * Offset of dquot in the (fixed sized) dquot chunk. |
| */ |
| dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) * |
| sizeof(struct xfs_dqblk); |
| |
| /* |
| * Because we want to use a counting completion, complete |
| * the flush completion once to allow a single access to |
| * the flush completion without blocking. |
| */ |
| init_completion(&dqp->q_flush); |
| complete(&dqp->q_flush); |
| |
| /* |
| * Make sure group quotas have a different lock class than user |
| * quotas. |
| */ |
| switch (type) { |
| case XFS_DQTYPE_USER: |
| /* uses the default lock class */ |
| break; |
| case XFS_DQTYPE_GROUP: |
| lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class); |
| break; |
| case XFS_DQTYPE_PROJ: |
| lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| xfs_qm_dquot_logitem_init(dqp); |
| |
| XFS_STATS_INC(mp, xs_qm_dquot); |
| return dqp; |
| } |
| |
| /* Check the ondisk dquot's id and type match what the incore dquot expects. */ |
| static bool |
| xfs_dquot_check_type( |
| struct xfs_dquot *dqp, |
| struct xfs_disk_dquot *ddqp) |
| { |
| uint8_t ddqp_type; |
| uint8_t dqp_type; |
| |
| ddqp_type = ddqp->d_type & XFS_DQTYPE_REC_MASK; |
| dqp_type = xfs_dquot_type(dqp); |
| |
| if (be32_to_cpu(ddqp->d_id) != dqp->q_id) |
| return false; |
| |
| /* |
| * V5 filesystems always expect an exact type match. V4 filesystems |
| * expect an exact match for user dquots and for non-root group and |
| * project dquots. |
| */ |
| if (xfs_has_crc(dqp->q_mount) || |
| dqp_type == XFS_DQTYPE_USER || dqp->q_id != 0) |
| return ddqp_type == dqp_type; |
| |
| /* |
| * V4 filesystems support either group or project quotas, but not both |
| * at the same time. The non-user quota file can be switched between |
| * group and project quota uses depending on the mount options, which |
| * means that we can encounter the other type when we try to load quota |
| * defaults. Quotacheck will soon reset the entire quota file |
| * (including the root dquot) anyway, but don't log scary corruption |
| * reports to dmesg. |
| */ |
| return ddqp_type == XFS_DQTYPE_GROUP || ddqp_type == XFS_DQTYPE_PROJ; |
| } |
| |
| /* Copy the in-core quota fields in from the on-disk buffer. */ |
| STATIC int |
| xfs_dquot_from_disk( |
| struct xfs_dquot *dqp, |
| struct xfs_buf *bp) |
| { |
| struct xfs_dqblk *dqb = xfs_buf_offset(bp, dqp->q_bufoffset); |
| struct xfs_disk_dquot *ddqp = &dqb->dd_diskdq; |
| |
| /* |
| * Ensure that we got the type and ID we were looking for. |
| * Everything else was checked by the dquot buffer verifier. |
| */ |
| if (!xfs_dquot_check_type(dqp, ddqp)) { |
| xfs_alert_tag(bp->b_mount, XFS_PTAG_VERIFIER_ERROR, |
| "Metadata corruption detected at %pS, quota %u", |
| __this_address, dqp->q_id); |
| xfs_alert(bp->b_mount, "Unmount and run xfs_repair"); |
| xfs_dquot_mark_sick(dqp); |
| return -EFSCORRUPTED; |
| } |
| |
| /* copy everything from disk dquot to the incore dquot */ |
| dqp->q_type = ddqp->d_type; |
| dqp->q_blk.hardlimit = be64_to_cpu(ddqp->d_blk_hardlimit); |
| dqp->q_blk.softlimit = be64_to_cpu(ddqp->d_blk_softlimit); |
| dqp->q_ino.hardlimit = be64_to_cpu(ddqp->d_ino_hardlimit); |
| dqp->q_ino.softlimit = be64_to_cpu(ddqp->d_ino_softlimit); |
| dqp->q_rtb.hardlimit = be64_to_cpu(ddqp->d_rtb_hardlimit); |
| dqp->q_rtb.softlimit = be64_to_cpu(ddqp->d_rtb_softlimit); |
| |
| dqp->q_blk.count = be64_to_cpu(ddqp->d_bcount); |
| dqp->q_ino.count = be64_to_cpu(ddqp->d_icount); |
