| /* MN10300 I/O port emulation and memory-mapped I/O |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| #ifndef _ASM_IO_H |
| #define _ASM_IO_H |
| |
| #include <asm/page.h> /* I/O is all done through memory accesses */ |
| #include <asm/cpu-regs.h> |
| #include <asm/cacheflush.h> |
| |
| #define mmiowb() do {} while (0) |
| |
| /*****************************************************************************/ |
| /* |
| * readX/writeX() are used to access memory mapped devices. On some |
| * architectures the memory mapped IO stuff needs to be accessed |
| * differently. On the x86 architecture, we just read/write the |
| * memory location directly. |
| */ |
| static inline u8 readb(const volatile void __iomem *addr) |
| { |
| return *(const volatile u8 *) addr; |
| } |
| |
| static inline u16 readw(const volatile void __iomem *addr) |
| { |
| return *(const volatile u16 *) addr; |
| } |
| |
| static inline u32 readl(const volatile void __iomem *addr) |
| { |
| return *(const volatile u32 *) addr; |
| } |
| |
| #define __raw_readb readb |
| #define __raw_readw readw |
| #define __raw_readl readl |
| |
| #define readb_relaxed readb |
| #define readw_relaxed readw |
| #define readl_relaxed readl |
| |
| static inline void writeb(u8 b, volatile void __iomem *addr) |
| { |
| *(volatile u8 *) addr = b; |
| } |
| |
| static inline void writew(u16 b, volatile void __iomem *addr) |
| { |
| *(volatile u16 *) addr = b; |
| } |
| |
| static inline void writel(u32 b, volatile void __iomem *addr) |
| { |
| *(volatile u32 *) addr = b; |
| } |
| |
| #define __raw_writeb writeb |
| #define __raw_writew writew |
| #define __raw_writel writel |
| |
| /*****************************************************************************/ |
| /* |
| * traditional input/output functions |
| */ |
| static inline u8 inb_local(unsigned long addr) |
| { |
| return readb((volatile void __iomem *) addr); |
| } |
| |
| static inline void outb_local(u8 b, unsigned long addr) |
| { |
| return writeb(b, (volatile void __iomem *) addr); |
| } |
| |
| static inline u8 inb(unsigned long addr) |
| { |
| return readb((volatile void __iomem *) addr); |
| } |
| |
| static inline u16 inw(unsigned long addr) |
| { |
| return readw((volatile void __iomem *) addr); |
| } |
| |
| static inline u32 inl(unsigned long addr) |
| { |
| return readl((volatile void __iomem *) addr); |
| } |
| |
| static inline void outb(u8 b, unsigned long addr) |
| { |
| return writeb(b, (volatile void __iomem *) addr); |
| } |
| |
| static inline void outw(u16 b, unsigned long addr) |
| { |
| return writew(b, (volatile void __iomem *) addr); |
| } |
| |
| static inline void outl(u32 b, unsigned long addr) |
| { |
| return writel(b, (volatile void __iomem *) addr); |
| } |
| |
| #define inb_p(addr) inb(addr) |
| #define inw_p(addr) inw(addr) |
| #define inl_p(addr) inl(addr) |
| #define outb_p(x, addr) outb((x), (addr)) |
| #define outw_p(x, addr) outw((x), (addr)) |
| #define outl_p(x, addr) outl((x), (addr)) |
| |
| static inline void insb(unsigned long addr, void *buffer, int count) |
| { |
| if (count) { |
| u8 *buf = buffer; |
| do { |
| u8 x = inb(addr); |
| *buf++ = x; |
| } while (--count); |
| } |
| } |
| |
| static inline void insw(unsigned long addr, void *buffer, int count) |
| { |
| if (count) { |
| u16 *buf = buffer; |
| do { |
| u16 x = inw(addr); |
| *buf++ = x; |
| } while (--count); |
| } |
| } |
| |
| static inline void insl(unsigned long addr, void *buffer, int count) |
| { |
| if (count) { |
| u32 *buf = buffer; |
| do { |
| u32 x = inl(addr); |
| *buf++ = x; |
| } while (--count); |
| } |
| } |
| |
| static inline void outsb(unsigned long addr, const void *buffer, int count) |
| { |
| if (count) { |
| const u8 *buf = buffer; |
| do { |
