blob: 287ef898a55e11990c20d83c9a8f97cacc137861 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on linux/arch/arm/mm/dma-mapping.c
*
* Copyright (C) 2000-2004 Russell King
*/
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <asm/cachetype.h>
#include <asm/cacheflush.h>
#include <asm/outercache.h>
#include <asm/cp15.h>
#include "dma.h"
/*
* The generic direct mapping code is used if
* - MMU/MPU is off
* - cpu is v7m w/o cache support
* - device is coherent
* otherwise arm_nommu_dma_ops is used.
*
* arm_nommu_dma_ops rely on consistent DMA memory (please, refer to
* [1] on how to declare such memory).
*
* [1] Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
*/
static void *arm_nommu_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs)
{
void *ret = dma_alloc_from_global_coherent(dev, size, dma_handle);
/*
* dma_alloc_from_global_coherent() may fail because:
*
* - no consistent DMA region has been defined, so we can't
* continue.
* - there is no space left in consistent DMA region, so we
* only can fallback to generic allocator if we are
* advertised that consistency is not required.
*/
WARN_ON_ONCE(ret == NULL);
return ret;
}
static void arm_nommu_dma_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr,
unsigned long attrs)
{
int ret = dma_release_from_global_coherent(get_order(size), cpu_addr);
WARN_ON_ONCE(ret == 0);
}
static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
int ret;
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
return ret;
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
return -ENXIO;
}
static void __dma_page_cpu_to_dev(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
dmac_map_area(__va(paddr), size, dir);
if (dir == DMA_FROM_DEVICE)
outer_inv_range(paddr, paddr + size);
else
outer_clean_range(paddr, paddr + size);
}
static void __dma_page_dev_to_cpu(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE) {
outer_inv_range(paddr, paddr + size);
dmac_unmap_area(__va(paddr), size, dir);
}
}
static dma_addr_t arm_nommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t handle = page_to_phys(page) + offset;
__dma_page_cpu_to_dev(handle, size, dir);
return handle;
}
static void arm_nommu_dma_unmap_page(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
__dma_page_dev_to_cpu(handle, size, dir);
}
static int arm_nommu_dma_map_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg_dma_address(sg) = sg_phys(sg);
sg_dma_len(sg) = sg->length;
__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
}
return nents;
}
static void arm_nommu_dma_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
}
static void arm_nommu_dma_sync_single_for_device(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
__dma_page_cpu_to_dev(handle, size, dir);
}
static void arm_nommu_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
__dma_page_cpu_to_dev(handle, size, dir);
}
static void arm_nommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
}
static void arm_nommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
}
const struct dma_map_ops arm_nommu_dma_ops = {
.alloc = arm_nommu_dma_alloc,
.free = arm_nommu_dma_free,
.mmap = arm_nommu_dma_mmap,
.map_page = arm_nommu_dma_map_page,
.unmap_page = arm_nommu_dma_unmap_page,
.map_sg = arm_nommu_dma_map_sg,
.unmap_sg = arm_nommu_dma_unmap_sg,
.sync_single_for_device = arm_nommu_dma_sync_single_for_device,
.sync_single_for_cpu = arm_nommu_dma_sync_single_for_cpu,
.sync_sg_for_device = arm_nommu_dma_sync_sg_for_device,
.sync_sg_for_cpu = arm_nommu_dma_sync_sg_for_cpu,
};
EXPORT_SYMBOL(arm_nommu_dma_ops);
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu, bool coherent)
{
if (IS_ENABLED(CONFIG_CPU_V7M)) {
/*
* Cache support for v7m is optional, so can be treated as
* coherent if no cache has been detected. Note that it is not
* enough to check if MPU is in use or not since in absense of
* MPU system memory map is used.
*/
dev->archdata.dma_coherent = (cacheid) ? coherent : true;
} else {
/*
* Assume coherent DMA in case MMU/MPU has not been set up.
*/
dev->archdata.dma_coherent = (get_cr() & CR_M) ? coherent : true;
}
if (!dev->archdata.dma_coherent)
set_dma_ops(dev, &arm_nommu_dma_ops);
}