| dqp->q_rtb.count = be64_to_cpu(ddqp->d_rtbcount); |
| |
| dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer); |
| dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer); |
| dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer); |
| |
| /* |
| * Reservation counters are defined as reservation plus current usage |
| * to avoid having to add every time. |
| */ |
| dqp->q_blk.reserved = dqp->q_blk.count; |
| dqp->q_ino.reserved = dqp->q_ino.count; |
| dqp->q_rtb.reserved = dqp->q_rtb.count; |
| |
| /* initialize the dquot speculative prealloc thresholds */ |
| xfs_dquot_set_prealloc_limits(dqp); |
| return 0; |
| } |
| |
| /* Copy the in-core quota fields into the on-disk buffer. */ |
| void |
| xfs_dquot_to_disk( |
| struct xfs_disk_dquot *ddqp, |
| struct xfs_dquot *dqp) |
| { |
| ddqp->d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); |
| ddqp->d_version = XFS_DQUOT_VERSION; |
| ddqp->d_type = dqp->q_type; |
| ddqp->d_id = cpu_to_be32(dqp->q_id); |
| ddqp->d_pad0 = 0; |
| ddqp->d_pad = 0; |
| |
| ddqp->d_blk_hardlimit = cpu_to_be64(dqp->q_blk.hardlimit); |
| ddqp->d_blk_softlimit = cpu_to_be64(dqp->q_blk.softlimit); |
| ddqp->d_ino_hardlimit = cpu_to_be64(dqp->q_ino.hardlimit); |
| ddqp->d_ino_softlimit = cpu_to_be64(dqp->q_ino.softlimit); |
| ddqp->d_rtb_hardlimit = cpu_to_be64(dqp->q_rtb.hardlimit); |
| ddqp->d_rtb_softlimit = cpu_to_be64(dqp->q_rtb.softlimit); |
| |
| ddqp->d_bcount = cpu_to_be64(dqp->q_blk.count); |
| ddqp->d_icount = cpu_to_be64(dqp->q_ino.count); |
| ddqp->d_rtbcount = cpu_to_be64(dqp->q_rtb.count); |
| |
| ddqp->d_bwarns = 0; |
| ddqp->d_iwarns = 0; |
| ddqp->d_rtbwarns = 0; |
| |
| ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer); |
| ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer); |
| ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer); |
| } |
| |
| /* |
| * Read in the ondisk dquot using dqtobp() then copy it to an incore version, |
| * and release the buffer immediately. If @can_alloc is true, fill any |
| * holes in the on-disk metadata. |
| */ |
| static int |
| xfs_qm_dqread( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type, |
| bool can_alloc, |
| struct xfs_dquot **dqpp) |
| { |
| struct xfs_dquot *dqp; |
| struct xfs_buf *bp; |
| int error; |
| |
| dqp = xfs_dquot_alloc(mp, id, type); |
| trace_xfs_dqread(dqp); |
| |
| /* Try to read the buffer, allocating if necessary. */ |
| error = xfs_dquot_disk_read(mp, dqp, &bp); |
| if (error == -ENOENT && can_alloc) |
| error = xfs_dquot_disk_alloc(dqp, &bp); |
| if (error) |
| goto err; |
| |
| /* |
| * At this point we should have a clean locked buffer. Copy the data |
| * to the incore dquot and release the buffer since the incore dquot |
| * has its own locking protocol so we needn't tie up the buffer any |
| * further. |
| */ |
| ASSERT(xfs_buf_islocked(bp)); |
| error = xfs_dquot_from_disk(dqp, bp); |
| xfs_buf_relse(bp); |
| if (error) |
| goto err; |
| |
| *dqpp = dqp; |
| return error; |
| |
| err: |
| trace_xfs_dqread_fail(dqp); |
| xfs_qm_dqdestroy(dqp); |
| *dqpp = NULL; |
| return error; |
| } |
| |
| /* |
| * Advance to the next id in the current chunk, or if at the |
| * end of the chunk, skip ahead to first id in next allocated chunk |
| * using the SEEK_DATA interface. |
| */ |
| static int |
| xfs_dq_get_next_id( |
| struct xfs_mount *mp, |
| xfs_dqtype_t type, |
| xfs_dqid_t *id) |
| { |