| outb(*buf++, addr); |
| } while (--count); |
| } |
| } |
| |
| static inline void outsw(unsigned long addr, const void *buffer, int count) |
| { |
| if (count) { |
| const u16 *buf = buffer; |
| do { |
| outw(*buf++, addr); |
| } while (--count); |
| } |
| } |
| |
| extern void __outsl(unsigned long addr, const void *buffer, int count); |
| static inline void outsl(unsigned long addr, const void *buffer, int count) |
| { |
| if ((unsigned long) buffer & 0x3) |
| return __outsl(addr, buffer, count); |
| |
| if (count) { |
| const u32 *buf = buffer; |
| do { |
| outl(*buf++, addr); |
| } while (--count); |
| } |
| } |
| |
| #define ioread8(addr) readb(addr) |
| #define ioread16(addr) readw(addr) |
| #define ioread32(addr) readl(addr) |
| |
| #define iowrite8(v, addr) writeb((v), (addr)) |
| #define iowrite16(v, addr) writew((v), (addr)) |
| #define iowrite32(v, addr) writel((v), (addr)) |
| |
| #define ioread8_rep(p, dst, count) \ |
| insb((unsigned long) (p), (dst), (count)) |
| #define ioread16_rep(p, dst, count) \ |
| insw((unsigned long) (p), (dst), (count)) |
| #define ioread32_rep(p, dst, count) \ |
| insl((unsigned long) (p), (dst), (count)) |
| |
| #define iowrite8_rep(p, src, count) \ |
| outsb((unsigned long) (p), (src), (count)) |
| #define iowrite16_rep(p, src, count) \ |
| outsw((unsigned long) (p), (src), (count)) |
| #define iowrite32_rep(p, src, count) \ |
| outsl((unsigned long) (p), (src), (count)) |
| |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/vmalloc.h> |
| #define __io_virt(x) ((void *) (x)) |
| |
| /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ |
| struct pci_dev; |
| extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); |
| static inline void pci_iounmap(struct pci_dev *dev, void __iomem *p) |
| { |
| } |
| |
| /* |
| * Change virtual addresses to physical addresses and vv. |
| * These are pretty trivial |
| */ |
| static inline unsigned long virt_to_phys(volatile void *address) |
| { |
| return __pa(address); |
| } |
| |
| static inline void *phys_to_virt(unsigned long address) |
| { |
| return __va(address); |
| } |
| |
| /* |
| * Change "struct page" to physical address. |
| */ |
| static inline void *__ioremap(unsigned long offset, unsigned long size, |
| unsigned long flags) |
| { |
| return (void *) offset; |
| } |
| |
| static inline void *ioremap(unsigned long offset, unsigned long size) |
| { |
| return (void *) offset; |
| } |
| |
| /* |
| * This one maps high address device memory and turns off caching for that |
| * area. it's useful if some control registers are in such an area and write |
| * combining or read caching is not desirable: |
| */ |
| static inline void *ioremap_nocache(unsigned long offset, unsigned long size) |
| { |
| return (void *) (offset | 0x20000000); |
| } |
| |
| static inline void iounmap(void *addr) |
| { |
| } |
| |
| static inline void __iomem *ioport_map(unsigned long port, unsigned int nr) |
| { |
| return (void __iomem *) port; |
| } |
| |
| static inline void ioport_unmap(void __iomem *p) |
| { |
| } |
| |
| #define xlate_dev_kmem_ptr(p) ((void *) (p)) |
| #define xlate_dev_mem_ptr(p) ((void *) (p)) |
| |
| /* |
| * PCI bus iomem addresses must be in the region 0x80000000-0x9fffffff |
| */ |
| static inline unsigned long virt_to_bus(volatile void *address) |
| { |
| return ((unsigned long) address) & ~0x20000000; |
| } |
| |
| static inline void *bus_to_virt(unsigned long address) |
| { |
| return (void *) address; |
| } |
| |
| #define page_to_bus page_to_phys |
| |
| #define memset_io(a, b, c) memset(__io_virt(a), (b), (c)) |
| #define memcpy_fromio(a, b, c) memcpy((a), __io_virt(b), (c)) |
| #define memcpy_toio(a, b, c) memcpy(__io_virt(a), (b), (c)) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_IO_H */ |