| struct xfs_inode *quotip = xfs_quota_inode(mp, type); |
| xfs_dqid_t next_id = *id + 1; /* simple advance */ |
| uint lock_flags; |
| struct xfs_bmbt_irec got; |
| struct xfs_iext_cursor cur; |
| xfs_fsblock_t start; |
| int error = 0; |
| |
| /* If we'd wrap past the max ID, stop */ |
| if (next_id < *id) |
| return -ENOENT; |
| |
| /* If new ID is within the current chunk, advancing it sufficed */ |
| if (next_id % mp->m_quotainfo->qi_dqperchunk) { |
| *id = next_id; |
| return 0; |
| } |
| |
| /* Nope, next_id is now past the current chunk, so find the next one */ |
| start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk; |
| |
| lock_flags = xfs_ilock_data_map_shared(quotip); |
| error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK); |
| if (error) |
| return error; |
| |
| if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) { |
| /* contiguous chunk, bump startoff for the id calculation */ |
| if (got.br_startoff < start) |
| got.br_startoff = start; |
| *id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk; |
| } else { |
| error = -ENOENT; |
| } |
| |
| xfs_iunlock(quotip, lock_flags); |
| |
| return error; |
| } |
| |
| /* |
| * Look up the dquot in the in-core cache. If found, the dquot is returned |
| * locked and ready to go. |
| */ |
| static struct xfs_dquot * |
| xfs_qm_dqget_cache_lookup( |
| struct xfs_mount *mp, |
| struct xfs_quotainfo *qi, |
| struct radix_tree_root *tree, |
| xfs_dqid_t id) |
| { |
| struct xfs_dquot *dqp; |
| |
| restart: |
| mutex_lock(&qi->qi_tree_lock); |
| dqp = radix_tree_lookup(tree, id); |
| if (!dqp) { |
| mutex_unlock(&qi->qi_tree_lock); |
| XFS_STATS_INC(mp, xs_qm_dqcachemisses); |
| return NULL; |
| } |
| |
| xfs_dqlock(dqp); |
| if (dqp->q_flags & XFS_DQFLAG_FREEING) { |
| xfs_dqunlock(dqp); |
| mutex_unlock(&qi->qi_tree_lock); |
| trace_xfs_dqget_freeing(dqp); |
| delay(1); |
| goto restart; |
| } |
| |
| dqp->q_nrefs++; |
| mutex_unlock(&qi->qi_tree_lock); |
| |
| trace_xfs_dqget_hit(dqp); |
| XFS_STATS_INC(mp, xs_qm_dqcachehits); |
| return dqp; |
| } |
| |
| /* |
| * Try to insert a new dquot into the in-core cache. If an error occurs the |
| * caller should throw away the dquot and start over. Otherwise, the dquot |
| * is returned locked (and held by the cache) as if there had been a cache |
| * hit. |
| * |
| * The insert needs to be done under memalloc_nofs context because the radix |
| * tree can do memory allocation during insert. The qi->qi_tree_lock is taken in |
| * memory reclaim when freeing unused dquots, so we cannot have the radix tree |
| * node allocation recursing into filesystem reclaim whilst we hold the |
| * qi_tree_lock. |
| */ |
| static int |
| xfs_qm_dqget_cache_insert( |
| struct xfs_mount *mp, |
| struct xfs_quotainfo *qi, |
| struct radix_tree_root *tree, |
| xfs_dqid_t id, |
| struct xfs_dquot *dqp) |
| { |
| unsigned int nofs_flags; |
| int error; |
| |
| nofs_flags = memalloc_nofs_save(); |
| mutex_lock(&qi->qi_tree_lock); |
| error = radix_tree_insert(tree, id, dqp); |
| if (unlikely(error)) { |
| /* Duplicate found! Caller must try again. */ |
| trace_xfs_dqget_dup(dqp); |
| goto out_unlock; |
| } |
| |
| /* Return a locked dquot to the caller, with a reference taken. */ |
| xfs_dqlock(dqp); |
| dqp->q_nrefs = 1; |
| qi->qi_dquots++; |
| |
| out_unlock: |
| mutex_unlock(&qi->qi_tree_lock); |
| memalloc_nofs_restore(nofs_flags); |
| return error; |
| } |
| |
| /* Check our input parameters. */ |
| static int |
| xfs_qm_dqget_checks( |
| struct xfs_mount *mp, |
| xfs_dqtype_t type) |
| { |
| switch (type) { |
| case XFS_DQTYPE_USER: |
| if (!XFS_IS_UQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| case XFS_DQTYPE_GROUP: |
| if (!XFS_IS_GQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| case XFS_DQTYPE_PROJ: |
| if (!XFS_IS_PQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| default: |
| WARN_ON_ONCE(0); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a |
| * locked dquot, doing an allocation (if requested) as needed. |
| */ |
| int |
| xfs_qm_dqget( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type, |
| bool can_alloc, |
| struct xfs_dquot **O_dqpp) |
| { |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct radix_tree_root *tree = xfs_dquot_tree(qi, type); |
| struct xfs_dquot *dqp; |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| restart: |
| dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); |
| if (dqp) { |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); |
| if (error) |
| return error; |
| |
| error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); |
| if (error) { |
| /* |
| * Duplicate found. Just throw away the new dquot and start |
| * over. |
| */ |
| xfs_qm_dqdestroy(dqp); |
| XFS_STATS_INC(mp, xs_qm_dquot_dups); |
| goto restart; |
| } |
| |
| trace_xfs_dqget_miss(dqp); |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Given a dquot id and type, read and initialize a dquot from the on-disk |
| * metadata. This function is only for use during quota initialization so |
| * it ignores the dquot cache assuming that the dquot shrinker isn't set up. |
| * The caller is responsible for _qm_dqdestroy'ing the returned dquot. |
| */ |
| int |
| xfs_qm_dqget_uncached( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type, |
| struct xfs_dquot **dqpp) |
| { |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| return xfs_qm_dqread(mp, id, type, 0, dqpp); |
| } |
| |
| /* Return the quota id for a given inode and type. */ |
| xfs_dqid_t |
| xfs_qm_id_for_quotatype( |
| struct xfs_inode *ip, |
| xfs_dqtype_t type) |
| { |
| switch (type) { |
| case XFS_DQTYPE_USER: |
| return i_uid_read(VFS_I(ip)); |
| case XFS_DQTYPE_GROUP: |
| return i_gid_read(VFS_I(ip)); |
| case XFS_DQTYPE_PROJ: |
| return ip->i_projid; |
| } |
| ASSERT(0); |
| return 0; |
| } |
| |
| /* |
| * Return the dquot for a given inode and type. If @can_alloc is true, then |
| * allocate blocks if needed. The inode's ILOCK must be held and it must not |
| * have already had an inode attached. |
| */ |
| int |
| xfs_qm_dqget_inode( |
| struct xfs_inode *ip, |
| xfs_dqtype_t type, |
| bool can_alloc, |
| struct xfs_dquot **O_dqpp) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct radix_tree_root *tree = xfs_dquot_tree(qi, type); |
| struct xfs_dquot *dqp; |
| xfs_dqid_t id; |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); |
| ASSERT(xfs_inode_dquot(ip, type) == NULL); |
| |
| id = xfs_qm_id_for_quotatype(ip, type); |
| |
| restart: |
| dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); |
| if (dqp) { |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Dquot cache miss. We don't want to keep the inode lock across |
| * a (potential) disk read. Also we don't want to deal with the lock |
| * ordering between quotainode and this inode. OTOH, dropping the inode |
| * lock here means dealing with a chown that can happen before |
| * we re-acquire the lock. |
| */ |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| if (error) |
| return error; |
| |
| /* |
| * A dquot could be attached to this inode by now, since we had |
| * dropped the ilock. |
| */ |
| if (xfs_this_quota_on(mp, type)) { |
| struct xfs_dquot *dqp1; |
| |
| dqp1 = xfs_inode_dquot(ip, type); |
| if (dqp1) { |
| xfs_qm_dqdestroy(dqp); |
| dqp = dqp1; |
| xfs_dqlock(dqp); |
| goto dqret; |
| } |
| } else { |
| /* inode stays locked on return */ |
| xfs_qm_dqdestroy(dqp); |
| return -ESRCH; |
| } |
| |
| error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); |
| if (error) { |
| /* |
| * Duplicate found. Just throw away the new dquot and start |
| * over. |
| */ |
| xfs_qm_dqdestroy(dqp); |
| XFS_STATS_INC(mp, xs_qm_dquot_dups); |
| goto restart; |
| } |
| |
| dqret: |
| xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); |
| trace_xfs_dqget_miss(dqp); |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Starting at @id and progressing upwards, look for an initialized incore |
| * dquot, lock it, and return it. |
| */ |
| int |
| xfs_qm_dqget_next( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| xfs_dqtype_t type, |
| struct xfs_dquot **dqpp) |
| { |
| struct xfs_dquot *dqp; |
| int error = 0; |
| |
| *dqpp = NULL; |
| for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) { |
| error = xfs_qm_dqget(mp, id, type, false, &dqp); |
| if (error == -ENOENT) |
| continue; |
| else if (error != 0) |
| break; |
| |
| if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) { |
| *dqpp = dqp; |
| return 0; |
| } |
| |
| xfs_qm_dqput(dqp); |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Release a reference to the dquot (decrement ref-count) and unlock it. |
| * |
| * If there is a group quota attached to this dquot, carefully release that |
| * too without tripping over deadlocks'n'stuff. |
| */ |
| void |
| xfs_qm_dqput( |
| struct xfs_dquot *dqp) |
| { |
| ASSERT(dqp->q_nrefs > 0); |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| |
| trace_xfs_dqput(dqp); |
| |
| if (--dqp->q_nrefs == 0) { |
| struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo; |
| trace_xfs_dqput_free(dqp); |
| |
| if (list_lru_add_obj(&qi->qi_lru, &dqp->q_lru)) |
| XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused); |
| } |
| xfs_dqunlock(dqp); |
| } |
| |
| /* |
| * Release a dquot. Flush it if dirty, then dqput() it. |
| * dquot must not be locked. |
| */ |
| void |
| xfs_qm_dqrele( |
| struct xfs_dquot *dqp) |
| { |
| if (!dqp) |
| return; |
| |
| trace_xfs_dqrele(dqp); |
| |
| xfs_dqlock(dqp); |
| /* |
| * We don't care to flush it if the dquot is dirty here. |
| * That will create stutters that we want to avoid. |
| * Instead we do a delayed write when we try to reclaim |
| * a dirty dquot. Also xfs_sync will take part of the burden... |
| */ |
| xfs_qm_dqput(dqp); |
| } |
| |
| /* |
| * This is the dquot flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the dquot is |
| * flushed to disk. It is responsible for removing the dquot logitem |
| * from the AIL if it has not been re-logged, and unlocking the dquot's |
| * flush lock. This behavior is very similar to that of inodes.. |
| */ |
| static void |
| xfs_qm_dqflush_done( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_dq_logitem *qip = (struct xfs_dq_logitem *)lip; |
| struct xfs_dquot *dqp = qip->qli_dquot; |
| struct xfs_ail *ailp = lip->li_ailp; |
| xfs_lsn_t tail_lsn; |
| |
| /* |
| * We only want to pull the item from the AIL if its |
| * location in the log has not changed since we started the flush. |
| * Thus, we only bother if the dquot's lsn has |
| * not changed. First we check the lsn outside the lock |
| * since it's cheaper, and then we recheck while |
| * holding the lock before removing the dquot from the AIL. |
| */ |
| if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) && |
| ((lip->li_lsn == qip->qli_flush_lsn) || |
| test_bit(XFS_LI_FAILED, &lip->li_flags))) { |
| |
| spin_lock(&ailp->ail_lock); |
| xfs_clear_li_failed(lip); |
| if (lip->li_lsn == qip->qli_flush_lsn) { |
| /* xfs_ail_update_finish() drops the AIL lock */ |
| tail_lsn = xfs_ail_delete_one(ailp, lip); |
| xfs_ail_update_finish(ailp, tail_lsn); |
| } else { |
| spin_unlock(&ailp->ail_lock); |
| } |
| } |
| |
| /* |
| * Release the dq's flush lock since we're done with it. |
| */ |
| xfs_dqfunlock(dqp); |
| } |
| |
| void |
| xfs_buf_dquot_iodone( |
| struct xfs_buf *bp) |
| { |
| struct xfs_log_item *lip, *n; |
| |
| list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { |
| list_del_init(&lip->li_bio_list); |
| xfs_qm_dqflush_done(lip); |
| } |
| } |
| |
| void |
| xfs_buf_dquot_io_fail( |
| struct xfs_buf *bp) |
| { |
| struct xfs_log_item *lip; |
| |
| spin_lock(&bp->b_mount->m_ail->ail_lock); |
| list_for_each_entry(lip, &bp->b_li_list, li_bio_list) |
| xfs_set_li_failed(lip, bp); |
| spin_unlock(&bp->b_mount->m_ail->ail_lock); |
| } |
| |
| /* Check incore dquot for errors before we flush. */ |
| static xfs_failaddr_t |
| xfs_qm_dqflush_check( |
| struct xfs_dquot *dqp) |
| { |
| xfs_dqtype_t type = xfs_dquot_type(dqp); |
| |
| if (type != XFS_DQTYPE_USER && |
| type != XFS_DQTYPE_GROUP && |
| type != XFS_DQTYPE_PROJ) |
| return __this_address; |
| |
| if (dqp->q_id == 0) |
| return NULL; |
| |
| if (dqp->q_blk.softlimit && dqp->q_blk.count > dqp->q_blk.softlimit && |
| !dqp->q_blk.timer) |
| return __this_address; |
| |
| if (dqp->q_ino.softlimit && dqp->q_ino.count > dqp->q_ino.softlimit && |
| !dqp->q_ino.timer) |
| return __this_address; |
| |
| if (dqp->q_rtb.softlimit && dqp->q_rtb.count > dqp->q_rtb.softlimit && |
| !dqp->q_rtb.timer) |
| return __this_address; |
| |
| /* bigtime flag should never be set on root dquots */ |
| if (dqp->q_type & XFS_DQTYPE_BIGTIME) { |
| if (!xfs_has_bigtime(dqp->q_mount)) |
| return __this_address; |
| if (dqp->q_id == 0) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Write a modified dquot to disk. |
| * The dquot must be locked and the flush lock too taken by caller. |
| * The flush lock will not be unlocked until the dquot reaches the disk, |
| * but the dquot is free to be unlocked and modified by the caller |
| * in the interim. Dquot is still locked on return. This behavior is |
| * identical to that of inodes. |
| */ |
| int |
| xfs_qm_dqflush( |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = dqp->q_mount; |
| struct xfs_log_item *lip = &dqp->q_logitem.qli_item; |
| struct xfs_buf *bp; |
| struct xfs_dqblk *dqblk; |
| xfs_failaddr_t fa; |
| int error; |
| |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| ASSERT(!completion_done(&dqp->q_flush)); |
| |
| trace_xfs_dqflush(dqp); |
| |
| *bpp = NULL; |
| |
| xfs_qm_dqunpin_wait(dqp); |
| |
| /* |
| * Get the buffer containing the on-disk dquot |
| */ |
| error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK, |
| &bp, &xfs_dquot_buf_ops); |
| if (error == -EAGAIN) |
| goto out_unlock; |
| if (xfs_metadata_is_sick(error)) |
| xfs_dquot_mark_sick(dqp); |
| if (error) |
| goto out_abort; |
| |
| fa = xfs_qm_dqflush_check(dqp); |
| if (fa) { |
| xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS", |
| dqp->q_id, fa); |
| xfs_buf_relse(bp); |
| xfs_dquot_mark_sick(dqp); |
| error = -EFSCORRUPTED; |
| goto out_abort; |
| } |
| |
| /* Flush the incore dquot to the ondisk buffer. */ |
| dqblk = xfs_buf_offset(bp, dqp->q_bufoffset); |
| xfs_dquot_to_disk(&dqblk->dd_diskdq, dqp); |
| |
| /* |
| * Clear the dirty field and remember the flush lsn for later use. |
| */ |
| dqp->q_flags &= ~XFS_DQFLAG_DIRTY; |
| |
| xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn, |
| &dqp->q_logitem.qli_item.li_lsn); |
| |
| /* |
| * copy the lsn into the on-disk dquot now while we have the in memory |
| * dquot here. This can't be done later in the write verifier as we |
| * can't get access to the log item at that point in time. |
| * |
| * We also calculate the CRC here so that the on-disk dquot in the |
| * buffer always has a valid CRC. This ensures there is no possibility |
| * of a dquot without an up-to-date CRC getting to disk. |
| */ |
| if (xfs_has_crc(mp)) { |
| dqblk->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn); |
| xfs_update_cksum((char *)dqblk, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| |
| /* |
| * Attach the dquot to the buffer so that we can remove this dquot from |
| * the AIL and release the flush lock once the dquot is synced to disk. |
| */ |
| bp->b_flags |= _XBF_DQUOTS; |
| list_add_tail(&dqp->q_logitem.qli_item.li_bio_list, &bp->b_li_list); |
| |
| /* |
| * If the buffer is pinned then push on the log so we won't |
| * get stuck waiting in the write for too long. |
| */ |
| if (xfs_buf_ispinned(bp)) { |
| trace_xfs_dqflush_force(dqp); |
| xfs_log_force(mp, 0); |
| } |
| |
| trace_xfs_dqflush_done(dqp); |
| *bpp = bp; |
| return 0; |
| |
| out_abort: |
| dqp->q_flags &= ~XFS_DQFLAG_DIRTY; |
| xfs_trans_ail_delete(lip, 0); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| out_unlock: |
| xfs_dqfunlock(dqp); |
| return error; |
| } |
| |
| /* |
| * Lock two xfs_dquot structures. |
| * |
| * To avoid deadlocks we always lock the quota structure with |
| * the lowerd id first. |
| */ |
| void |
| xfs_dqlock2( |
| struct xfs_dquot *d1, |
| struct xfs_dquot *d2) |
| { |
| if (d1 && d2) { |
| ASSERT(d1 != d2); |
| if (d1->q_id > d2->q_id) { |
| mutex_lock(&d2->q_qlock); |
| mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED); |
| } else { |
| mutex_lock(&d1->q_qlock); |
| mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED); |
| } |
| } else if (d1) { |
| mutex_lock(&d1->q_qlock); |
| } else if (d2) { |
| mutex_lock(&d2->q_qlock); |
| } |
| } |
| |
| int __init |
| xfs_qm_init(void) |
| { |
| xfs_dquot_cache = kmem_cache_create("xfs_dquot", |
| sizeof(struct xfs_dquot), |
| 0, 0, NULL); |
| if (!xfs_dquot_cache) |
| goto out; |
| |
| xfs_dqtrx_cache = kmem_cache_create("xfs_dqtrx", |
| sizeof(struct xfs_dquot_acct), |
| 0, 0, NULL); |
| if (!xfs_dqtrx_cache) |
| goto out_free_dquot_cache; |
| |
| return 0; |
| |
| out_free_dquot_cache: |
| kmem_cache_destroy(xfs_dquot_cache); |
| out: |
| return -ENOMEM; |
| } |
| |
| void |
| xfs_qm_exit(void) |
| { |
| kmem_cache_destroy(xfs_dqtrx_cache); |
| kmem_cache_destroy(xfs_dquot_cache); |
| } |